Articles | Volume 25, issue 15
https://doi.org/10.5194/acp-25-8683-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-8683-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification and characterization of foehn events in Beijing and their impact on air pollution episodes
Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Research Center for Urban Meteorological Engineering and Technology, Beijing, 100089, China
Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
Jingjiang Zhang
Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Research Center for Urban Meteorological Engineering and Technology, Beijing, 100089, China
Mengxin Bai
Beijing Municipal Climate Center, Beijing, 100089, China
Jie Su
Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Research Center for Urban Meteorological Engineering and Technology, Beijing, 100089, China
Qingchun Li
Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Research Center for Urban Meteorological Engineering and Technology, Beijing, 100089, China
Xingcan Jia
Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Beijing Research Center for Urban Meteorological Engineering and Technology, Beijing, 100089, China
Related authors
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Chenxi Wang, Zheng Jin, Yang Liu, Mengxin Bai, Weijia Wang, Yingzhuo Yu, and Liantang Deng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3180, https://doi.org/10.5194/egusphere-2024-3180, 2024
Preprint archived
Short summary
Short summary
Using near surface atmospheric pollutant reanalysis and remote sensing measurements, a dipole-like spatial pattern of near surface ozone trap across two megacities of the Sichuan Basin is demonstrated during 2013–2019. Unexpectedly, Chongqing has the deeper ozone trap compared to Chengdu despite its lower urbanization level. Results showed the ozone trap pattern aligns more closely with meteorological condition rather than chemical condition.
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024, https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Short summary
This study collected 1897 ozonesondes from two Chinese megacities (Beijing and Hong Kong) in 2000–2022 to investigate the climatological vertical heterogeneity of lower-tropospheric ozone distribution with a mixing-layer-height-referenced (h-referenced) vertical coordinate system. This vertical coordinate system highlighted O3 stratification features existing at the mixing layer–free troposphere interface and provided a better understanding of O3 pollution in urban regions.
Zhiheng Liao, Jinqiang Zhang, Yubin Pan, Xingcan Jia, Pengkun Ma, Qianqian Wang, Zhigang Cheng, Lindong Dai, and Jiannong Quan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1393, https://doi.org/10.5194/egusphere-2023-1393, 2023
Preprint withdrawn
Short summary
Short summary
This study presents the first systematic assessment of observationally constrained UTLS O3 variability over the Northeast Asia region in the framework of upper-level circulation pattern classification. The results indicate that lower-stratospheric O3 exhibits a far stronger sensitivity to upper-level circulation patterns when compared with upper-tropospheric O3. The progression of the East Asian Trough plays a critical role in determining the location and intensity of O3 enhancements.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Cited articles
Barry, R. G.: Mountain Weather and Climate, 3rd edn., Cambridge University Press, 506 pp., https://doi.org/10.1017/CBO9780511754753, 2008.
Brinkmann, W. A. R.: What is a foehn?, Weather, 26, 230–240, 1971.
Brinkmann, W. A. R.: Strong downslope winds at Boulder, Colorado, Mon. Weather Rev., 102, 592–602, https://doi.org/10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2, 1974.
Cetti, C., Buzzi, M., and Sprenger, M.: Climatology of alpine north foehn, Scientific Report MeteoSwiss, 100, 76 pp., 2015.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, https://doi.org/10.1126/science.1104235, 2005.
Drobinski, P., Steinacker, R., Richner, H., Baumann-Stanzer, K., Beffrey, G., Benech, B., Berger, H., Chimani, B., Dabas, A., Dorninger, M., Dürr, B., Flamant, C., Frioud, M., Furger, M., Gröhn, I., Gubser, S., Gutermann, T., Häberli, C., Häller-Scharnhost, E., Jaubert, G., Lothon, M., Mitev, V., Pechinger, U., Piringer, M., Ratheiser, M., Ruffieux, D., Seiz, G., Spatzierer, M., Tschannett, S., Vogt, S., Werner, R. and Zängl, G.: Foehn in the Rhine valley during MAP: A review of its multiscale dynamics in complex valley geometry, Q. J. Roy. Meteor. Soc., 133, 897–916, https://doi.org/10.1002/qj.70, 2007.
Durran, D. R.: Another look at downslope windstorms. Part I: the development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid, J. Atmos. Sci., 43, 2527–2543, https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2, 1986.
Elvidge A. D. and Renfrew I. A. The causes of foehn warming in the lee of mountains, B. Am. Meteorol. Soc., 97, 456–466, https://doi.org/10.1175/BAMS-D-14-00194.1, 2016.
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A., and Lachlan-Cope, T. A.: Foehn warming distributions in non-linear and linear flow regimes: A focus on the Antarctic Peninsula, Q. J. Roy. Meteor. Soc., 142, 618–631, https://doi.org/10.1002/qj.2489, 2016.
