Articles | Volume 25, issue 14
https://doi.org/10.5194/acp-25-8061-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-8061-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Copper accelerates photochemically induced radical chemistry of iron-containing secondary organic aerosol (SOA)
Kevin Kilchhofer
CORRESPONDING AUTHOR
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
Department of Environmental System Science, Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
now at: Physikalisch Meteorologisches Observatorium, World Radiation Center (PMOD/WRC), 7260 Davos, Switzerland
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
Laura Torrent
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
School of Architecture, Civil, and Environmental Engineering (ENAC IIE GR-LUD), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
now at: Department of Chemistry, Faculty of Sciences, University of Girona, 17003 Girona, Spain
Rico K. Y. Cheung
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
now at: Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Peter A. Alpert
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
now at: XRnanotech, 5232 Villigen PSI, Switzerland
Related authors
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, André S. H. Prévôt, Imad El Haddad, and David M. Bell
Atmos. Chem. Phys., 25, 10229–10243, https://doi.org/10.5194/acp-25-10229-2025, https://doi.org/10.5194/acp-25-10229-2025, 2025
Short summary
Short summary
Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions, the reaction does not proceed to completion, while under high humidity conditions, the reactivity proceeds further. These results indicate that the reactivity with ozone is likely impacted by aerosol phase state (e.g., aerosol viscosity).
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Ruiqi Man, Yishu Zhu, Zhijun Wu, Peter Aaron Alpert, Bingbing Wang, Jing Dou, Jie Chen, Yan Zheng, Yanli Ge, Qi Chen, Shiyi Chen, Xiangrui Kong, Markus Ammann, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2301, https://doi.org/10.5194/egusphere-2025-2301, 2025
Preprint archived
Short summary
Short summary
The particle chemical morphology is important to atmospheric multiphase and heterogeneous chemistry. This work directly observed the core-shell structure and water uptake behavior of individual submicron aerosol particles at an urban site and elucidated the potential impact on particle reactive uptake and heterogeneous reactions.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 25, 2707–2724, https://doi.org/10.5194/acp-25-2707-2025, https://doi.org/10.5194/acp-25-2707-2025, 2025
Short summary
Short summary
Our study analyzes real-time emissions of organic vapors from solid fuel combustion. Using the mass spectrometer, we tested various fuels, finding higher emission factors for organic vapors from wood burning. Intermediate-volatility organic compounds constituted a significant fraction of emissions in solid fuel combustion. Statistical tests identified unique potential markers. Our insights benefit air quality, climate, and health, aiding accurate emission assessments.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Daniel A. Knopf and Markus Ammann
Atmos. Chem. Phys., 21, 15725–15753, https://doi.org/10.5194/acp-21-15725-2021, https://doi.org/10.5194/acp-21-15725-2021, 2021
Short summary
Short summary
Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of gas-to-condensed-phase processes that can define the physicochemical evolution of the condensed phase. We apply a thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and surface accommodation depend on the choice of adsorption model and standard states with implications for desorption energy and lifetimes.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Cited articles
Abida, O., Kolar, M., Jirkovsky, J., and Mailhot, G.: Degradation of 4-chlorophenol in aqueous solution photoinduced by Fe(iii)-citrate complex, Photochem. Photobiol. Sci., 11, 794–802, https://doi.org/10.1039/c2pp05358f, 2012. a
