Supplement of Atmos. Chem. Phys., 25, 15857-15874, 2025 A m h ri
https://doi.org/10.5194/acp-25-15857-2025-supplement t ospheric

© Author(s) 2025. CC BY 4.0 License. Chemistry
and Physics
Supplement of

Surfactants regulate the mixing state of
organic-inorganic mixed aerosols undergoing
liquid-liquid phase separation

Younuo Fan et al.

Correspondence to: Qiong Li (1g270224181 @ 126.com), Shuaishuai Ma (mass @qzc.edu.cn), and Tianyou Xu (tyx @qzc.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.



15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Table of Contents

Section S1. Influence of SDS on the Mixing State of OIR = 1:4 and 4:1 Particles
Section S2. Surface Tension Predictions for Aqueous Systems with Decreasing RH
Section S3. Changes in SRH and ERH with Varying Initial Surfactant Concentrations
Supplementary Figures

Figure S1. Hygroscopic growth curves for the OIR = 1:1 system without SDS (a) and
the org:sulf:SDS = 1:1:0.001 system (b). The panels display optical images
corresponding to area ratios at specific RH values. The SRH, ERH and DRH values are
indicated in red.

Figure S2. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 1:1:0.0005 (a),
1:1:0.00075 (b), 1:1:0.00125 (c), and 1:1:0.0015 (d) during LLPS, efflorescence, and
deliquescence. The RH percentage is indicated in each frame, with specific values
highlighted in red to signify the occurrence of phase transitions.

Figure S3. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS particles with an OIR of 1:4 without SDS (a), and with
org:sulf:SDS ratios of 1:4:0.007 (b) and 1:4:0.0075 (c), during LLPS, efflorescence,
and deliquescence. The RH percentage is indicated in each frame, with specific values
highlighted in red to signify the occurrence of phase transitions.

Figure S4. Optical 1images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 1:4:0.008 (a) and
1:4:0.01 (b) during LLPS, efflorescence, and deliquescence. The RH percentage is
indicated in each frame, with specific values highlighted in red to signify the
occurrence of phase transitions.

Figure S5. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 4:1:0.004 (a),
4:1:0.0045 (b), and 4:1:0.005 (c) during LLPS, efflorescence, and deliquescence. The
RH percentage is indicated in each frame, with specific values highlighted in red to

signify the occurrence of phase transitions.
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Figure S6. SDS concentration evolutions predicted by the EAIM model (a) and surface
tension measurements from simulated SDS/AS mixed solutions (b) as a function of
ambient RH for particles with org:sulf:SDS ratios of 1:1:0.001, 1:4:0.0075, and
4:1:0.0045. AS and SDS concentrations in the simulated SDS/AS solutions are derived
from EAIM predictions. Each surface tension measurement represents the average of
three replicates.

Figure S7. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 1:1:0.005 and 1:1:0.01
after LLPS and efflorescence. The RH percentage is indicated in each frame.

Figure S8. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 1:1:0.1 (a) and 1:1:1 (b)
during LLPS, efflorescence, and deliquescence. The RH percentage is indicated in each
frame, with specific values highlighted in red to signify the occurrence of phase
transitions.

Figure S9. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 1:1:0.001 (a), 1:1:0.005
(b), 1:1:0.2 (¢), and 1:1:0.5 (d) after LLPS and efflorescence. The corresponding RH
values during dehumidification are indicated in each frame. Note that the illustrations
depict only the biphasic particles with identifiable mixing states.

Figure S10. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/SDS particles with an org:sulf:SDS ratio of 1:1:0.01, obtained
from mixture solutions at pH 1.5, during LLPS, efflorescence, and deliquescence. The
RH percentage is indicated in each frame, with specific values highlighted in red to
signify the occurrence of phase transitions.

Figure S11. Optical images and corresponding illustrations of mixed organic/AS/SDS
particles with an org:sulf:SDS ratio of 1:1:0.01 after LLPS.

Figure S12. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/CTAC particles with org:sulf: CTAC ratios of 1:1:0.00001 (a) and
1:1:0.005 (b) during LLPS, efflorescence, and deliquescence. The RH percentage is

indicated in each frame, with specific values highlighted in red to signify the
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occurrence of phase transitions. (¢) Equilibrium particle morphologies after LLPS for
1,2,6-hexanetriol/AS/CTAC particles at different initial CTAC concentrations.

