Articles | Volume 25, issue 22
https://doi.org/10.5194/acp-25-15857-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-15857-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surfactants regulate the mixing state of organic-inorganic mixed aerosols undergoing liquid-liquid phase separation
Younuo Fan
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
Qiong Li
CORRESPONDING AUTHOR
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
Min Zhou
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310000, China
Jiuyi Sun
The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
Tianyou Xu
CORRESPONDING AUTHOR
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
Related authors
No articles found.
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022, https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Short summary
The nitrate phase state can play a critical role in determining the occurrence and extent of nitrate depletion in internally mixed NaNO3–DCA particles, which may be instructive for relevant aerosol reaction systems. Besides, organic acids have a potential to deplete nitrate based on the comprehensive consideration of acidity, particle-phase state, droplet water activity, and HNO3 gas-phase diffusion.
Cited articles
Alauddin, M., Parvin, T., and Begum, T.: Effect of organic additives on the cloud point of Triton X-100 micelles, J. Applied Sci., 9, 2301–2306, 2009.
Altaf, M. B. and Freedman, M. A.: Effect of drying rate on aerosol particle morphology, J. Phys. Chem. Lett., 8, 3613–3618, https://doi.org/10.1021/acs.jpclett.7b01327, 2017.
Altaf, M. B., Dutcher, D. D., Raymond, T. M., and Freedman, M. A.: Effect of particle morphology on cloud condensation nuclei activity, ACS Earth Space Chem., 2, 634–639, https://doi.org/10.1021/acsearthspacechem.7b00146, 2018.
Angle, K. J., Crocker, D. R., Simpson, R. M. C., Mayer, K. J., Garofalo, L. A., Moore, A. N., Mora Garcia, S. L., Or, V. W., Srinivasan, S., Farhan, M., Sauer, J. S., Lee, C., Pothier, M. A., Farmer, D. K., Martz, T. R., Bertram, T. H., Cappa, C. D., Prather, K. A., and Grassian, V. H.: Acidity across the interface from the ocean surface to sea spray aerosol, P. Natl. Acad. Sci. USA, 118, e2018397118, https://doi.org/10.1073/pnas.2018397118, 2021.
Bain, A., Ghosh, K., Prisle, N. L., and Bzdek, B. R.: Surface-area-to-volume ratio determines surface tensions in microscopic, surfactant-containing droplets, ACS Cent. Sci., 9, 2076–2083, https://doi.org/10.1021/acscentsci.3c00998, 2023.
Barbosa, G. D., Tavares, F. W., and Striolo, A.: Molecular interactions of perfluorinated and branched fluorine-free surfactants at interfaces: Insights from a new reliable force field, J. Chem. Theory Comput., 20, 7300–7314, https://doi.org/10.1021/acs.jctc.4c00459, 2024.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Bianco, H. and Marmur, A.: The dependence of the surface tension of surfactant solutions on drop size, J. Colloid Interface Sci., 151, 517–522, https://doi.org/10.1016/0021-9797(92)90499-C, 1992.
Boyer, H. C., Bzdek, B. R., Reid, J. P., and Dutcher, C. S.: Statistical thermodynamic model for surface tension of organic and inorganic aqueous mixtures, J. Phys. Chem. A, 121, 198–205, https://doi.org/10.1021/acs.jpca.6b10057, 2017.
Bramblett, R. L. and Frossard, A. A.: Constraining the effect of surfactants on the hygroscopic growth of model sea spray aerosol particles, J. Phys. Chem. A, 126, 8695–8710, https://doi.org/10.1021/acs.jpca.2c04539, 2022.
Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67–70, https://doi.org/10.1126/science.1120120, 2006.
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.: Precise, contactless measurements of the surface tension of picolitre aerosol droplets, Chem. Sci., 7, 274–285, https://doi.org/10.1039/C5SC03184B, 2016.
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension of surfactant-containing, finite volume droplets, P. Natl. Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Casas, G., Martínez-Varela, A., Roscales, J. L., Vila-Costa, M., Dachs, J., and Jiménez, B.: Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean, Environ. Pollut., 267, 115512, https://doi.org/10.1016/j.envpol.2020.115512, 2020.