Al-Abadleh, H. A.: Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances, RSC Adv., 5, 45785–45811, https://doi.org/10.1039/c5ra03132j, 2015. a
Al-Abadleh, H. A.: Iron content in aerosol particles and its impact on atmospheric chemistry, Chem. Commun., 60, 1840–1855, https://doi.org/10.1039/d3cc04614a, 2024. a, b
Alpert, P. A., Arroyo, P. C., Dou, J., Krieger, U. K., Steimer, S. S., Förster, J. D., Ditas, F., Pöhlker, C., Rossignol, S., Passananti, M., Perrier, S., George, C., Shiraiwa, M., Berkemeier, T., Watts, B., and Ammann, M.: Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone, Phys. Chem. Chem. Phys., 21, 20613–20627, https://doi.org/10.1039/c9cp03731d, 2019. a, b, c, d
Alpert, P. A., Dou, J., Arroyo, P. C., Schneider, F., Xto, J., Luo, B., Peter, T., Huthwelker, T., Borca, C. N., Henzler, K. D., Schaefer, T., Herrmann, H., Raabe, J., Watts, B., Krieger, U. K., and Ammann, M.: Photolytic radical persistence due to anoxia in viscous aerosol particles, Nat. Commun., 12, 1–8, https://doi.org/10.1038/s41467-021-21913-x, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Ammann, M., Hauert, R., and Burtscher, H.: In situ detection of monovalent copper in aerosols by photoemission, Fresenius' J. Anal. Chem., 343, 491–496, https://doi.org/10.1007/BF00322156, 1992. a, b
Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013. a
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A. G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects, Environ. Sci. Technol., 53, 4003–4019, https://doi.org/10.1021/acs.est.8b03430, 2019. a
Benkelberg, H. J. and Warneck, P.: Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and quantum yields, J. Phys. Chem., 99, 5214–5221, https://doi.org/10.1021/j100014a049, 1995. a, b
Berkemeier, T., Huisman, A. J., Ammann, M., Shiraiwa, M., Koop, T., and Pöschl, U.: Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme, Atmos. Chem. Phys., 13, 6663–6686, https://doi.org/10.5194/acp-13-6663-2013, 2013. a
Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B.: Reactivity of HO2/O2 Radicals in Aqueous Solution, J. Phys. Chem. Ref. Data, 14, 1041–1100, https://doi.org/10.1063/1.555739, 1985. a, b, c
Bjergbakke, E., Sehested, K., and Rasmussen, O. L.: The Reaction Mechanism and Rate Constants in the Radiolysis of Fe Cu Solutions, Radiation Res., 66, 433–442, https://doi.org/10.2307/3574449, 1976. a, b
Brandt, C. and van Eldik, R.: Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms, Chem. Rev., 95, 119–190, https://doi.org/10.1021/cr00033a006, 1995. a
Charrier, J. G. and Anastasio, C.: Rates of Hydroxyl Radical Production from Transition Metals and Quinones in a Surrogate Lung Fluid, Environ. Sci. Technol., 49, 9317–9325, https://doi.org/10.1021/acs.est.5b01606, 2015. a
Charrier, J. G., McFall, A. S., Richards-Henderson, N. K., and Anastasio, C.: Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter, Environ. Sci. Technol., 48, 7010–7017, https://doi.org/10.1021/es501011w, 2014. a
Chifflet, S., Guyomarc'h, L., Dominutti, P., Heimbürger-Boavida, L. E., Angeletti, B., Louvat, P., Jaffrezo, J. L., Vu, C. T., Uzu, G., and Mari, X.: Seasonal variations of metals and metalloids in atmospheric particulate matter (PM2.5) in the urban megacity Hanoi, Atmos. Pollut. Res., 15, 101961–101974, https://doi.org/10.1016/j.apr.2023.101961, 2024. a
Christensen, H. and Sehested, K.: Pulse radiolysis at high temperatures and high pressures, Rad. Phys. Chem. (1977), 18, 723–731, https://doi.org/10.1016/0146-5724(81)90195-3, 1981. a
Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, https://doi.org/10.1021/j100206a023, 1982. a
Cieśla, P., Kocot, P., Mytych, P., and Stasicka, Z.: Homogeneous photocatalysis by transition metal complexes in the environment, J. Molecul. Cat. A, 224, 17–33, https://doi.org/10.1016/j.molcata.2004.08.043, 2004. a
Corral Arroyo, P., Bartels-Rausch, T., Alpert, P. A., Dumas, S., Perrier, S., George, C., and Ammann, M.: Particle-Phase Photosensitized Radical Production and Aerosol Aging, Environ. Sci. Technol., 52, 7680–7688, https://doi.org/10.1021/acs.est.8b00329, 2018a. a