Figure S13. Surface tension measurements at varying concentrations of CTAC and
SDS for simulated CTAC/AS and SDS/AS mixed solutions, with a fixed AS
concentration of 2.71 mol L™'. Hollow symbols indicate estimated approximate surface
tension values.

Figure S14. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/Triton X-100 particles with varying org:sulf:Triton X-100 ratios
after LLPS.

Figure S15. Optical images and corresponding illustrations of mixed
1,2,6-hexanetriol/AS/PFOA particles with the molar ratio of 1:1:0.1 during LLPS,
efflorescence, and deliquescence. The RH percentage is indicated in each frame, with
specific values highlighted in red to signify the occurrence of phase transitions.
Figure S16. Calculated spreading coefficients, S1 and Sz, as a function of surfactant
concentration for model systems of octane/AS (a) and octanol/AS (b) with the addition
of SDS, CTAC, or Triton X-100.

Figure S17. SRH (a) and ERH (b) values for OIR = 1:4, 1:1, and 4:1 particles with
varying initial concentrations of SDS, CTAC, and Triton X-100. The dotted lines
indicate the original SRH and ERH values for 1,2,6-hexanetriol/AS mixed particles
without surfactants.

Figure S18. Optical images of pure SDS system during an RH cycle. The RH

percentage is indicated in each frame.
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S1. Influence of SDS on the Mixing State of OIR = 1:4 and 4:1
Particles

For the particle with OIR = 1:4 without SDS, LLPS occurs via the growth of a
second phase from the particle surface at RH values between 74.3% and 70.9%
(Figure S3a). Following efflorescence, the organic phase becomes trapped within the
cavity of the AS crystal. These scenarios are consistent with our previous
observations (Ma et al., 2021a). Upon adding SDS, the LLPS mechanism changes to
spinodal decomposition, as depicted in Figure S3b and S3c. During this process,
schlieren patterns appear over the aqueous droplet, followed by the growth and
coalescence of separated AS inclusions (Ma et al., 2021a; Ciobanu et al., 2009).
Notably, as the SDS fraction increases, such as in the org:sulf:SDS = 1:4:0.0075
mixture, a core-shell morphology is no longer observed; instead, a partial engulfing
structure forms (Figure S3c). Further increases in SDS concentration, seen in the
1:4:0.008 and 1:4:0.01 mixtures (Figure S4a and S4b), still result in the persistence of
partial organic-phase engulfing.

Figure S5 illustrates the phase transition behaviors of mixed
1,2,6-hexanetriol/AS/SDS particles with org:sulf:SDS ratios of 4:1:0.004, 4:1:0.0045,
and 4:1:0.005. For the 4:1:0.004 mixture, LLPS occurs at 77.9% RH through a
nucleation and growth mechanism (Ma et al., 2021a; Ciobanu et al., 2009), resulting
in a core-shell particle morphology. In contrast, for the 4:1:0.0045 and 4:1:0.005
mixtures, LLPS occurs via spinodal decomposition, leading to the formation of
numerous dispersed AS inclusions. Coupled with the particle morphologies observed

S5



118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

after efflorescence, we can infer that these AS inclusions tend to reside on the particle
surface, indicative of a partial engulfing structure.

It is evident that the SDS concentration threshold regulating the dominance of
core-shell versus partial engulfing morphologies differs between the OIR = 1:4 and
4:1 systems compared to the OIR = 1:1 particles. To further explore this, we compare
the changes in SDS concentration and surface tension with decreasing RH for the
org:sulf:SDS = 1:1:0.001, 1:4:0.0075, and 4:1:0.0045 systems, as shown in Figure S6.
At the SRH, the three systems exhibit distinct SDS concentrations of 2.71, 7.27, and
5.10 mM, with corresponding surface tensions of 68.49, 53.15, and 25.10 mN m™,
respectively. These discrepancies imply a complex correlation between particle OIR
and the surfactant concentration thresholds.

The change in total surface free energy (Gs) during spreading depends not only
on the spreading coefficients (S;) but also on the changes in surface and interface
areas of the organic and inorganic phases (dA4) (Torza and Mason, 1970; Shaw, 1992):
dGs = —S;dA (S1)
Thus, while the three systems have varying concentrations of organic and inorganic
phases, resulting in distinct surface and interfacial tensions during LLPS, the
differences in SDS concentration thresholds can be partially attributed to different
volume ratios. This is another key factor affecting total surface free energy, in
addition to interfacial tensions. Similar to previous studies, our findings emphasize

the importance of considering both interfacial tensions and the volumes of separated
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139  phases, related to particle OIR, for accurately predicting final particle morphology

