Articles | Volume 25, issue 9
https://doi.org/10.5194/acp-25-5009-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-5009-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of sudden stratospheric warmings on the global ionospheric total electron content using a machine learning analysis
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
Klemens Hocke
CORRESPONDING AUTHOR
Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Related authors
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Short summary
We find a sudden stratospheric warming (SSW) effect in the F2 critical frequency (foF2) series for Okinawa. Across 29 SSW events, the amplitude of the semidiurnal cycle of foF2 peaks at the SSW onset in the SSW years. In these years, we find, for the first time, a lunar terdiurnal component with a relative amplitude of about 5 %, and lunar diurnal and semidiurnal components have relative amplitudes of about 10 %. The periods of lunar ionospheric tidal variations align with those of ocean tides.
Jinghua Li, Guanyi Ma, Klemens Hocke, Qingtao Wan, Jiangtao Fan, and Xiaolan Wang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-64, https://doi.org/10.5194/angeo-2019-64, 2019
Revised manuscript not accepted
Short summary
Short summary
Local occurrence rate (LOR) is defined to clarify the characteristics of ionospheric irregularities together with monthly occurrence rate (MOR) at 20–29° N in solar minimum, medium and maximum years of 2008, 2003 and 2014. MOR of irregularities in May/June is larger than that in equinoxes, which is different with the equatorial plasma bubbles. LOR shows that the irregularities at 26–29° N in May/June are more frequently happened and have smaller spatiotemporal scales than those at lower latitudes.
Klemens Hocke, Huixin Liu, Nicholas Pedatella, and Guanyi Ma
Ann. Geophys., 37, 235–242, https://doi.org/10.5194/angeo-37-235-2019, https://doi.org/10.5194/angeo-37-235-2019, 2019
Short summary
Short summary
The GPS radio occultation data of the COSMIC-FORMOSAT-3 mission are used to visualize the global distribution of ionospheric irregularities in the F2 region during a geomagnetic storm, at solar minimum, and at solar maximum.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
Atmos. Meas. Tech., 18, 555–567, https://doi.org/10.5194/amt-18-555-2025, https://doi.org/10.5194/amt-18-555-2025, 2025
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle-atmospheric water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13-year dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Short summary
We find a sudden stratospheric warming (SSW) effect in the F2 critical frequency (foF2) series for Okinawa. Across 29 SSW events, the amplitude of the semidiurnal cycle of foF2 peaks at the SSW onset in the SSW years. In these years, we find, for the first time, a lunar terdiurnal component with a relative amplitude of about 5 %, and lunar diurnal and semidiurnal components have relative amplitudes of about 10 %. The periods of lunar ionospheric tidal variations align with those of ocean tides.
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024, https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
Short summary
The south-central interior of Andalusia experiences complex precipitation patterns as a result of the semi-arid Mediterranean climate and the influence of Saharan dust. This study monitored the inter-relations between aerosols, clouds, meteorological variables, and precipitation systems using ground-based remote sensing and in situ instruments.
Eric Sauvageat, Klemens Hocke, Eliane Maillard Barras, Shengyi Hou, Quentin Errera, Alexander Haefele, and Axel Murk
Atmos. Chem. Phys., 23, 7321–7345, https://doi.org/10.5194/acp-23-7321-2023, https://doi.org/10.5194/acp-23-7321-2023, 2023
Short summary
Short summary
In Switzerland, two microwave radiometers can measure continuous ozone profiles in the middle atmosphere. From these instruments, we can study the diurnal variation of ozone, which is difficult to observe otherwise. It is valuable to validate the model simulations of diurnal variations in this region. We present results obtained during the last decade and compare them against various models. For the first time, we also show that the winter diurnal variations have some short-term fluctuations.
Eric Sauvageat, Eliane Maillard Barras, Klemens Hocke, Alexander Haefele, and Axel Murk
Atmos. Meas. Tech., 15, 6395–6417, https://doi.org/10.5194/amt-15-6395-2022, https://doi.org/10.5194/amt-15-6395-2022, 2022
Short summary
Short summary
We present new harmonized ozone time series from two ground-based microwave radiometers in Switzerland. The new series consist of hourly ozone profiles in the middle atmosphere (~ 20–70 km) from 2009 until 2021. Cross-validation of the new data series shows the benefit of the harmonization process compared to the previous versions. Comparisons with collocated satellite observations is used to further validate these time series for long-term ozone monitoring over central Europe.