Corral Arroyo, P., Malecha, K. T., Ammann, M., and Nizkorodov, S. A.: Influence of humidity and iron(iii) on photodegradation of atmospheric secondary organic aerosol particles, Phys. Chem. Chem. Phys., 20, 30021–30031, https://doi.org/10.1039/c8cp03981j, 2018b. a
Corral Arroyo, P., David, G., Alpert, P. A., Parmentier, E. A., Ammann, M., and Signorell, R.: Amplification of light within aerosol particles accelerates in-particle photochemistry, Science, 376, 293–296, https://doi.org/10.1126/science.abm7915, 2022. a
Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J. L., and Prévôt, A. S.: Sources of particulate-matter air pollution and its oxidative potential in Europe, Nature, 587, 414–419, https://doi.org/10.1038/s41586-020-2902-8, 2020. a
De Laat, J. and Le, T. G.: Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions, Environ. Sci. Technol., 39, 1811–1818, https://doi.org/10.1021/es0493648, 2005. a
Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., and Chaumerliac, N.: Transition metals in atmospheric liquid phases: Sources, reactivity, and sensitive parameters, Chem. Rev., 105, 3388–3431, https://doi.org/10.1021/cr040649c, 2005. a
Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., and Deutsch, W. A.: Role of free radicals in the toxicity of airborne fine particulate matter, Chem. Res. Toxic., 14, 1371–1377, https://doi.org/10.1021/tx010050x, 2001. a
D'Huysser, A., Lerebours-Hannoyer, B., Lenglet, M., and Bonnelle, J. P.: La spectroscopie de photoélectrons induits par rayons X et la répartition des ions cuivre Cu+ et Cu2+ dans les ferrites de cuivre, J. Solid State Chem., 39, 246–256, https://doi.org/10.1016/0022-4596(81)90338-8, 1981. a
Dou, J., Alpert, P. A., Corral Arroyo, P., Luo, B., Schneider, F., Xto, J., Huthwelker, T., Borca, C. N., Henzler, K. D., Raabe, J., Watts, B., Herrmann, H., Peter, T., Ammann, M., and Krieger, U. K.: Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model, Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a, b
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res.-Atmos., 108, 4426–4447, https://doi.org/10.1029/2002jd002202, 2003. a
Faust, C. and Zepp, R. G.: Photochemistry of Aqueous Iron(III) -Polycarboxylate Complexes: Roles in the Chemistry of Atmospheric and Surface Waters, Environ. Sci. Technol., 27, 2517–2522, https://doi.org/10.1021/es00048a032, 1993. a, b
Fenton, H. J.: Oxidation of tartaric acid in presence of iron, J. Chem. Soc. Trans., 65, 899–910, https://doi.org/10.1039/CT8946500899, 1894. a
George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.: Heterogeneous Photochemistry in the Atmosphere, Chem. Rev., 115, 4218–4258, https://doi.org/10.1021/cr500648z, 2015. a, b
Goh, S. W., Buckley, A. N., Lamb, R. N., Rosenberg, R. A., and Moran, D.: The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air, Geochim. Cosmochim. Acta, 70, 2210–2228, https://doi.org/10.1016/j.gca.2006.02.007, 2006. a, b
Goldstein, S., Czapski, G., Cohen, H., and Meyerstein, D.: Deamination of β-alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolysis study, Inorg. Chim. Acta, 192, 87–93, https://doi.org/10.1016/S0020-1693(00)83177-1, 1992. a
Gonzalez, D. H., Cala, C. K., Peng, Q., and Paulson, S. E.: HULIS Enhancement of Hydroxyl Radical Formation from Fe(II): Kinetics of Fulvic Acid-Fe(II) Complexes in the Presence of Lung Antioxidants, Environ. Sci. Technol., 51, 7676–7685, https://doi.org/10.1021/acs.est.7b01299, 2017. a, b, c, d
Gracheva, M., Homonnay, Z., Singh, A., Fodor, F., Marosi, V. B., Solti, A., and Kovacs, K.: New aspects of the photodegradation of iron(III) citrate: spectroscopic studies and plant-related factors, Photoch. Photobio. Sci., 21, 983–996, https://doi.org/10.1007/s43630-022-00188-1, 2022. a
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Hanson, D. R., Ravishankara, A. R., and Solomon, S.: Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations, J. Geophys. Res., 99, 3615–3629, https://doi.org/10.1029/93JD02932, 1994. a