140  (Kwamena et al., 2010).
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S2. Surface Tension Predictions for Aqueous Systems with
Decreasing RH

Wexler and Dutcher (2013) developed an equation based on statistical
mechanics to describe the relationship between the surface tension (o) of a solution
and solute activity (a,):
o =gy + r’;—zvln (%) (S2)
where oy, is the surface tension of pure water (N m™), k is Boltzmann’s constant (J
K1), T is the ambient temperature (K), and Sw is the area occupied by a water
molecule, typically assumed to be 0.1 nm?. The remaining three unknown parameters,
r, K, and C, are specific to each solute, with » representing the average number of
water molecules displaced from the surface by each solute molecule, while K and C
relate to sorption energies.

For aqueous AS solution, Boyer et al. (2015) estimated values of » = -4.04 and
K = 0.99, based on electrolyte fits using Equation (S2). Coupled with the surface
tension of pure solute (og = 184.99 mN m™' for molten AS) (Dutcher et al., 2010), the
parameter C is calculated as 670.39 using the formula C=1-[1—-(1-
K)exp(rSw(ow — 05)/kT)]/K (Wexler and Dutcher, 2013). Therefore, the surface
tension of sulfate-containing aqueous droplets can be predicted as a function of solute
activity, which varies with decreasing RH, based on the evolution of AS
concentration.

Dutcher et al. (2011) extended the Brunauer-Emmett-Teller (BET) and

Guggenheim-Anderson-de Boer (GAB) adsorption models to account for additional
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adsorbed monolayers when determining solute and solvent activities in aqueous
solutions over a wide concentration range. Assuming each solute entity is surrounded
by three hydrated layers of water molecules, the solute molality (m,) can be expressed
as a function of water activity (ay,) according to the three-layer model (Dutcher et al.,

2011):

m _< 1-awkKa )(1—KAaW(1—CA_1)—K§a5VcA_1(1—CA,2)) (S3)
A MwraCaiawKa (1—awKa)?+(2—awKa)awKaCa

The solute activity (a,) can also be expressed as a function of water activity (ay)

(Dutcher et al., 2011):

1-Kaaw

a, = YA (54)

B (1—KAaW(1—cA,1)—K§a§VCA,1(1—cA,2)
Here, My, is the molecular weight of water (the adsorbate) (kg mol™), r, represents
the number of adsorption sites on solute A, while K,, C,, and C,, are energy
parameters related to the exponent of the difference between the energy of adsorption
to a layer and the bulk energy of liquefaction. In Dutcher’s later work, the values for
the aqueous AS solution were determined to be r, = 1.872, K, = 0.9876, C, | =
0.0812, and C, , = 34.77 (Dutcher et al., 2013). Using the EAIM model, the molality
of aqueous AS across the entire RH range for the OIR = 1:1 system can be simulated,
allowing ay, and a, at specific RH levels to be calculated using Equations (S3) and
(S4). Combined with the relationship between surface tension and solute activity in
Equation (S2), the surface tension of the mixed droplets (org:sulf:SDS = 1:1:0.001)
can be predicted, considering only AS concentration changes as RH decreases.

For the contribution of SDS to droplet surface tension, the empirical

Szyskowski equation can be applied (Szyskowski, 1908):
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0 = oy — aln (1 + =22 (85)
where cqpg is the concentration of SDS (mol L), and parameters a and b are
determined by fitting surface tension data of pure SDS solutions, measured using the
hanging droplet method (Figure 3c). The evolution of SDS concentration with
decreasing RH is evaluated based on the fixed molar ratio of AS to SDS.

When considering both AS and SDS contributions, the surface tension
parametrization for the ternary SDS/AS aqueous solution is obtained with the

modified Szyskowski equation (Prisle et al., 2010):

_ doas _ csps(castbz)
0 =ow+ (chS)CAS aln (1 + . ) (S6)

As the solutions are dilute, the gradient of surface tension for aqueous AS (o,4)

do
23)was measured to be
dCAS

with respect to its molar concentration (c,g), denoted by (;
2.362 mN m!/mol L' (Svenningsson et al., 2006). Surface tension depression in
SDS/AS aqueous solutions was determined for fixed AS concentrations of 0, 0.1, or 1
mol L}, using the hanging droplet method (Figure 4c). The least squares method was
applied to determine the optimal values of a, b1, and b>. Consequently, the surface
tension can be estimated for specific AS and SDS concentrations at given RH levels,

as predicted by the EAIM model.
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S3. Changes in SRH and ERH with Varying Initial Surfactant
Concentrations

