Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-14839-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-14839-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spectral variability of gravity-wave kinetic and potential energy at 69° N: a seven-year lidar study
Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Irina Strelnikova
Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Robin Wing
Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Gerd Baumgarten
Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Michael Gerding
Leibniz Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Related authors
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Short summary
This article describes the current status of a lidar installed at ALOMAR in northern Norway. It has investigated the Arctic middle atmosphere on a climatological basis for 30 years. We discuss major upgrades of the system implemented during recent years, including methods for reliable remote operation of this complex lidar. We also show examples that illustrate the performance of the lidar during measurements at different altitude ranges and timescales.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Anna Lange, Gerd Baumgarten, Alexei Rozanov, and Christian von Savigny
Ann. Geophys., 40, 407–419, https://doi.org/10.5194/angeo-40-407-2022, https://doi.org/10.5194/angeo-40-407-2022, 2022
Short summary
Short summary
We investigate the influence of different parameters on the colour of noctilucent clouds (highest clouds in the atmosphere), using radiative transfer calculations. We determined the effect of the particle size, optical depth, single scattering/multiple scattering and ozone. For sufficiently large optical depth and for specific viewing geometries, ozone plays only a minor role in the blueish colour of noctilucent clouds (new result).
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Cited articles
Alexander, M. J., Liu, C. C., Bacmeister, J., Bramberger, M., Hertzog, A., and Richter, J. H.: Observational validation of parameterized gravity waves from tropical convection in the whole atmosphere community climate model, J. Geophys. Res.-Atmos., 126, https://doi.org/10.1029/2020JD033954, 2021. a
Alexander, S., Klekociuk, A., and Murphy, D.: Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E), J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD015164, 2011. a
Allen, S. J. and Vincent, R. A.: Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations, J. Geophys. Res.-Atmos., 100, 1327–1350, https://doi.org/10.1029/94JD02688, 1995. a, b, c
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010. a, b, c
Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F.: Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar, Geophys. Res. Lett., 42, 10929–10936, https://doi.org/10.1002/2015GL066991, 2015. a, b, c
Baumgarten, K. and Stober, G.: On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere, Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, 2019. a
Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018. a, b
Chandran, A., Garcia, R. R., Collins, R. L., and Chang, L. C.: Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012, Geophys. Res. Lett., 40, 1861–1867, https://doi.org/10.1002/grl.50373, 2013. a
Chanin, M.-L. and Hauchecorne, A.: Lidar observation of gravity and tidal waves in the stratosphere and mesosphere, J. Geophys. Res.-Oceans, 86, 9715–9721, https://doi.org/10.1029/JC086iC10p09715, 1981. a
Chen, C., Chu, X., Zhao, J., Roberts, B. R., Yu, Z., Fong, W., Lu, X., and Smith, J. A.: Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E), J. Geophys. Res.-Space, 121, 1483–1502, https://doi.org/10.1002/2015JA022127, 2016. a, b, c, d, e
Chu, X., Zhao, J., Lu, X., Harvey, V. L., Jones, R. M., Becker, E., Chen, C., Fong, W., Yu, Z., Roberts, B. R., and Dörnbrack, A.: Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential energy densities, lognormal distributions, and seasonal variations, J. Geophys. Res.-Atmos., 123, 7910–7934, https://doi.org/10.1029/2017JD027386, 2018. a, b, c