Hemmes, P., Rich, L. D., Cole, D. L., and Eyring, E. M.: Kinetics of hydrolysis of ferric ion in dilute aqueous solution, Anal. Chem., 75, 929–932, https://doi.org/10.1021/ac60297a755, 1971. a
Hong, S., Candelone, J. P., Soutif, M., and Boutron, C. F.: A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years, Sci. Total Environ., 188, 183–193, https://doi.org/10.1016/0048-9697(96)05171-6, 1996. a
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and Prévôt, A. S.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2015. a
Hug, S. J., Canonica, L., Wegelin, M., Gechter, D., and von Gunten, U.: Solar Oxidation and Removal of Arsenic at Circumneutral pH in Iron Containing Waters, Environ. Sci. Technol., 35, 2114–2121, https://doi.org/10.1021/es001551s, 2001. a
Huthwelker, T., Zelenay, V., Birrer, M., Krepelova, A., Raabe, J., Tzvetkov, G., Vernooij, M. G., and Ammann, M.: An in situ cell to study phase transitions in individual aerosol particles on a substrate using scanning transmission x-ray microspectroscopy, Rev. Sci. Instrum., 81, 113706, https://doi.org/10.1063/1.3494604, 2010. a, b
Ianni, J. C.: Kintecus, http://www.kintecus.com/ (last access: 9 April 2025), 2017. a
Ito, A. and Miyakawa, T.: Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron, Environ. Sci. Technol., 57, 4091–4100, https://doi.org/10.1021/acs.est.2c06472, 2023. a
IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation: Evaluated kinetic data, IUPAC, https://iupac-aeris.ipsl.fr/datasheets/pdf/HET_O_12.pdf (last access: 20 April 2025), 2017. a
Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Oxidation of ferrous ions by hydroxyl radicals, J. Chem. Soc. Farad. T. 1, 68, 2053–2058, https://doi.org/10.1039/F19726802053, 1973. a
Kieber, R. J., Williams, K., Willey, J. D., Skrabal, S., and Avery, G. B.: Iron speciation in coastal rainwater: concentration and deposition to seawater, Mar. Chem., 73, 83–95, https://doi.org/10.1016/S0304-4203(00)00097-9, 2001. a
Kilchhofer, K.: Data availibility for the paper “Copper accelerates photochemically induced radical chemistry of iron-containing SOA”, Zenodo [data set], https://doi.org/10.5281/zenodo.14065174, 2024. a
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere, Phys. Chem. Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011. a
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008. a
Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S., Shiraiwa, M., Pöschl, U., and Berkemeier, T.: Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species, Environ. Sci. Technol., 55, 14069–14079, https://doi.org/10.1021/acs.est.1c03875, 2021. a
Lelieveld, S., Lelieveld, J., Mishra, A., Daiber, A., Pozzer, A., Pöschl, U., and Berkemeier, T.: Endogenous Nitric Oxide Can Enhance Oxidative Stress Caused by Air Pollutants and Explain Higher Susceptibility of Individuals with Inflammatory Disorders, Environ. Sci. Technol., 58, 1823–1831, https://doi.org/10.1021/acs.est.3c07010, 2024. a
Lienhard, D. M., Bones, D. L., Zuend, A., Krieger, U. K., Reid, J. P., and Peter, T.: Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance, J. Phys. Chem. A, 116, 9954–9968, https://doi.org/10.1021/jp3055872, 2012. a
Malecha, K. T. and Nizkorodov, S. A.: Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds, Environ. Sci. Technol., 50, 9990–9997, https://doi.org/10.1021/acs.est.6b02313, 2016. a
Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, https://doi.org/10.5194/acp-13-509-2013, 2013. a, b, c
Martell, A. E. and Smith, R. M.: Critical stability constants, Springer US, Boston, vol. 5 Edn., 257 pp., https://doi.org/10.1007/978-1-4757-5506-0, 1982. a, b, c
Matocha, C. J., Karathanasis, A. D., Rakshit, S., and Wagner, K. M.: Reduction of Copper(II) by Iron(II), J. Environ. Qual., 34, 1539–1546, https://doi.org/10.2134/jeq2005.0002, 2005. a, b
Moffet, R. C., Henn, T., Laskin, A., and Gilles, M. K.: Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge, Anal. Chem., 82, 7906–7914, https://doi.org/10.1021/ac1012909, 2010. a