Chen, Z., Liu, P., Wang, W., Cao, X., Liu, Y.-X., Zhang, Y.-H., and Ge, M.: Rapid sulfate formation via uncatalyzed autoxidation of sulfur dioxide in aerosol microdroplets, Environ. Sci. Technol., 56, 7637–7646, https://doi.org/10.1021/acs.est.2c00112, 2022.
Choczynski, J. M., Shokoor, B., Salazar, J., Zuend, A., and Davies, J. F.: Probing the evaporation dynamics of semi-volatile organic compounds to reveal the thermodynamics of liquid–liquid phase separated aerosol, Chem. Sci., 15, 2963–2974, https://doi.org/10.1039/D3SC05164A, 2024.
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.: Liquid-liquid phase separation in mixed organic/inorganic aerosol particles, J. Phys. Chem. A, 113, 10966–10978, https://doi.org/10.1021/jp905054d, 2009.
Cosman, L. M., Knopf, D. A., and Bertram, A. K.: N2O5 reactive uptake on aqueous sulfuric acid solutions coated with branched and straight-chain insoluble organic surfactants, J. Phys. Chem. A, 112, 2386–2396, https://doi.org/10.1021/jp710685r, 2008.
Davies, J. F., Miles, R. E. H., Haddrell, A. E., and Reid, J. P.: Influence of organic films on the evaporation and condensation of water in aerosol, P. Natl. Acad. Sci. USA, 110, 8807–8812, https://doi.org/10.1073/pnas.1305277110, 2013.
Donaldson, D. J. and Vaida, V.: The influence of organic films at the air-aqueous boundary on atmospheric processes, Chem. Rev., 106, 1445–1461, https://doi.org/10.1021/cr040367c, 2006.
Drozd, G. T., Woo, J. L., and McNeill, V. F.: Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid–liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides, Atmos. Chem. Phys., 13, 8255–8263, https://doi.org/10.5194/acp-13-8255-2013, 2013.
El Haber, M., Gérard, V., Kleinheins, J., Ferronato, C., and Nozière, B.: Measuring the surface tension of atmospheric particles and relevant mixtures to better understand key atmospheric processes, Chem. Rev., 124, 10924–10963, https://doi.org/10.1021/acs.chemrev.4c00173, 2024.
Fan, T., Ren, J., Liu, C., Li, Z., Liu, J., Sun, Y., Wang, Y., Jin, X., and Zhang, F.: Evidence of surface-tension lowering of atmospheric aerosols by organics from field observations in an urban atmosphere: Relation to particle size and chemical composition, Environ. Sci. Technol., 58, 11363–11375, https://doi.org/10.1021/acs.est.4c03141, 2024.
Fan, Y., Li, Q., Zhou, M., Sun, J., Ma, S., and Xu, T.: Data files for the publication “Surfactants regulate the mixing state of organic-inorganic mixed aerosols undergoing liquid-liquid phase separation”, Zenodo [data set], https://doi.org/10.5281/zenodo.15560049, 2025.
Fard, M. M., Krieger, U. K., and Peter, T.: Shortwave radiative impact of liquid–liquid phase separation in brown carbon aerosols, Atmos. Chem. Phys., 18, 13511–13530, https://doi.org/10.5194/acp-18-13511-2018, 2018.
Faust, J. A. and Abbatt, J. P. D.: Organic surfactants protect dissolved aerosol components against heterogeneous oxidation, J. Phys. Chem. A, 123, 2114–2124, https://doi.org/10.1021/acs.jpca.9b00167, 2019.
Ferdousi-Rokib, N., Malek, K. A., Gohil, K., Pitta, K. R., Dutcher, D. D., Raymond, T. M., Freedman, M. A., and Asa-Awuku, A. A.: Salting out and nitrogen effects on cloud-nucleating ability of amino acid aerosol mixtures, Environ. Sci.: Atmos., 5, 485–501, https://doi.org/10.1039/d4ea00128a, 2025.