Jinghua Li, Guanyi Ma, Klemens Hocke, Qingtao Wan, Jiangtao Fan, and Xiaolan Wang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-64, https://doi.org/10.5194/angeo-2019-64, 2019
Revised manuscript not accepted
Short summary
Short summary
Local occurrence rate (LOR) is defined to clarify the characteristics of ionospheric irregularities together with monthly occurrence rate (MOR) at 20–29° N in solar minimum, medium and maximum years of 2008, 2003 and 2014. MOR of irregularities in May/June is larger than that in equinoxes, which is different with the equatorial plasma bubbles. LOR shows that the irregularities at 26–29° N in May/June are more frequently happened and have smaller spatiotemporal scales than those at lower latitudes.
Klemens Hocke, Huixin Liu, Nicholas Pedatella, and Guanyi Ma
Ann. Geophys., 37, 235–242, https://doi.org/10.5194/angeo-37-235-2019, https://doi.org/10.5194/angeo-37-235-2019, 2019
Short summary
Short summary
The GPS radio occultation data of the COSMIC-FORMOSAT-3 mission are used to visualize the global distribution of ionospheric irregularities in the F2 region during a geomagnetic storm, at solar minimum, and at solar maximum.
Related subject area
Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Trends in the high-latitude mesosphere temperature and mesopause revealed by SABER
Evaluating F2-region long-term trends using the International Reference Ionosphere (IRI) model: is this a feasible approximation for experimental trends?
Xiao Liu, Jiyao Xu, Jia Yue, Yangkun Liu, and Vania F. Andrioli
Atmos. Chem. Phys., 24, 10143–10157, https://doi.org/10.5194/acp-24-10143-2024, https://doi.org/10.5194/acp-24-10143-2024, 2024
Short summary
Short summary
Disagreement in long-term trends in the high-latitude mesosphere temperature should be elucidated using one coherent measurement over a long period. Using SABER measurements at high latitudes and binning the data based on yaw cycle, we focus on long-term trends in the mean temperature and mesopause in the high-latitude mesosphere–lower-thermosphere region, which has been rarely studied via observations but is more sensitive to dynamic changes.
Bruno S. Zossi, Trinidad Duran, Franco D. Medina, Blas F. de Haro Barbas, Yamila Melendi, and Ana G. Elias
Atmos. Chem. Phys., 23, 13973–13986, https://doi.org/10.5194/acp-23-13973-2023, https://doi.org/10.5194/acp-23-13973-2023, 2023
Short summary
Short summary
The International Reference Ionosphere (IRI) is a widely used ionospheric empirical model based on observations from a worldwide network of ionospheric stations. It is reasonable, then, to expect that it captures long-term changes in ionospheric parameters linked to trend forcings like greenhouse gases increasing concentration and the Earth's magnetic field secular variation. We show that the IRI model can be a valuable tool for obtaining preliminary approximations of experimental trends.
Cited articles
Baldwin M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden stratospheric warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021.
Chau, J. L, Fejer, B. G., and Goncharenko, L. P.: Quiet variability of equatorial E x B drifts during a sudden stratospheric warming event, Geophys. Res. Lett., 36, L05101, https://doi.org/10.1029/2008GL036785, 2009.
Chau, J. L., Goncharenko, L. P., Fejer, B. G., and Liu, H. L.: Equatorial and low latitude ionospheric effects during sudden stratospheric warming events, Space Sci. Rev., 168, 385–417, 2012.
Chen, G., Wu, C., Zhang, S., Ning, B., Huang, X., Zhong, D., Qi, H., Wang, J., and Huang, L.: Midlatitude ionospheric responses to the 2013 SSW under high solar activity, J. Geophys. Res.-Space, 121, 790–803, https://doi.org/10.1002/2015JA021980, 2016.
Chernigovskaya, M. A., Shpynev, B. G., Ratovsky, K. G., Belinskaya, A. Yu., Stepanov, A. E., and Bychkov, V. V.: Ionospheric response to winter stratosphere/lower mesosphere jet stream in the Northern Hemisphere as derived from vertical radio sounding data, J. Atmos. Sol.-Terr. Phy., 180, 126–136. https://doi.org/10.1016/j.jastp.2017.08.033, 2018.