Moffet, R. C., Furutani, H., Rödel, T. C., Henn, T. R., Sprau, P. O., Laskin, A., Uematsu, M., and Gilles, M. K.: Iron speciation and mixing in single aerosol particles from the Asian continental outflow, J. Geophys. Res.-Atmos., 117, D07204, https://doi.org/10.1029/2011JD016746, 2012. a, b, c, d
Perrin, D. D.: Stability Constants of Metal-Ion Complexes, Part B: Organic Ligands, IUPAC Chemical Data Series, 22, 1263 pp., https://doi.org/10.1002/prac.19803220331, 1979. a, b
Pham, A. N. and Waite, T. D.: Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 °, J. Phys. Chem. A, 112, 5395–5405, https://doi.org/10.1021/jp801126p, 2008. a, b
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the Atmosphere-Biosphere Interface Influencing Climate and Public Health in the Anthropocene, Chem. Rev., 115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015. a
Potter, P. M., Guan, X., and Lomnicki, S. M.: Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol, Chemosphere, 203, 96–103, https://doi.org/10.1016/j.chemosphere.2018.03.118, 2018. a
Pozdnyakov, I. P., Kolomeets, A. V., Plyusnin, V. F., Melnikov, A. A., Kompanets, V. O., Chekalin, S. V., Tkachenko, N., and Lemmetyinen, H.: Photophysics of Fe(III)-tartrate and Fe(III)-citrate complexes in aqueous solutions, Chem. Phys. Lett., 530, 45–48, https://doi.org/10.1016/j.cplett.2012.01.051, 2012. a
Raabe, J., Tzvetkov, G., Flechsig, U., Böge, M., Jaggi, A., Sarafimov, B., Vernooij, M. G., Huthwelker, T., Ade, H., Kilcoyne, D., Tyliszczak, T., Fink, R. H., and Quitmann, C.: PolLux: A new facility for soft x-ray spectromicroscopy at the swiss light source, Rev. Sci. Inst., 79, 113704, https://doi.org/10.1063/1.3021472, 2008. a
Rabani, J., Klug-Roth, D., and Lilie, J.: Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions, The J. Phys. Chem., 77, 1169–1175, https://doi.org/10.1021/j100628a018, 1973. a, b
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T., Petters, M. D., Pope, F. D., and Rovelli, G.: The viscosity of atmospherically relevant organic particles, Nat. Commun., 9, 956–970, https://doi.org/10.1038/s41467-018-03027-z, 2018. a
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science, 315, 1259–1262, https://doi.org/10.1126/SCIENCE.1133061, 2007. a
Rush, J. D. and Bielski, B. H.: Pulse radiolytic studies of the reactions of HO2/O with Fe(II)/Fe(III) ions. The reactivity of HO2/O with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062–5066, https://doi.org/10.1021/j100269a035, 1985. a, b, c, d
Schroeder, W. H., Dobson, M., Kane, D. M., and Johnson, N. D.: Toxic Trace Elements Associated With Airborne Particulate Matter: A Review, J. Air Pollut. Control Assoc., 37, 1267–1285, https://doi.org/10.1080/08940630.1987.10466321, 1987. a, b
Sedlak, D. L. and Hoigné, J.: The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmos. Environ. A, 27, 2173–2185, https://doi.org/10.1016/0960-1686(93)90047-3, 1993. a
Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO2, O , and H2O from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, https://doi.org/10.1021/j100848a040, 1968. a, b, c
Seraghni, N., Belattar, S., Mameri, Y., Debbache, N., and Sehili, T.: Fe(III)-citrate-complex-induced photooxidation of 3-methylphenol in aqueous solution, Int. J. Photoenergy, 2012, 630425, https://doi.org/10.1155/2012/630425, 2012. a
Shen, J., Griffiths, P. T., Campbell, S. J., Utinger, B., Kalberer, M., and Paulson, S. E.: Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants, Sci. Rep., 11, 1–14, https://doi.org/10.1038/s41598-021-86477-8, 2021. a
Shiraiwa, M., Fang, T., Wei, J., Lakey, P. S. J., Hwang, B. C., Edwards, K. C., Kapur, S., Monterrosa Mena, J. E., Huang, Y.-K., Digman, M. A., Weichenthal, S. A., Nizkorodov, S. A., and Kleinman, M. T.: Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid, Tech. rep., UCI, Boston, MA: Health Effects Institute, 2023. a
Silva, A. M., Kong, X., Parkin, M. C., Cammack, R., and Hider, R. C.: Iron(iii) citrate speciation in aqueous solution, Dalton T., 2009, 8616–8625, https://doi.org/10.1039/b910970f, 2009. a