Finlayson-Pitts, B. J. and Hemminger, J. C.: Physical chemistry of airborne sea salt particles and their components, J. Phys. Chem. A, 104, 11463–11477, https://doi.org/10.1021/jp002968n, 2000.
Franklin, E. B., Amiri, S., Crocker, D., Morris, C., Mayer, K., Sauer, J. S., Weber, R. J., Lee, C., Malfatti, F., Cappa, C. D., Bertram, T. H., Prather, K. A., and Goldstein, A. H.: Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol, Environ. Sci. Technol., 56, 16633–16642, https://doi.org/10.1021/acs.est.2c04848, 2022.
Freedman, M. A.: Liquid–liquid phase separation in supermicrometer and submicrometer aerosol particles, Acc. Chem. Res., 53, 1102–1110, https://doi.org/10.1021/acs.accounts.0c00093, 2020.
Gen, M., Hibara, A., Phung, P. N., Miyazaki, Y., and Mochida, M.: In situ surface tension measurement of deliquesced aerosol particles, J. Phys. Chem. A, 127, 6100–6108, https://doi.org/10.1021/acs.jpca.3c02681, 2023.
Gérard, V., Nozière, B., Baduel, C., Fine, L., Frossard, A. A., and Cohen, R. C.: Anionic, cationic, and nonionic surfactants in atmospheric aerosols from the Baltic Coast at Askö, Sweden: Implications for cloud droplet activation, Environ. Sci. Technol., 50, 2974–2982, https://doi.org/10.1021/acs.est.5b05809, 2016.
Gibson, E. R., Hudson, P. K., and Grassian, V. H.: Physicochemical properties of nitrate aerosols: Implications for the atmosphere, J. Phys. Chem. A, 110, 11785–11799, https://doi.org/10.1021/jp063821k, 2006.
Gill, P. S., Graedel, T. E., and Weschler, C. J.: Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes, Rev. Geophys., 21, 903–920, https://doi.org/10.1029/RG021i004p00903, 1983.
Gong, Y., Yang, D., Liu, J., Barrett, H., Sun, J., and Peng, H.: Disclosing environmental ligands of L-FABP and PPARγ: Should we re-evaluate the chemical safety of hydrocarbon surfactants?, Environ. Sci. Technol., 57, 11913–11925, https://doi.org/10.1021/acs.est.3c02898, 2023.
Gong, Y., Sun, J., Wang, X., Barrett, H., and Peng, H.: Identification of hydrocarbon sulfonates as previously overlooked transthyretin ligands in the environment, Environ. Sci. Technol., 58, 10227–10239, https://doi.org/10.1021/acs.est.3c10973, 2024.
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles, Chem, 6, 204–220, https://doi.org/10.1016/j.chempr.2019.10.018, 2020.
Gu, T. and Galera-Gómez, P. A.: The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water, Colloids Surf., A, 147, 365–370, https://doi.org/10.1016/S0927-7757(98)00710-9, 1999.
Hao, H., Leven, I., and Head-Gordon, T.: Can electric fields drive chemistry for an aqueous microdroplet?, Nat. Commun., 13, 280, https://doi.org/10.1038/s41467-021-27941-x, 2022.
Harmon, C. W., Grimm, R. L., Mcintire, T. M., Peterson, M. D., Njegic, B., Angel, V. M., Alshawa, A., Underwood, J. S., Tobias, D. J., and Gerber, R. B.: Hygroscopic growth and deliquescence of NaCl nanoparticles mixed with surfactant SDS, J. Phys. Chem. B, 114, 2435–2449, https://doi.org/10.1021/jp909661q, 2010.
Hartery, S., MacInnis, J., and Chang, R. Y. W.: Effect of sodium dodecyl benzene sulfonate on the production of cloud condensation nuclei from breaking waves, ACS Earth Space Chem., 6, 2944–2954, https://doi.org/10.1021/acsearthspacechem.2c00230, 2022.