Figure S17 illustrates the changes in SRH and ERH values for OIR = 1:4, 1:1,
and 4:1 particles in the presence of surfactants (SDS, CTAC, and Triton X-100) at
different initial concentrations, with 1,2,6-hexanetriol and AS set at 0.1 or 0.4 mol L.
The original SRH and ERH values for mixed particles without surfactants are
assumed to be 76% and 45%, respectively. As shown in Figure S17a, at relatively low
surfactant concentrations, surfactant molecules tended to form a thin organic layer on
the particle surface, inhibiting water transport across the aqueous-air interface and
reducing SRH values (Faust and Abbatt, 2019; Mifiambres et al., 2014). For instance,
the SRH of OIR = 1:1 particles decreases by approximately 9.0% with the addition of
0.001 mM CTAC. As surfactant concentration increases, the enhanced salting-out
effect raises the SRH, reaching up to 90.6% RH for OIR = 1:1 particles with 100 mM
Triton X-100.

In ERH measurements, low concentrations of ionic surfactants (SDS and CTAC)
reduce the ERH of mixed particles (Figure S17b). For example, 0.001 mM CTAC
lowers the ERH to 38.3% due to the inhibiting effect of the surface surfactant
monolayer (Harmon et al., 2010). Conversely, high concentrations of ionic surfactants
promote efflorescence of aqueous droplets at higher RH compared to the
surfactant-free system. Considering the very high ERH of the pure SDS system
(Figure S18), we infer that the SDS efflorescence induced the heterogenous

nucleation of AS (Ma et al., 2021b). Additionally, Triton X-100 inhibits AS
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225  efflorescence across the entire concentration range due to its lack of heterogenous

226  efficacy.
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229  Figure S1. Hygroscopic growth curves for the OIR = 1:1 system without SDS (a) and the
230  org:sulf:SDS = 1:1:0.001 system (b). The panels display optical images corresponding to area

231  ratios at specific RH values. The SRH, ERH and DRH values are indicated in red.
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(a) Org:sulf:SDS = 1:1:0.0005 (b) Org:sulf:SDS = 1:1:0.00075
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Figure S2. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS
particles with org:sulf:SDS ratios of 1:1:0.0005 (a), 1:1:0.00075 (b), 1:1:0.00125 (c), and
1:1:0.0015 (d) during LLPS, efflorescence, and deliquescence. The RH percentage is indicated in

each frame, with specific values highlighted in red to signify the occurrence of phase transitions.
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Figure S3. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS particles
with an OIR of 1:4 without SDS (a), and with org:sulf:SDS ratios of 1:4:0.007 (b) and 1:4:0.0075
(c), during LLPS, efflorescence, and deliquescence. The RH percentage is indicated in each frame,

with specific values highlighted in red to signify the occurrence of phase transitions.
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(a) Org:sulf:SDS = 1:4:0.008 (b) Org:sulf:SDS = 1:4:0.01
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Figure S4. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS
particles with org:sulf:SDS ratios of 1:4:0.008 (a) and 1:4:0.01 (b) during LLPS, efflorescence,
and deliquescence. The RH percentage is indicated in each frame, with specific values highlighted

in red to signify the occurrence of phase transitions.
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(a) Org:sulf:SDS = 4:1:0.004 (b) Org:sulf:SDS = 4:1:0.0045 (c) Org:sulf:SDS = 4:1:0.005
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Figure S5. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS
particles with org:sulf:SDS ratios of 4:1:0.004 (a), 4:1:0.0045 (b), and 4:1:0.005 (c) during LLPS,
efflorescence, and deliquescence. The RH percentage is indicated in each frame, with specific

values highlighted in red to signify the occurrence of phase transitions.
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Figure S6. SDS concentration evolutions predicted by the EAIM model (a) and surface tension

measurements from simulated SDS/AS mixed solutions (b) as a function of ambient RH for

particles with org:sulf:SDS ratios of 1:1:0.001, 1:4:0.0075, and 4:1:0.0045. AS and SDS

concentrations in the simulated SDS/AS solutions are derived from EAIM predictions. Each

surface tension measurement represents the average of three replicates.
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Figure S7. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS

particles with org:sulf:SDS ratios of 1:1:0.005 and 1:1:0.01 after LLPS and efflorescence. The RH

percentage is indicated in each frame.
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(a) Org:sulf:SDS =1:1:0.1 (b) Org:sulf:SDS = 1:1:1