Steimer, S. S., Berkemeier, T., Gilgen, A., Krieger, U. K., Peter, T., Shiraiwa, M., and Ammann, M.: Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass, Phys. Chem. Chem. Phys., 17, 31101–31109, https://doi.org/10.1039/c5cp04544d, 2015. a
Tao, Y. and Murphy, J. G.: The Mechanisms Responsible for the Interactions among Oxalate, pH, and Fe Dissolution in PM2.5, ACS Earth Space Chem., 3, 2259–2265, https://doi.org/10.1021/acsearthspacechem.9b00172, 2019. a
Tapparo, A., Di Marco, V., Badocco, D., D'Aronco, S., Soldà, L., Pastore, P., Mahon, B. M., Kalberer, M., and Giorio, C.: Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley, Chemosphere, 241, 125025, https://doi.org/10.1016/j.chemosphere.2019.125025, 2020. a
Tuet, W. Y., Chen, Y., Fok, S., Gao, D., Weber, R. J., Champion, J. A., and Ng, N. L.: Chemical and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect of redox-active metals and photochemical aging, Sci. Rep., 7, 1–10, https://doi.org/10.1038/s41598-017-15071-8, 2017. a
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P., Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827, https://doi.org/10.1038/nature09455, 2010. a
von Piechowski, M., Nauser, T., Hoigné, J., and Bühler, R. E.: O2 Decay Catalyzed by Cu and Cu+ Ions in Aqueous Solutions: A Pulse Radiolysis Study for Atmospheric Chemistry, Berichte der Bunsengesellschaft für physikalische Chemie, 97, 762–771, https://doi.org/10.1002/bbpc.19930970604, 1993. a
Walling, C.: Fenton's Reagent Revisited, Accounts Chem. Res., 8, 125–131, https://doi.org/10.1021/ar50088a003, 1975. a
Wang, J., Huang, D., Chen, F., Chen, J., Jiang, H., Zhu, Y., Chen, C., and Zhao, J.: Rapid Redox Cycling of Fe(II)/Fe(III) in Microdroplets during Iron–Citric Acid Photochemistry, Environ. Sci. Technol., 57, 4434–4442, https://doi.org/10.1021/acs.est.2c07897, 2023. a
Wang, Z., Chen, C., Ma, W., and Zhao, J.: Photochemical coupling of iron redox reactions and transformation of low-molecular-weight organic matter, J. Phys. Chem. Lett., 3, 2044–2051, https://doi.org/10.1021/jz3005333, 2012. a
Wei, J., Yu, H., Wang, Y., and Verma, V.: Complexation of Iron and Copper in Ambient Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung Fluid, Environ. Sci. Technol., 53, 1661–1671, https://doi.org/10.1021/acs.est.8b05731, 2019. a, b, c
Weichenthal, S., Shekarrizfard, M., Traub, A., Kulka, R., Al-Rijleh, K., Anowar, S., Evans, G., and Hatzopoulou, M.: Within-City Spatial Variations in Multiple Measures of PM2.5 Oxidative Potential in Toronto, Canada, Environ. Sci. Technol., 53, 2799–2810, https://doi.org/10.1021/acs.est.8b05543, 2019. a
Welch, M. J., Lifton, J. F., and Seck, J. A.: Tracer studies with radioactive Oxygen-15. Exchange between carbon dioxide and water, J. Phys. Chem., 73, 3351–3356, 1969. a
Weller, C., Horn, S., and Herrmann, H.: Photolysis of fe(iii) carboxylato complexes: Fe(ii) quantum yields and reaction mechanisms, J. Photochem. Photobiol. A, 268, 24–36, https://doi.org/10.1016/j.jphotochem.2013.06.022, 2013. a, b, c, d
Weller, C., Tilgner, A., Bräuer, P., and Herrmann, H.: Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles, Environ. Sci. Technol., 48, 5652–5659, https://doi.org/10.1021/es4056643, 2014. a, b
West, C. P., Morales, A. C., Ryan, J., Misovich, M. V., Hettiyadura, A. P., Rivera-Adorno, F., Tomlin, J. M., Darmody, A., Linn, B. N., Lin, P., and Laskin, A.: Molecular investigation of the multi-phase photochemistry of Fe(iii)-citrate in aqueous solution, Environ. Sci., 25, 190–213, https://doi.org/10.1039/d1em00503k, 2023. a
Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism, Atmos. Environ., 28, 2549–2552, https://doi.org/10.1016/1352-2310(94)90405-7, 1994. a
Short summary
Aerosol particles composed of metal complexes generate radicals as a result of photochemical reactions. The reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account for decreased photochemical activity and use a copper-induced reoxidation reaction.
Aerosol particles composed of metal complexes generate radicals as a result of photochemical...
Altmetrics
Final-revised paper
Preprint