Conway, J. P., Bodeker, G. E., Waugh, D. W., Murphy, D. J., and Cameron, C.: Using Project Loon superpressure balloon observations to investigate the inertial peak in the intrinsic wind spectrum in the midlatitude stratosphere, J. Geophys. Res.-Atmos., 124, 8594–8604, https://doi.org/10.1029/2018JD030195, 2019. a, b
Crowley, G. and Williams, P.: Observations of the source and propagation of atmospheric gravity waves, Nature, 328, 231–233, https://doi.org/10.1038/328231a0, 1987. a
de la Torre, A., Alexander, P., and Giraldez, A.: The kinetic to potential energy ratio and spectral separability from high resolution balloon soundings near the Andes Mountains, Geophys. Res. Lett., 26, 1413–1416, https://doi.org/10.1029/1999GL900265, 1999. a, b, c
Dewan, E. M. and Good, R. E.: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., 91, 2742, https://doi.org/10.1029/jd091id02p02742, 1986. a, b
Dewan, E. M. and Grossbard, N.: Power spectral artifacts in published balloon data and implications regarding saturated gravity wave theories, J. Geophys. Res., 105, 4667–4683, https://doi.org/10.1029/1999jd901108, 2000. a
Dewan, E. M., Grossbard, N., Quesada, A. F., and Good, R. E.: Spectral analysis of 10m resolution scalar velocity profiles in the stratosphere, Geophys. Res. Lett., 11, 80–83, https://doi.org/10.1029/GL011i001p00080, 1984. a
Eckermann, S. D.: Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves, J. Geophys. Res.-Atmos., 100, 14097–14112, https://doi.org/10.1029/95JD00987, 1995. a, b
Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M.: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements, Atmos. Meas. Tech., 8, 4645–4655, https://doi.org/10.5194/amt-8-4645-2015, 2015. a
Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, 2016. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018. a, b
Fiedler, J. and Baumgarten, G.: The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation, Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, 2024. a, b
Fiedler, J., Baumgarten, G., von Cossart, G., and Schoch, A.: Lidar observations of temperatures, waves, and noctilucent clouds at 69° N, in: Remote Sensing of Clouds and the Atmosphere IX, edited by: Comeron, A., Carleer, M. R., Picard, R. H., and Sifakis, N. I., Vol. 5571, International Society for Optics and Photonics, SPIE, https://doi.org/10.1117/12.564772, 140–151, 2004. a
Fritts, D. C.: A review of gravity wave saturation processes, effects, and variability in the middle atmosphere, Pure Appl. Geophys., 130, 343–371, https://doi.org/10.1007/bf00874464, 1989. a
Fritts, D. C. and VanZandt, T. E.: Effects of Doppler shifting on the frequency spectra of atmospheric gravity waves, J. Geophys. Res.-Atmos., 92, 9723–9732, https://doi.org/10.1029/JD092iD08p09723, 1987. a
Fritts, D. C. and VanZandt, T. E.: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints, J. Atmos. Sci., 50, 3685–3694, https://doi.org/10.1175/1520-0469(1993)050<3685:SEOGWE>2.0.CO;2, 1993. a
Fritts, D. C., Tsuda, T., Sato, T., Fukao, S., and Kato, S.: Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, J. Atmos. Sci., 45, 1741–1759, https://doi.org/10.1175/1520-0469(1988)045<1741:OEOASG>2.0.CO;2, 1988. a, b
Gardner, C. S.: Diffusive filtering theory of gravity wave spectra in the atmosphere, J. Geophys. Res., 99, 20601, https://doi.org/10.1029/94jd00819, 1994. a
Gardner, C. S.: Testing theories of atmospheric gravity wave saturation and dissipation, J. Atmos. Terr. Phys., 58, 1575–1589, https://doi.org/10.1016/0021-9169(96)00027-X, 1996. a, b
Gardner, C. S., Miller, M. S., and Liu, C. H.: Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Illinois, J. Atmos. Sci., 46, 1838–1854, https://doi.org/10.1175/1520-0469(1989)046<1838:RLOOGW>2.0.CO;2, 1989. a
Gardner, C. S., Hostetler, C. A., and Lintelman, S.: Influence of the mean wind field on the separability of atmospheric perturbation spectra, J. Geophys. Res.-Atmos., 98, 8859–8872, https://doi.org/10.1029/92JD02665, 1993. a, b
Gardner, C. S., Tao, X., and Papen, G. C.: Simultaneous lidar observations of vertical wind, temperature, and density profiles in the upper mesophere: evidence for nonseparability of atmospheric perturbation spectra, Geophys. Res. Lett., 22, 2877–2880, https://doi.org/10.1029/95gl02783, 1995. a, b, c