Fuller-Rowell, T., Wu, F., Akmaev, R., Fang, T.-W., and Araujo-Pradere, E.: A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics, J. Geophys. Res., 115, A00G08. https://doi.org/10.1029/2010JA015524, 2010.
Goncharenko, L. and Zhang, S.: Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude, Geophys. Res. Lett., 35, L21103. https://doi.org/10.1029/2008GL035684, 2008.
Goncharenko, L. P., Hsu, V. W., Brum, C. G. M., Zhang, S.-R., and Fentzke, J. T.: Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010, J. Geophys. Res.-Space, 118, 472–487, https://doi.org/10.1029/2012JA018251, 2013.
Goncharenko, L. P., Coster, A. J., Zhang, S.-R., Erickson, P. J., Benkevitch, L., Aponte, N., Harvey, V. L., Reinisch, B. W., Galkin, I., Spraggs, M., and Hernández-Espiet, A.: Deep Ionospheric Hole Created by Sudden Stratospheric Warming in the Nighttime Ionosphere, J. Geophys. Res.-Space, 123, 7621–7633, https://doi.org/10.1029/2018JA025541, 2018.
Goncharenko, L. P., Harvey, V. L., Liu, H., and Pedatella, N. M.: Sudden Stratospheric Warming Impacts on the Ionosphere–Thermosphere System: A Review of Recent Progress, in: Space Physics and Aeronomy Collection Volume 3: Ionosphere Dynamics and Applications, Geophysical Monograph 260, 1st Edn., edited by: Huang, C. and Lu, G., American Geophysical Union, John Wiley and Sons, Inc, 369–400, https://doi.org/10.1002/9781119815617, 2021.
Goncharenko, L. P., Harvey, V. L., Randall, C. E., Coster, A. J., Zhang, S.-R., Zalizovski, A., Galkin, I., and Spraggs, M.: Observations of Pole-to-Pole, Stratosphere-to-Ionosphere Connection, Frontiers in Astronomy and Space Sciences, 8, 768629, https://doi.org/10.3389/fspas.2021.768629, 2022.
Hagan, M. T. and Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, IEEE T. Neural Networ., 5, 989–993, https://doi.org/10.1109/72.329697, 1994.
Harvey, V. L., Randall, C. E., Bailey, S. M., Becker, E., Chau, J. L., Cullens, C. Y., Goncharenko, L. P., Gordley, L. L., Hindley, N. P., Lieberman, R. S., Liu, H.-L., Megner, L., Palo, S. E., Pedatella, N. M., Siskind, D. E., Sassi, F., Smith, A. K., Stober, G., Stolle, C., and Yue, J.: Improving ionospheric predictability requires accurate simulation of the mesospheric polar vortex, Front. Astron. Space Sci., 9, 1041426, https://doi.org/10.3389/fspas.2022.1041426, 2022.
Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and Krankowski, A.: The IGS VTEC maps: A reliable source of ionospheric information since 1998, J. Geodesy, 83, 263–275, https://doi.org/10.1007/s00190-008-0266-1, 2009.
Hocke, K., Wang, W., Cahyadi, M. N., and Ma, G.: Quasi-diurnal lunar tide O1 in ionospheric total electron content at solar minimum, J. Geophys. Res.-Space, 129, e2024JA032834, https://doi.org/10.1029/2024JA032834, 2024a.
Hocke, K., Wang, W., and Ma, G.: Influences of sudden stratospheric warmings on the ionosphere above Okinawa, Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, 2024b.
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H.: Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res., 117, A10323, https://doi.org/10.1029/2012JA017650, 2012.
Kurihara, J., Ogawa, Y., Oyama, S., Nozawa, S., Tsutsumi, M., Hall, C. M., Tomikawa, Y., and Fujii, R.: Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere, Geophys. Res. Lett., 37, L13806, https://doi.org/10.1029/2010GL043643, 2010.
Lean, J. L., Meier, R. R., Picone, J. M., Sassi, F., Emmert, J. T., and Richards, P. G.: Ionospheric total electron content: Spatial patterns of variability, J. Geophys. Res.-Space, 121, 10367–10402, https://doi.org/10.1002/2016JA023210, 2016.