Hodas, N., Zuend, A., Schilling, K., Berkemeier, T., Shiraiwa, M., Flagan, R. C., and Seinfeld, J. H.: Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols, Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, 2016.
Hritz, A. D., Raymond, T. M., and Dutcher, D. D.: A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy, Atmos. Chem. Phys., 16, 9761–9769, https://doi.org/10.5194/acp-16-9761-2016, 2016.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Jayarathne, T., Sultana, C. M., Lee, C., Malfatti, F., Cox, J. L., Pendergraft, M. A., Moore, K. A., Azam, F., Tivanski, A. V., Cappa, C. D., Bertram, T. H., Grassian, V. H., Prather, K. A., and Stone, E. A.: Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms, Environ. Sci. Technol., 50, 11511–11520, https://doi.org/10.1021/acs.est.6b02988, 2016.
Kabir, M., Ishitobi, M., and Kunieda, H.: Emulsion stability in sucrose monoalkanoate system with addition of cosurfactants, Colloid Polym. Sci., 280, 841–847, https://doi.org/10.1007/s00396-002-0692-1, 2002.
Kaluarachchi, C. P., Lee, H. D., Lan, Y., Lansakara, T. I., and Tivanski, A. V.: Surface tension measurements of aqueous liquid–air interfaces probed with microscopic indentation, Langmuir, 37, 2457–2465, https://doi.org/10.1021/acs.langmuir.0c03507, 2021.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E.: PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res., 49, D1388–D1395, https://doi.org/10.1093/nar/gkaa971, 2020.
Kroflič, A., Frka, S., Simmel, M., Wex, H., and Grgić, I.: Size-resolved surface-active substances of atmospheric aerosol: Reconsideration of the impact on cloud droplet formation, Environ. Sci. Technol., 52, 9179–9187, https://doi.org/10.1021/acs.est.8b02381, 2018.
Kucinski, T. M., Dawson, J. N., and Freedman, M. A.: Size-dependent liquid–liquid phase separation in atmospherically relevant complex systems, J. Phys. Chem. Lett., 10, 6915–6920, https://doi.org/10.1021/acs.jpclett.9b02532, 2019.
Kucinski, T. M., Ott, E.-J. E., and Freedman, M. A.: Flash freeze flow tube to vitrify aerosol particles at fixed relative humidity values, Anal. Chem., 92, 5207–5213, https://doi.org/10.1021/acs.analchem.9b05757, 2020.
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium morphology of mixed organic/inorganic/aqueous aerosol droplets: Investigating the effect of relative humidity and surfactants, J. Phys. Chem. A, 114, 5787–5795, https://doi.org/10.1021/jp1003648, 2010.
Laaksonen, A.: The composition size dependence of aerosols created by dispersion of surfactant solutions, J. Colloid Interface Sci., 159, 517–519, https://doi.org/10.1006/jcis.1993.1358, 1993.
Latif, M. T. and Brimblecombe, P.: Surfactants in atmospheric aerosols, Environ. Sci. Technol., 38, 6501–6506, https://doi.org/10.1021/es049109n, 2004.
Lee, S. H., Murphy, D. M., Thomson, D. S., and Middlebrook, A. M.: Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles, J. Geophys. Res.: Atmos., 107, AAC 1-1–AAC 1-13, https://doi.org/10.1029/2000jd000011, 2002.
Li, J., Xu, Z., Zhu, M., Zhao, C., Wang, X., Chen, H., Liu, X., Wang, L., and Huang, X.: Programmable spatial organization of liquid-phase condensations, Chem, 8, 784–800, https://doi.org/10.1016/j.chempr.2021.11.011, 2022.
Li, L.-F., Liu, P., Huang, Q., Zhang, X., Chao, X., Pang, S., Wang, W., Cheng, Y., Su, H., Zhang, Y.-H., and Ge, M.: Rethinking urban haze formation: Atmospheric sulfite conversion rate scales with aerosol surface area, not volume, One Earth, 7, 1082–1095, https://doi.org/10.1016/j.oneear.2024.05.007, 2024a.