Gelinas, L. J., Walterscheid, R. L., Mechoso, C. R., and Schubert, G.: Observations of an inertial peak in the intrinsic wind spectrum shifted by rotation in the Antarctic Vortex, J. Atmos. Sci., 69, 3800–3811, https://doi.org/10.1175/JAS-D-11-0305.1, 2012. a
Geller, M. A. and Gong, J.: Gravity wave kinetic, potential, and vertical fluctuation energies as indicators of different frequency gravity waves, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD012266, 2010. a, b, c
Guest, F. M., Reeder, M. J., Marks, C. J., and Karoly, D. J.: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island, J. Atmos. Sci., 57, 737–752, https://doi.org/10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2, 2000. a
Hagen, J., Hocke, K., Stober, G., Pfreundschuh, S., Murk, A., and Kämpfer, N.: First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry, Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, 2020. a
Hauchecorne, A. and Chanin, M.: Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett., 7, 565–568, https://doi.org/10.1029/GL007i008p00565, 1980. a
Hertzog, A., Souprayen, C., and Hauchecorne, A.: Measurements of gravity wave activity in the lower stratosphere by Doppler lidar, J. Geophys. Res.-Atmos., 106, 7879–7890, https://doi.org/10.1029/2000JD900646, 2001. a
Hertzog, A., Vial, F., Mechoso, C. R., Basdevant, C., and Cocquerez, P.: Quasi Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near inertial waves, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001GL014083, 2002. a, b, c, d
Hildebrand, J., Baumgarten, G., Fiedler, J., and Lübken, F.-J.: Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar, Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, 2017. a, b
Holton, J. M.: The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507, https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2, 1983. a
Holton, J. R. and Hakim, G. J.: An Introduction to Dynamic Meteorology, Vol. 88, Academic Press, ISBN 978-0-12-384866-6, https://doi.org/10.1016/C2009-0-63394-8, 2013. a
Hu, C., Yang, S., Wu, Q., Li, Z., Chen, J., Deng, K., Zhang, T., and Zhang, C.: Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin, Nat. Commun., 7, https://doi.org/10.1038/ncomms11721, 2016. a
Huang, K. M., Yang, Z. X., Wang, R., Zhang, S. D., Huang, C. M., Yi, F., and Hu, F.: A statistical study of inertia gravity waves in the lower stratosphere over the Arctic region based on radiosonde observations, J. Geophys. Res.-Atmos., 123, 4958–4976, https://doi.org/10.1029/2017JD027998, 2018. a, b
Jandreau, J. and Chu, X.: Bias eliminating techniques in the computation of power spectra for characterizing gravity waves: interleaved methods and error analyses, Earth and Space Science, 11, 8259, https://doi.org/10.1029/2023EA003499, 2024. a
Kaifler, B., Lübken, F. J., Höffner, J., Morris, R. J., and Viehl, T. P.: Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica, J. Geophys. Res., 120, 4506–4521, https://doi.org/10.1002/2014JD022879, 2015. a
Kaifler, N., Baumgarten, G., Fiedler, J., and Lübken, F.-J.: Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes, Atmos. Chem. Phys., 13, 11757–11768, https://doi.org/10.5194/acp-13-11757-2013, 2013. a
Kalisch, S., Chun, H., Ern, M., Preusse, P., Trinh, Q. T., Eckermann, S. D., and Riese, M.: Comparison of simulated and observed convective gravity waves, J. Geophys. Res.-Atmos., 121, https://doi.org/10.1002/2016JD025235, 2016. a
Knobloch, S., Kaifler, B., Dörnbrack, A., and Rapp, M.: Horizontal wavenumber spectra across the middle atmosphere from airborne lidar observations during the 2019 Southern Hemispheric SSW, Geophys. Res. Lett., 50, https://doi.org/10.1029/2023GL104357, 2023. a
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and Claud, C.: Comparison of co located independent ground based middle atmospheric wind and temperature measurements with numerical weather prediction models, J. Geophys. Res.-Atmos., 120, 8318–8331, https://doi.org/10.1002/2015jd023273, 2015. a
Li, Q., Zhang, S. D., Huang, C. M., Huang, K. M., Gong, Y., Gan, Q., Liu, A. Z., Yan, Y. Y., and Liu, H.: Statistical spectral characteristics of three-dimensional winds in the mesopause region revealed by the Andes lidar, J. Geophys. Res.-Atmos., 126, https://doi.org/10.1029/2021JD035586, 2021. a