Liu, G., Huang, W., Shen, H., Aa, E., Li, M., Liu, S., and Luo, B.: Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector, Space Weather, 17, 1230–1240, https://doi.org/10.1029/2019SW002160, 2019.
Liu, J., Zhang, D., Goncharenko, L. P., Zhang, S., He, M., Hao, Y., and Xiao, Z.: The latitudinal variation and hemispheric asymmetry of the ionospheric lunitidal signatures in the American sector during major Sudden Stratospheric Warming events, J. Geophys. Res.-Space, 126, e2020JA028859, https://doi.org/10.1029/2020ja028859, 2021.
Liu, J., Zhang, D., Sun, S., Hao, Y., and Xiao, Z.: Ionospheric Semidiurnal Lunitidal Perturbations During the 2021 Sudden Stratospheric Warming Event: Latitudinal and Inter-Hemispheric Variations in the American, Asian-Australian, and African-European Sectors, J. Geophys. Res.-Space, 127, 9, https://doi.org/10.1029/2022JA030313, 2022.
Mukhtarov, P., Pancheva, D., Andonov, B., and Pashova, L.: Global TEC maps based on GNSS data: 1. Empirical background TEC model, J. Geophys. Res.-Space, 118, 4594–4608, 2013.
Palmeiro, F. M., García-Serrano, J., Ruggieri, P., Batté, L., and Gualdi, S.: On the Influence of ENSO on Sudden Stratospheric Warmings, J. Geophys. Res.-Atmos., 128, e2022JD037607, https://doi.org/10.1029/2022JD037607, 2023.
Pedatella, N. M. and Liu, H.-L.: The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere, J. Geophys. Res., 118, 5333–5347, https://doi.org/10.1002/jgra.50492, 2013.
Pedatella, N. M., Liu, H.-L., Sassi, F., Lei, J., Chau, J. L., and Zhang, X.: Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability, J. Geophys. Res.-Space, 119, 3828–3843, https://doi.org/10.1002/2014JA019849, 2014.
Pedatella, N. M., Chau, J. L., Schmidt, H., Goncharenko, L. P., Stolle, C., Hocke, K., Harvey, V., Funke, B., and Siddiqui, T. A.: How sudden stratospheric warmings affect the whole atmosphere, Eos T. Am. Geophys. Un., 99, 35–38, https://doi.org/10.1029/2018EO092441, 2018.
Schaer, S.: Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System, Ph.D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 March, 1999.
Studer, S., Hocke, K., and Kämpfer, N.: Intraseasonal oscillations of stratospheric ozone above Switzerland, J. Atmos. Sol.-Terr. Phy., 74, 189–198, https://doi.org/10.1016/j.jastp.2011.10.020, 2012.
Vargin, P. N., Koval, A. V., and Guryanov, V. V.: Arctic Stratosphere Dynamical Processes in the Winter 2021–2022, Atmosphere-Basel, 13, 1550, https://doi.org/10.3390/atmos13101550, 2022.
Xiong, J., Wan, W., Ding, F., Liu, L., Ning, B., and Niu, X.: Coupling between mesosphere and ionosphere over Beijing through semidiurnal tides during the 2009 sudden stratospheric warming, J. Geophys. Res.-Space, 118, 2511–2521, 2013.
Yamazaki, Y., Richmond, A. D., and Yumoto, K.: Stratospheric warmings and the geomagnetic lunar tide: 1958–2007, J. Geophys. Res., 117, A04301, https://doi.org/10.1029/2012JA017514, 2012.
Yasyukevich, A. S.: Variations in ionospheric peak electron density during sudden stratospheric warmings in the Arctic region. J. Geophys. Res.-Space, 123, 3027–3038, https://doi.org/10.1002/2017JA024739, 2018.
Short summary
We analyse the influences of sudden stratospheric warming (SSW) on diurnal/semidiurnal variations of the ionosphere with the global total electron content (TEC) data from 1998 to 2022. We use machine learning (ML) to establish the TEC (ML-TEC) model related to the solar/geomagnetic activities and seasonal change from the TEC data. Subtracting the ML-TEC from the observed TEC, we find a global SSW-induced enhancement in diurnal/semidiurnal TEC variations.
We analyse the influences of sudden stratospheric warming (SSW) on diurnal/semidiurnal...
Altmetrics
Final-revised paper
Preprint