Li, X., Wang, Y., Cui, J., Shi, Y., and Cai, Y.: Occurrence and fate of per- and polyfluoroalkyl substances (PFAS) in atmosphere: Size-dependent gas-particle partitioning, precipitation scavenging, and amplification, Environ. Sci. Technol., 58, 9283–9291, https://doi.org/10.1021/acs.est.4c00569, 2024b.
Li, Z., Schwier, A. N., Sareen, N., and McNeill, V. F.: Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products, Atmos. Chem. Phys., 11, 11617–11629, https://doi.org/10.5194/acp-11-11617-2011, 2011.
Liss, P. S. and Duce, R. A.: The Sea surface and global change, Cambridge University Press, Cambridge, UK, ISBN 9780521562737, 1997.
Liu, L. R., Du, L., Xu, L., Li, J. L., and Tsona, N. T.: Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation, Environ. Res., 206, 112555, https://doi.org/10.1016/j.envres.2021.112555, 2022.
Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y., Gong, Z., Amorim, J. C., Bertram, A. K., and Martin, S. T.: Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter, Nat. Commun., 9, 4076, https://doi.org/10.1038/s41467-018-06622-2, 2018.
Liu, Y., Ge, Q., Wang, T., Zhang, R., Li, K., Gong, K., Xie, L., Wang, W., Wang, L., You, W., Ruan, X., Shi, Z., Han, J., Wang, R., Fu, H., Chen, J., Chan, C. K., and Zhang, L.: Strong electric field force at the air/water interface drives fast sulfate production in the atmosphere, Chem, 10, 330–351, https://doi.org/10.1016/j.chempr.2023.09.019, 2024.
Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., and Riipinen, I.: Key drivers of cloud response to surface-active organics, Nat. Commun., 10, 5214, https://doi.org/10.1038/s41467-019-12982-0, 2019.
Lv, X. J., Chen, Z., Ma, J. B., and Zhang, Y. H.: Volatility measurements of 1, 2, 6-hexanetriol in levitated viscous aerosol particles, J. Aerosol Sci., 138, 105449, https://doi.org/10.1016/j.jaerosci.2019.105449, 2019.
Ma, S., Chen, Z., Pang, S., and Zhang, Y.: Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification, Atmos. Chem. Phys., 21, 9705–9717, https://doi.org/10.5194/acp-21-9705-2021, 2021.
Malek, K., Gohil, K., Olonimoyo, E. A., Ferdousi-Rokib, N., Huang, Q., Pitta, K. R., Nandy, L., Voss, K. A., Raymond, T. M., Dutcher, D. D., Freedman, M. A., and Asa-Awuku, A.: Liquid–liquid phase separation can drive aerosol droplet growth in supersaturated regimes, ACS Environ. Au, 3, 348–360, https://doi.org/10.1021/acsenvironau.3c00015, 2023.
Malila, J. and Prisle, N. L.: A monolayer partitioning scheme for droplets of surfactant solutions, J. Adv. Model. Earth Syst., 10, 3233–3251, https://doi.org/10.1029/2018MS001456, 2018.
Malm, W. C. and Kreidenweis, S. M.: The effects of models of aerosol hygroscopicity on the apportionment of extinction, Atmos. Environ., 31, 1965–1976, https://doi.org/10.1016/S1352-2310(96)00355-X, 1997.
Marcolli, C. and Krieger, U. K.: Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols, J. Phys. Chem. A, 110, 1881–1893, https://doi.org/10.1021/jp0556759, 2006.
Marszall, L.: The effect of alcohols on the hydrophile-lipophile balance of nonionic surfactants, J. Colloid Interface Sci., 60, 570–573, https://doi.org/10.1016/0021-9797(77)90324-1, 1977.
Marszall, L.: The effective hydrophile-liphophile balance of nonionic surfactants in the presence of additives, J. Colloid Interface Sci., 65, 589–591, https://doi.org/10.1016/0021-9797(78)90117-0, 1978.