Elvidge, A. D., Munneke, P. K., King, J. C., Renfrew, I. A., and Gilbert, E.: Atmospheric drivers of melt on Larsen C ice shelf: surface energy budget regimes and the impact of foehn, J. Geophys. Res.-Atmos., 125, e2020JD032463, https://doi.org/10.1029/2020JD032463, 2020.
Gohm, A. and Mayr, G. J.: Hydraulic aspects of föhn winds in an alpine valley, Q. J. Roy. Meteor. Soc., 130, 449–480, https://doi.org/10.1256/qj.03.28, 2004.
Guzman-Morales, J., Gershunov, A., Theiss, J., Li, H., and Cayan, D.: Santa Ana winds of Southern California: their climatology, extremes, and behavior spanning six and a half decades, Geophys. Res. Lett., 43, 2827–2834, https://doi.org/10.1002/2016GL067887, 2016.
Haid, M., Gohm, A., Umek, L., Ward, H. C., Muschinski, T., Lehner, L., and Rotach, M. W.: Foehn-cold pool interactions in the Inn Valley during PIANO IOP2, Q. J. Roy. Meteor. Soc., 146, 1232–1263, https://doi.org/10.1002/qj.3735, 2020.
Hoinka, K. P.: Observation of the airflow over the alps during a foehn event, Q. J. Roy. Meteor. Soc., 111, 199–224, 1985a.
Hoinka, K. P.: What is a foehn clearance?, B. Am. Meteorol. Soc., 66, 1123–1132, https://doi.org/10.1175/1520-0477(1985)066<1123:WIAFC>2.0.CO;2, 1985b.
Jansing, L., Papritz, L., Dürr, B., Gerstgrasser, D., and Sprenger, M.: Classification of Alpine south foehn based on 5 years of kilometre-scale analysis data, Weather Clim. Dynam., 3, 1113–1138, https://doi.org/10.5194/wcd-3-1113-2022, 2022.
Jaubert, G., Bougeault, P., Berger, H., Chimani, B., Flamant, C., Häberli, C., Lothon, M., Nuret, M., and Vogt, S.: Numerical simulation of meso-gamma scale features of föhn at ground level in the Rhine valley, Q. J. Roy. Meteor. Soc., 131, 1339–1361, https://doi.org/10.1256/qj.03.197, 2005.
Kohonen, T.: Self-organizing Maps, Springer-Verlag, Heidelberg, https://doi.org/10.1007/978-3-642-97610-0, 1995.
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012, 2012.
Kusaka, H. and Fudeyasu, H.: Review of downslope windstorms in Japan, Wind Struct., 24, 637–656, https://doi.org/10.12989/was.2017.24.6.637, 2017.
Kusaka, H., Nishi, A., Kakinuma, A., Doan, Q. V., Onodera, T., and Endo, S.: Japan's south foehn on the Toyama Plain: Dynamical or thermodynamical mechanisms?, Int. J. Climatol., 41, 5350–5367, 2021.
Li, J., Sun, Z., Lenschow, D. H., Zhou, M., Dou, Y., Cheng, Z., Wang, Y., and Li, Q.: A foehn-induced haze front in Beijing: observations and implications, Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, 2020.
Li, X., Xia, X., Wang, L., Cai, R., Zhao, L., Feng, Z., Ren, Q., and Zhao, K.: The role of foehn in the formation of heavy air pollution events in Urumqi, China, J. Geophys. Res.-Atmos., 120, 5371–5384, https://doi.org/10.1002/2014jd022778, 2015.
Lian, Z. L., Gao, L. S., Zhao, Y. C., and Kuang, S. S.: Climate Characteristic and Formation Mechanism of Continuing High Temperature of Summer in Shijiazhuang, Chinese Journal of Agrometeorology, 29, 387–391, 2008 (in Chinese).
Liao, Z., Xie, J., Fang, X., Wang, Y., Zhang, Y., Xu, X., and Fan, S.: Modulation of synoptic circulation to dry season PM2.5 pollution over the Pearl River Delta region: An investigation based on self-organizing maps, Atmos. Environ., 230, 117482, https://doi.org/10.1016/j.atmosenv.2020.117482, 2020.
Liu, S., Liu, Z., Li, J., Wang, Y., Ma, Y., Sheng, L., Liu, H., Liang,F., Xin, G., and Wang, J.: Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei province, Sci. China Ser. D, 52, 382–392, https://doi.org/10.1007/s11430-009-0030-2, 2009.
Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., Tian, P., Han, Z., Xia, X., Wang, Y., and Zhang, R.: Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing, Sci. Total Environ., 599–600, 246–253, https://doi.org/10.1016/j.scitotenv.2017.04.193, 2017.
Mayr, G. J., Armi, L., Gohm, A., Drobinski, P., Rotunno, R., and Wernli, H.: Gap flows: Results from the Mesoscale Alpine Programme, Q. J. Roy. Meteor. Soc., 133, 881–896, https://doi.org/10.1002/qj.66, 2007.
McGowan, H. A. and Sturman, A. P.: Regional and local scale characteristics of foehn wind events over the South Island of New Zealand, Meteorol. Atmos. Phys., 58, 151–164, https://doi.org/10.1007/BF01027562, 1996.
McGowan, H. A., Sturman, A. P., Kossmann, M., and Zawar-Reza, P.: Observations of foehn onset in the southern Alps, New Zealand, Meteorol. Atmos. Phys., 79, 215–230, https://doi.org/10.1007/s007030200004, 2002.
Miltenberger, A. K., Reynolds, S., and Sprenger, M.: Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over the Swiss Alps, Q. J. Roy. Meteor. Soc., 142, 2194–2204, https://doi.org/10.1002/qj.2816, 2016.
Ministry of Environmental Protection of the People's Republic of China: Ambient Air Quality Standards (GB 3095-2012) [Standard], China Environmental Science Press, Beijing, ISBN 135111710, 2012a.
Ministry of Environmental Protection of the People's Republic of China: Technical Regulation on Ambient Air Quality Index (on trial) (HJ 633-2012) [Standard], China Environmental Science Press, Beijing, ISBN 203004922, 2012b.
Nishi, A. and Kusaka, H.: Effect of foehn wind on record-breaking high temperature event (41.1 °C) at Kumagaya on 23 July 2018, SOLA, 15, 17–21, https://doi.org/10.2151/sola.2019-004, 2019.
Nishi, A., Kusaka, H., Vitanova, L. L., and Imai, Y.: Contributions of foehn and urban heat Island to the extreme high-temperature event in Niigata city during the night of 23–24 August 2018, SOLA, 15, 132–136, https://doi.org/10.2151/sola.2019-024, 2019.
Ohba, M. and Sugimoto, S.: Impacts of climate change on heavy wet snowfall in Japan, Clim. Dynam., 54, 3151–3164, https://doi.org/10.1007/s00382-020-05163-z, 2020.
Ólafsson, H.: The heat source of the foehn, Hrvat. Meteor. Časopis, 40, 542–545, 2005.
Orr, A., Marshall, G. J., Hunt, J. C., Sommeria, J., Wang, C. G., Van Lipzig, N. P., Cresswell, D., and King, J. C.: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds, J. Atmos. Sci., 65, 1396–1413, https://doi.org/10.1175/2007JAS2498.1, 2008.
Raphael, M. N.: The Santa Ana winds of California, Earth Interact., 7, 1–13, https://doi.org/10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2, 2003.
Richner, H. and Hächler, P.: Understanding and forecasting Alpine foehn, in: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, edited by: Chow, F. K., De Wekker, S. F. J., and Snyder, B. J., Springer, 219–260, https://doi.org/10.1007/978-94-007-4098-3_4, 2013.
Rolinski, T., Capps, S. B., and Zhuang, W.: Santa Ana winds: A descriptive climatology, Weather Forecast., 34, 257–275, https://doi.org/10.1175/WAF-D-18-0160.1, 2019.
Seibert, P.: South foehn studies since the ALPEX experiment, Meteorol. Atmos. Phys., 43, 91–103, https://doi.org/10.1007/BF01028112, 1990.
Seibert, P., Feldmann, H., Neininger, B., Bäumle, M., and Trickl, T.: South foehn and ozone in the eastern Alps – Case study and climatological aspects, Atmos. Environ., 34, 1379–1394, https://doi.org/10.1016/S1352-2310(99)00439-2, 2000.
Sharples, J. J., Mills, G. A., McRae, R. H. D., and Weber, R. O.: Foehn-like winds and elevated fire danger conditions in southeastern Australia, J. Appl. Meteor. Climatol., 49, 1067–1095, https://doi.org/10.1175/2010JAMC2219.1, 2010.
Shibata, Y., Kawamura, R., and Hatsushika, H.: Role of large-scale circulation in triggering foehns in the Hokuriku district of Japan during midsummer, J. Meteorol. Soc. Jpn., 88, 313–324, https://doi.org/10.2151/jmsj.2010-304, 2010.
Speirs, J. C., McGowan, H. A., Steinhoff, D. F., and Bromwich, D. H.: Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica, Int. J. Climatol., 33, 945–958, https://doi.org/10.1002/joc.3481, 2013.
Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., Tang, X., Fu, P., and Wang, Z.: Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015, Sci. Rep.-UK, 6, 27151, https://doi.org/10.1038/srep27151, 2016.
Takane, Y. and Kusaka, H.: Formation mechanisms of the extreme high surface air temperature of 40.9 °C, observed in the Tokyo metropolitan area: considerations of dynamic foehn and foehn like wind, J. Appl. Meteorol. Clim., 50, 1827–1841, https://doi.org/10.1175/JAMC-D-10-05032.1, 2011.
Turton, J. V., Kirchgaessner, A., Ross, A. N., and King, J. C.: The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica, Q. J. Roy. Meteor. Soc., 144, 1169–1178, https://doi.org/10.1002/qj.3284, 2018.
Walker, A. and Ruffner, H.: Föhnforschung und Traubenreife, Schweiz. Z. Obst-Weinbau, 9, 245–247, 1998.
Wang, X.: Historical Data of Air Quality in China, Quotsoft [data set], https://quotsoft.net/air/, last access: 7 August 2025.
Wang, X. and Zhang, R.: Effects of atmospheric circulations on the interannual variation in PM2.5 concentrations over the Beijing–Tianjin–Hebei region in 2013–2018, Atmos. Chem. Phys., 20, 7667–7682, https://doi.org/10.5194/acp-20-7667-2020, 2020.
Wang, Y., Bao, S., Wang, S., Hu, Y., Shi, X., Wang, J., Zhao, B., Jiang, J., Zheng, M., Wu, M., Ruseel, A., Wang, Y., and Hao, J.: Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes, Sci. Total Environ., 580, 283–296, https://doi.org/10.1016/j.scitotenv.2016.12.127, 2017.
Wang, Z. M., Ding, Y. H., Zhang, Y. X., Fan, J. H., Zhang, S. B., and Tian, L. Q.: Feature and Mechanism of the Foehn Weather on East Slope Taihang Mountains II: Case Analysis of the Effects of Lee Wave on Foehn Occurring and Moving, Plateau Meteorology, 31, 555–561, 2012a (in Chinese).
Wang, Z. M., Ding, Y. H., Zhang, Y. X., Wang, C. M., Li, J. B., and Gu, Y. L.: Feature and Mechanism of the Foehn Weather on East Slope Taihang Mountains I: Statistic Feature, Plateau Meteorology, 31, 547–554, 2012b (in Chinese).
Westerling, A. L., Cayan, D. R., Brown, T. J., Hall, B. L., and Riddle, L. G.: Climate, Santa Ana winds and autumn wildfires in southern California, Eos T. Am. Geophys. Un., 85, 289–296, https://doi.org/10.1029/2004EO310001, 2004.
Whiteman, C. D.: Mountain Meteorology: Fundamentals and Applications, Oxford Univ. Press, New York, ISBN 978-0-19-513271-7, 2000.
Würsch, M. and Sprenger, M.: Swiss and Austrian Foehn revisited: A Lagrangian-based analysis, Meteorol. Z., 24, 225–242, https://doi.org/10.1127/metz/2015/0647, 2015.
Xiong, X. P., Wang, S. Y., and Zhang, W.: Analysis of Foehn Characteristics in Middle Section of Taihang Mountains Based on Background Method, Meteorological Science and Technology, 48, 433–437, 2020 (in Chinese).
Yang, X. L., Yang, M., Li, J. B., and Zhang, S.: Impact Analysis of a Taihang Mountain Fohn on Haze Intensity, Meteor. Mon., 44, 313–319, 2018 (in Chinese).
Zhao, B., Wang, P., Ma, J. Z., Zhu, S., Pozzer, A., and Li, W.: A high-resolution emission inventory of primary pollutants for the Huabei region, China, Atmos. Chem. Phys., 12, 481–501, https://doi.org/10.5194/acp-12-481-2012, 2012.
Zhao, S. X., Wang, R. K., Guo, Y. B., Tan, J. L., and Shi, Z. Z.: The Foehn in the Middle Range of Taihang Mountain, Meteor. Mon., 19, 3–6, 1993 (in Chinese).
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Short summary
This research examines foehn events in Beijing using weather station data from 2015 to 2020. We found an average of 56.5 foehn days annually, primarily in winter. These winds can raise temperatures significantly and are associated with air pollution levels. Strong foehn winds tend to reduce pollution, while weaker winds may increase it. Our study highlights the impact of foehn events on air quality, providing valuable insights for urban planning and environmental management.
This research examines foehn events in Beijing using weather station data from 2015 to 2020. We...
Altmetrics
Final-revised paper
Preprint