Lindborg, E.: The energy cascade in a strongly stratified fluid, J. Fluid Mech., 550, 207, https://doi.org/10.1017/S0022112005008128, 2006. a
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707, https://doi.org/10.1029/jc086ic10p09707, 1981. a
Llamedo, P., Salvador, J., de la Torre, A., Quiroga, J., Alexander, P., Hierro, R., Schmidt, T., Pazmino, A., and Quel, E.: 11 years of Rayleigh lidar observations of gravity wave activity above the southern tip of South America, J. Geophys. Res.-Atmos., 124, 451–467, https://doi.org/10.1029/2018jd028673, 2019. a
Medvedev, A. S., Klaassen, G. P., and Yiğit, E.: On the dynamical importance of gravity wave sources distributed over different heights in the atmosphere, J. Geophys. Res.-Space, 128, https://doi.org/10.1029/2022JA031152, 2023. a
Meyer, C. I., Ern, M., Hoffmann, L., Trinh, Q. T., and Alexander, M. J.: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations, Atmos. Meas. Tech., 11, 215–232, https://doi.org/10.5194/amt-11-215-2018, 2018. a
Mitchell, N., Thomas, L., and Prichard, I.: Gravity waves in the stratosphere and troposphere observed by lidar and MST radar, J. Atmos. Terr. Phys., 56, 939–947, https://doi.org/10.1016/0021-9169(94)90155-4, 1994. a
Moffat-Griffin, T., Wright, C. J., Moss, A. C., King, J. C., Colwell, S. R., Hughes, J. K., and Mitchell, N. J.: The South Georgia Wave Experiment (SG-WEX): radiosonde observations of gravity waves in the lower stratosphere. Part I: Energy density, momentum flux and wave propagation direction, Q. J. Roy. Meteor. Soc., 143, 3279–3290, https://doi.org/10.1002/qj.3181, 2017. a
Mossad, M.: MossadACP2025, Leibniz Institute of Atmospheric Physics at the University of Rostock [data set], https://doi.org/10.22000/nj61edyby3z3xrhe, 2025. a
Mossad, M., Strelnikova, I., Wing, R., and Baumgarten, G.: Assessing atmospheric gravity wave spectra in the presence of observational gaps, Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, 2024. a, b, c, d
Nozawa, S., Saito, N., Kawahara, T., Wada, S., Tsuda, T. T., Maeda, S., Takahashi, T., Fujiwara, H., Narayanan, V. L., Kawabata, T., and Johnsen, M. G.: A statistical study of convective and dynamic instabilities in the polar upper mesosphere above Tromsø, Earth Planets Space, 75, 22, https://doi.org/10.1186/s40623-023-01771-1, 2023. a
Pinel, J. and Lovejoy, S.: Atmospheric waves as scaling, turbulent phenomena, Atmos. Chem. Phys., 14, 3195–3210, https://doi.org/10.5194/acp-14-3195-2014, 2014. a
Placke, M., Hoffmann, P., Gerding, M., Becker, E., and Rapp, M.: Testing linear gravity wave theory with simultaneous wind and temperature data from the mesosphere, J. Atmos. Sol.-Terr. Phy., 93, 57–69, https://doi.org/10.1016/j.jastp.2012.11.012, 2013. a
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014. a
Podglajen, A., Hertzog, A., Plougonven, R., and Legras, B.: Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere, Geophys. Res. Lett., 43, 3543–3553, https://doi.org/10.1002/2016gl068148, 2016. a
Pramitha, M., Kumar, K. K., and Ratnam, M. V.: Observations and model predictions of vertical wavenumber spectra of gravity waves in the troposphere and lower stratosphere over a tropical station, J. Atmos. Sol.-Terr. Phy., 216, 105601, https://doi.org/10.1016/j.jastp.2021.105601, 2021. a
Ratynski, M., Khaykin, S., Hauchecorne, A., Alexander, M. J., Mariaccia, A., Keckhut, P., and Mangin, A.: Convection-generated gravity waves in the tropical lower stratosphere from Aeolus wind profiling, GNSS-RO, and ERA5 reanalysis, Atmos. Chem. Phys., 25, 13769–13798, https://doi.org/10.5194/acp-25-13769-2025, 2025. a
Ridder, C., Baumgarten, G., Fiedler, J., Lübken, F.-J., and Stober, G.: Analysis of small-scale structures in lidar observations of noctilucent clouds using a pattern recognition method, J. Atmos. Sol.-Terr. Phy., 162, 48–56, https://doi.org/10.1016/j.jastp.2017.04.005, 2017. a
Sato, K. and Yoshiki, M.: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station, J. Atmos. Sci., 65, 3719–3735, https://doi.org/10.1175/2008JAS2539.1, 2008. a