Martin, S. T., Hung, H.-M., Park, R. J., Jacob, D. J., Spurr, R. J. D., Chance, K. V., and Chin, M.: Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing, Atmos. Chem. Phys., 4, 183–214, https://doi.org/10.5194/acp-4-183-2004, 2004.
Mayol-Bracero, O. L., Rosario, O., Corrigan, C. E., Morales, R., Torres, I., and Pérez, V.: Chemical characterization of submicron organic aerosols in the tropical trade winds of the caribbean using gas chromatography/mass spectrometry, Atmos. Environ., 35, 1735–1745, https://doi.org/10.1016/S1352-2310(00)00524-0, 2001.
McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol, Atmos. Chem. Phys., 6, 1635–1644, https://doi.org/10.5194/acp-6-1635-2006, 2006.
Mikhailov, E. F., Pöhlker, M. L., Reinmuth-Selzle, K., Vlasenko, S. S., Krüger, O. O., Fröhlich-Nowoisky, J., Pöhlker, C., Ivanova, O. A., Kiselev, A. A., Kremper, L. A., and Pöschl, U.: Water uptake of subpollen aerosol particles: hygroscopic growth, cloud condensation nuclei activation, and liquid–liquid phase separation, Atmos. Chem. Phys., 21, 6999–7022, https://doi.org/10.5194/acp-21-6999-2021, 2021.
Miñambres, L., Méndez, E., Sánchez, M. N., Castaño, F., and Basterretxea, F. J.: The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols, Atmos. Chem. Phys., 14, 11409–11425, https://doi.org/10.5194/acp-14-11409-2014, 2014.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M., Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber, R. J.: Single-particle mass spectrometry of tropospheric aerosol particles, J. Geophys. Res.: Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340, 2006.
Ohno, P. E., Wang, J., Mahrt, F., Varelas, J. G., Aruffo, E., Ye, J., Qin, Y., Kiland, K. J., Bertram, A. K., Thomson, R. J., and Martin, S. T.: Gas-particle uptake and hygroscopic growth by organosulfate particles, ACS Earth Space Chem., 6, 2481–2490, https://doi.org/10.1021/acsearthspacechem.2c00195, 2022.
Ohno, P. E., Brandão, L., Rainone, E. M., Aruffo, E., Wang, J., Qin, Y., and Martin, S. T.: Size dependence of liquid–liquid phase separation by in situ study of flowing submicron aerosol particles, J. Phys. Chem. A, 127, 2967–2974, https://doi.org/10.1021/acs.jpca.2c08224, 2023.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails over solute effect in organic-influenced cloud droplet activation, Nature, 546, 637–641, https://doi.org/10.1038/nature22806, 2017.
Petters, S. S. and Petters, M. D.: Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols, J. Geophys. Res.: Atmos., 121, 1878–1895, https://doi.org/10.1002/2015JD024090, 2016.
Prisle, N. L.: A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning, Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, 2021.
Prisle, N. L., Lin, J. J., Purdue, S., Lin, H., Meredith, J. C., and Nenes, A.: Cloud condensation nuclei activity of six pollenkitts and the influence of their surface activity, Atmos. Chem. Phys., 19, 4741–4761, https://doi.org/10.5194/acp-19-4741-2019, 2019.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Qiu, Y. and Molinero, V.: Morphology of liquid-liquid phase separated aerosols, J. Am. Chem. Soc., 137, 10642–10651, https://doi.org/10.1021/jacs.5b05579, 2015.
Rana, D., Neale, G., and Hornof, V.: Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate, Colloid Polym. Sci., 280, 775–778, https://doi.org/10.1007/s00396-002-0687-y, 2002.
Reid, J. P., Dennis-Smither, B. J., Kwamena, N.-O. A., Miles, R. E. H., Hanford, K. L., and Homer, C. J.: The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic component, Phys. Chem. Chem. Phys., 13, 15559–15572, https://doi.org/10.1039/C1CP21510H, 2011.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T. S.: Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting, P. Natl. Acad. Sci. USA, 107, 6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Salvador, P., Curtis, J. E., Tobias, D. J., and Jungwirth, P.: Polarizability of the nitrate anion and its solvation at the air/water interface, Phys. Chem. Chem. Phys., 5, 3752–3757, https://doi.org/10.1039/B304537D, 2003.