77.9% K . 73.7% 81.4%

48.4%

60.7%

79.3% 80.7% 83.5% 75.2% 76.2%

Homogenous organic-inorganic mixed phase . AS solution phase or AS inclusions.Organic-rich phase . AS crystalline phase

@
Q ]
s c
] @
2 Q
4 @
o a
) S
= E
w b

Deliquescence
Deliquescence

263
264  Figure S8. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS

265  particles with org:sulf:SDS ratios of 1:1:0.1 (a) and 1:1:1 (b) during LLPS, efflorescence, and
266  deliquescence. The RH percentage is indicated in each frame, with specific values highlighted in

267  red to signify the occurrence of phase transitions.
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Org:sulf:SDS = 1:1:0.001 (Core-shell structure)
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Figure S9. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS

particles with org:sulf:SDS ratios of 1:1:0.001 (a), 1:1:0.005 (b), 1:1:0.2 (c), and 1:1:0.5 (d) after

LLPS and efflorescence. The corresponding RH values during dehumidification are indicated in

each frame. Note that the illustrations depict only the biphasic particles with identifiable mixing

states.
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Figure S10. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/SDS
particles with an org:sulf:SDS ratio of 1:1:0.01, obtained from mixture solutions at pH 1.5, during
LLPS, efflorescence, and deliquescence. The RH percentage is indicated in each frame, with

specific values highlighted in red to signify the occurrence of phase transitions.
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280  Figure S11. Optical images and corresponding illustrations of mixed organic/AS/SDS particles

281  with an org:sulf:SDS ratio of 1:1:0.01 after LLPS.
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Figure S12. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/CTAC
particles with org:sulf:CTAC ratios of 1:1:0.00001 (a) and 1:1:0.005 (b) during LLPS,
efflorescence, and deliquescence. The RH percentage is indicated in each frame, with specific
values highlighted in red to signify the occurrence of phase transitions. (¢) Equilibrium particle
morphologies after LLPS for 1,2,6-hexanetriol/AS/CTAC particles at different initial CTAC

concentrations.
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290  Figure S13. Surface tension measurements at varying concentrations of CTAC and SDS for
291 simulated CTAC/AS and SDS/AS mixed solutions, with a fixed AS concentration of 2.71 mol L.

292 Hollow symbols indicate estimated approximate surface tension values.
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294 Figure S14. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/Triton

@ AS solution phase or AS inclusions

@ Organic-rich phase

295  X-100 particles with varying org:sulf:Triton X-100 ratios after LLPS.
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Figure S15. Optical images and corresponding illustrations of mixed 1,2,6-hexanetriol/AS/PFOA
particles with the molar ratio of 1:1:0.1 during LLPS, efflorescence, and deliquescence. The RH
percentage is indicated in each frame, with specific values highlighted in red to signify the

occurrence of phase transitions.
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302  Figure S16. Calculated spreading coefficients, S and S, as a function of surfactant concentration
303  for model systems of octane/AS (a) and octanol/AS (b) with the addition of SDS, CTAC, or Triton

304  X-100.

S28



305
306

307
308
309

(a) > OIR = 1:1 with SDS (b) 70 OIR = 1:1 with SDS
OIR = 1:4 with SDS S 65 - OIR = 1:4 with SDS é
901 m OIR = 4:1 with SDS : B OIR = 4:1 with SDS
@ OIR = 1:1 with CTAC 60 - @ OIR =1:1with CTAC
85 - OIR = 1:1 with Triton X-100 OIR = 1:1 with Triton X-100
— o 554
= 804 . =) Cat é
~ 50 4
I R . .! _______ - é *,ﬁ {é [
e 75 " g % ) i 451 -------m--- 1 = f---#5---8 SF S EEEEE
70 9 401 9 ¢ ‘ '
T é T Qo -]
sl ® ? 35-
304
60 T T T T T T T T T T T T
0.001 0.01 0.1 1 10 100 0.001  0.01 0.1 1 10 100
Initial surfactant concentration (mM) Initial surfactant concentration (mM)

Figure S17. SRH (a) and ERH (b) values for OIR = 1:4, 1:1, and 4:1 particles with varying initial
concentrations of SDS, CTAC, and Triton X-100. The dotted lines indicate the original SRH and

ERH values for 1,2,6-hexanetriol/AS mixed particles without surfactants.
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310
311 Figure S18. Optical images of pure SDS system during an RH cycle. The RH percentage is

312  indicated in each frame.
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