Scheffler, A. and Liu, C.: The effects of Doppler shift on gravity wave spectra observed by MST radar, J. Atmos. Terr. Phys., 48, 1225–1231, https://doi.org/10.1016/0021-9169(86)90041-3, 1986. a
Schoeberl, M. R., Jensen, E., Podglajen, A., Coy, L., Lodha, C., Candido, S., and Carver, R.: Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories, J. Geophys. Res.-Atmos., 122, 8517–8524, https://doi.org/10.1002/2017JD026471, 2017. a, b, c
Schöch, A., Baumgarten, G., Fritts, D. C., Hoffmann, P., Serafimovich, A., Wang, L., Dalin, P., Müllemann, A., and Schmidlin, F. J.: Gravity waves in the troposphere and stratosphere during the MaCWAVE/MIDAS summer rocket program, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019837, 2004. a
Schöch, A., Baumgarten, G., and Fiedler, J.: Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N), Ann. Geophys., 26, 1681–1698, https://doi.org/10.5194/angeo-26-1681-2008, 2008. a, b
Serreze, M. C. and Barry, R. G.: Processes and impacts of arctic amplification: a research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shao Dong Zhang, Chunming Huang, and Fan Yi: Radiosonde observations of vertical wave number spectra for gravity waves in the lower atmosphere over Central China, Ann. Geophys., 24, 3257–3265, https://doi.org/10.5194/angeo-24-3257-2006, 2006. a
Sica, R. and Russell, A.: Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part I: Vertical wavenumber and temporal spectra, J. Atmos. Sci., 56, 1308–1329, https://doi.org/10.1175/1520-0469(1999)056<1308:MOTEOG>2.0.CO;2, 1999. a
Smith, S. M., Fritts, D. C., and VanZandt, T. E.: Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci., 44, 1404–1410, https://doi.org/10.1175/1520-0469(1987)044<1404:EFASSO>2.0.CO;2, 1987. a, b, c, d
Strelnikova, I., Baumgarten, G., and Lübken, F.-J.: Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations, Atmos. Meas. Tech., 13, 479–499, https://doi.org/10.5194/amt-13-479-2020, 2020. a
Strelnikova, I., Almowafy, M., Baumgarten, G., Baumgarten, K., Ern, M., Gerding, M., and Lübken, F.-J.: Seasonal cycle of gravity wave potential energy densities from lidar and satellite observations at 54° and 69°N, J. Atmos. Sci., 78, 1359–1386, https://doi.org/10.1175/JAS-D-20-0247.1, 2021. a, b, c, d, e, f, g
Thompson, R. O. R. Y.: Observation of inertial waves in the stratosphere, Q. J. Roy. Meteor. Soc., 104, 691–698, https://doi.org/10.1002/qj.49710444111, 1978. a
Tsuda, T., VanZandt, T. E., Mizumoto, M., Kato, S., and Fukao, S.: Spectral analysis of temperature and Brunt Väisälä frequency fluctuations observed by radiosondes, J. Geophys. Res.-Atmos., 96, 17265–17278, https://doi.org/10.1029/91JD01944, 1991. a
Tsuda, T., Nishida, M., Rocken, C., and Ware, R. H.: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res.-Atmos., 105, 7257–7273, https://doi.org/10.1029/1999JD901005, 2000. a
VanZandt, T.: A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett., 9, 575–578, https://doi.org/10.1029/gl009i005p00575, 1982. a
VanZandt, T. E.: A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci., 20, 1323–1330, https://doi.org/10.1029/RS020i006p01323, 1985. a, b, c
Vaughan, S.: A Bayesian test for periodic signals in red noise, Mon. Not. R. Astron. Soc., 402, 307–320, https://doi.org/10.1111/j.1365-2966.2009.15868.x, 2010. a
Vincent, R. A., Allen, S. J., and Eckermann, S. D.: Gravity-Wave Parameters in the Lower Stratosphere, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-60654-0_2, 7–25, 1997. a, b
von Zahn, U., von Cossart, G., Fiedler, J., Fricke, K. H., Nelke, G., Baumgarten, G., Rees, D., Hauchecorne, A., and Adolfsen, K.: The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance, Ann. Geophys., 18, 815–833, https://doi.org/10.1007/s00585-000-0815-2, 2000. a
Weinstock, J.: Theoretical gravity wave spectrum in the atmosphere: strong and weak wave interactions, Radio Sci., 20, 1295–1300, https://doi.org/10.1029/RS020i006p01295, 1985. a
Weinstock, J.: Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion, J. Atmos. Sci., 47, 2211–2226, https://doi.org/10.1175/1520-0469(1990)047<2211:SAUSOG>2.0.CO;2, 1990. a, b