Schervish, M. and Shiraiwa, M.: Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning, Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, 2023.
Schwier, A. N., Sareen, N., Mitroo, D., Shapiro, E. L., and McNeill, V. F.: Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation, Environ. Sci. Technol., 44, 6174–6182, https://doi.org/10.1021/es101225q, 2010.
Shen, C., Zhang, W., Choczynski, J., Davies, J. F., and Zhang, H.: Phase state and relative humidity regulate the heterogeneous oxidation kinetics and pathways of organic-inorganic mixed aerosols, Environ. Sci. Technol., 56, 15398–15407, https://doi.org/10.1021/acs.est.2c04670, 2022.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453, https://doi.org/10.1039/c3cp51595h, 2013.
Song, C. H. and Carmichael, G. R.: Gas-particle partitioning of nitric acid modulated by alkaline aerosol, J. Atmos. Chem., 40, 1–22, https://doi.org/10.1023/A:1010657929716, 2001.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation in aerosol particles: Dependence on O : C, organic functionalities, and compositional complexity, Geophys. Res. Lett., 39, L19801, https://doi.org/10.1029/2012gl052807, 2012a.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012b.
Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T.: Morphologies of mixed organic/inorganic/aqueous aerosol droplets, Faraday Discuss., 165, 289–316, https://doi.org/10.1039/C3FD00049D, 2013.
Stokes, R. H. and Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria, J. Phys. Chem., 70, 2126–2131, https://doi.org/10.1021/j100879a010, 1966.
Tackman, E. C., Jaswal, K., and Freedman, M. A.: Size dependence of organic/inorganic aerosol morphology and the role of oxidation and aromaticity of the organic component, ACS ES&T Air, 1, 405–413, https://doi.org/10.1021/acsestair.3c00099, 2024.
Tan, H., Tang, S., Yang, L., Li, J., Deng, Y., Shen, H., Dai, Q., Gao, Y., Wu, P., Zhu, L., and Cai, Z.: Global quantification of emerging and legacy per- and polyfluoroalkyl substances in indoor dust: Levels, profiles and human exposure, Sci. Total Environ., 927, 172132, https://doi.org/10.1016/j.scitotenv.2024.172132, 2024.
Taraniuk, I., Graber, E. R., Kostinski, A., and Rudich, Y.: Surfactant properties of atmospheric and model humic-like substances (HULIS), Geophys. Res. Lett., 34, L16807, https://doi.org/10.1029/2007GL029576, 2007.
Tian, C., Byrnes, S. J., Han, H.-L., and Shen, Y. R.: Surface propensities of atmospherically relevant ions in salt solutions revealed by phase-sensitive sum frequency vibrational spectroscopy, J. Phys. Chem. Lett., 2, 1946–1949, https://doi.org/10.1021/jz200791c, 2011.
Upshur, M. A., Strick, B. F., McNeill, V. F., Thomson, R. J., and Geiger, F. M.: Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material, Atmos. Chem. Phys., 14, 10731–10740, https://doi.org/10.5194/acp-14-10731-2014, 2014.
Van Acker, E., De Rijcke, M., Liu, Z., Asselman, J., De Schamphelaere, K. A. C., Vanhaecke, L., and Janssen, C. R.: Sea spray aerosols contain the major component of human lung surfactant, Environ. Sci. Technol., 55, 15989–16000, https://doi.org/10.1021/acs.est.1c04075, 2021.
Veghte, D. P., Altaf, M. B., and Freedman, M. A.: Size dependence of the structure of organic aerosol, J. Am. Chem. Soc., 135, 16046–16049, https://doi.org/10.1021/ja408903g, 2013.
Wang, F., Zhang, Y. H., Li, S. H., Wang, L. Y., and Zhao, L. J.: A strategy for single supersaturated droplet analysis: Confocal Raman investigations on the complicated hygroscopic properties of individual MgSO4 droplets on the quartz substrate, Anal. Chem., 77, 7148–7155, https://doi.org/10.1021/ac050938g, 2005.
Wang, N., Guo, Y., Li, J., Pang, S., and Zhang, Y.: Hygroscopic behavior and phase state of mixed NH4NO3/amino acids particles by microscopy and IR technology, Atmos. Environ., 273, 118951, https://doi.org/10.1016/j.atmosenv.2022.118951, 2022.
Wang, X., Jing, B., Tan, F., Ma, J., Zhang, Y., and Ge, M.: Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate, Atmos. Chem. Phys., 17, 12797–12812, https://doi.org/10.5194/acp-17-12797-2017, 2017.
Wangsakan, A., Chinachoti, P., and McClements, D. J.: Maltodextrin-anionic surfactant interactions: Isothermal titration calorimetry and surface tension study, J. Agric. Food Chem., 49, 5039–5045, https://doi.org/10.1021/jf0103471, 2001.
Wokosin, K. A., Schell, E. L., and Faust, J. A.: Surfactants, films, and coatings on atmospheric aerosol particles: a review, Environ. Sci: Atmos., 2, 775–828, https://doi.org/10.1039/D2EA00003B, 2022.
Xiong, C., Kuang, B., Zhang, F., Pei, X., Xu, Z., and Wang, Z.: Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts, Atmos. Chem. Phys., 23, 8979–8991, https://doi.org/10.5194/acp-23-8979-2023, 2023.
Xu, M., Tsona Tchinda, N., Li, J., and Du, L.: Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: the role of hydrogen bonding, Atmos. Chem. Phys., 23, 2235–2249, https://doi.org/10.5194/acp-23-2235-2023, 2023.
Ye, Y., Sun, J., Fan, Y., Li, Y., Li, Q., He, C., Ma, S., Zhao, Z., and Xu, T.: Key roles of bulk viscosity and acidity on liquid–liquid phase separation of atmospheric organic–inorganic mixed aerosols, J. Phys. Chem. A, 129, 3921–3930, https://doi.org/10.1021/acs.jpca.5c01182, 2025.
You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride, Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, 2013.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., and Christopher, S.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2005.
Zhang, J., Wang, Y., Teng, X., Liu, L., Xu, Y., Ren, L., Shi, Z., Zhang, Y., Jiang, J., Liu, D., Hu, M., Shao, L., Chen, J., Martin, S. T., Zhang, X., and Li, W.: Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols, Commun. Earth Environ., 3, 128, https://doi.org/10.1038/s43247-022-00462-1, 2022.
Zheng, G., Su, H., Wang, S., Andreae, M. O., Pöschl, U., and Cheng, Y.: Multiphase buffer theory explains contrasts in atmospheric aerosol acidity, Science, 369, 1374–1377, https://doi.org/10.1126/science.aba3719, 2020.
Zhou, Q., Pang, S. F., Wang, Y., Ma, J. B., and Zhang, Y. H.: Confocal Raman studies of the evolution of the physical state of mixed phthalic acid/ammonium sulfate aerosol droplets and the effect of substrates, J. Phys. Chem. B, 118, 6198–6205, https://doi.org/10.1021/jp5004598, 2014.
Zuend, A. and Seinfeld, J. H.: Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation, Atmos. Chem. Phys., 12, 3857–3882, https://doi.org/10.5194/acp-12-3857-2012, 2012.
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010.
Short summary
The internal mixing of inorganic salts, secondary organic matter, and surfactants is ubiquitous in tropospheric aerosols. Our study shows that the presence of surfactants alters the spreading coefficients of the organic and inorganic phases. Therefore, the phase-separated particle morphology can shift from the conventional core-shell structure to partial engulfing configurations, or even to inverse core-shell forms where the organic phase is surrounded by an outer inorganic shell.
The internal mixing of inorganic salts, secondary organic matter, and surfactants is ubiquitous...
Altmetrics
Final-revised paper
Preprint