Whiteway, J. A. and Carswell, A. I.: Rayleigh lidar observations of thermal structure and gravity wave activity in the high Arctic during a stratospheric warming, J. Atmos. Sci., 51, 3122–3136, https://doi.org/10.1175/1520-0469(1994)051<3122:RLOOTS>2.0.CO;2, 1994. a
Whiteway, J. A. and Carswell, A. I.: Lidar observations of gravity wave activity in the upper stratosphere over Toronto, J. Geophys. Res.-Atmos., 100, 14113–14124, https://doi.org/10.1029/95JD00511, 1995. a
Whiteway, J. A. and Duck, T. J.: Evidence for critical level filtering of atmospheric gravity waves, Geophys. Res. Lett., 23, 145–148, https://doi.org/10.1029/95GL03784, 1996. a
Wilms, H., Rapp, M., Hoffmann, P., Fiedler, J., and Baumgarten, G.: Gravity wave influence on NLC: experimental results from ALOMAR, 69° N, Atmos. Chem. Phys., 13, 11951–11963, https://doi.org/10.5194/acp-13-11951-2013, 2013. a
Wilson, R., Hauchecorne, A., and Chanin, M. L.: Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar, Geophys. Res. Lett., 17, 1585–1588, https://doi.org/10.1029/GL017i010p01585, 1990. a
Wilson, R., Chanin, M. L., and Hauchecorne, A.: Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology, J. Geophys. Res.-Atmos., 96, 5169–5183, https://doi.org/10.1029/90JD02610, 1991. a, b, c
Wing, R., Hauchecorne, A., Keckhut, P., Godin-Beekmann, S., Khaykin, S., McCullough, E. M., Mariscal, J.-F., and d'Almeida, É.: Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars, Atmos. Meas. Tech., 11, 5531–5547, https://doi.org/10.5194/amt-11-5531-2018, 2018. a
Wing, R., Martic, M., Triplett, C., Hauchecorne, A., Porteneuve, J., Keckhut, P., Courcoux, Y., Yung, L., Retailleau, P., and Cocuron, D.: Gravity wave breaking associated with mesospheric inversion layers as measured by the ship-borne BEM Monge Lidar and ICON-MIGHTI, Atmosphere-Basel, 12, 1386, https://doi.org/10.3390/atmos12111386, 2021. a
Wing, R., Strelnikova, I., Dörnbrack, A., Gerding, M., Franco Diaz, E., Holt, L., Mossad, M., and Baumgarten, G.: Direct observation of quasi monochromatic gravity wave packets associated with the polar night jet using a doppler rayleigh lidar, J. Geophys. Res.-Atmos., 130, https://doi.org/10.1029/2025JD043707, 2025. a
Xue, X. H., Sun, D. S., Xia, H. Y., and Dou, X. K.: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461–471, https://doi.org/10.26464/epp2020039, 2020. a
Yoshiki, M. and Sato, K.: A statistical study of gravity waves in the polar regions based on operational radiosonde data, J. Geophys. Res.-Atmos., 105, 17995–18011, https://doi.org/10.1029/2000JD900204, 2000. a
Zechmeister, M. and Kürster, M.: The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms, Astron. Astrophys., 496, 577–584, https://doi.org/10.1051/0004-6361:200811296, 2009. a
Zhang, S., Huang, C., Huang, K., Gong, Y., Chen, G., Gan, Q., and Zhang, Y.: Latitudinal and seasonal variations of vertical wave number spectra of three-dimensional winds revealed by radiosonde observations, J. Geophys. Res.-Atmos., 122, 13174–13190, https://doi.org/10.1002/2017jd027602, 2017. a
Zhao, J., Chu, X., Chen, C., Lu, X., Fong, W., Yu, Z., Jones, R. M., Roberts, B. R., and Dörnbrack, A.: Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 1. Vertical wavelengths, periods, and frequency and vertical wave number spectra, J. Geophys. Res.-Atmos., 122, 5041–5062, https://doi.org/10.1002/2016JD026368, 2017a. a, b, c
Zhao, R., Dou, X., Sun, D., Xue, X., Zheng, J., Han, Y., Chen, T., Wang, G., and Zhou, Y.: Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar, Optics Express, 24, A581, https://doi.org/10.1364/oe.24.00a581, 2016. a
Zhao, R., Dou, X., Xue, X., Sun, D., Han, Y., Chen, C., Zheng, J., Li, Z., Zhou, A., Han, Y., Wang, G., and Chen, T.: Stratosphere and lower mesosphere wind observation and gravity wave activities of the wind field in China using a mobile Rayleigh Doppler lidar, J. Geophys. Res.-Space, 122, 8847–8857, https://doi.org/10.1002/2016JA023713, 2017b. a
Short summary
We studied gravity waves using a unique lidar that measures both temperature and wind. This is the first long-term study of how their energies vary with height and season in the middle atmosphere near the Arctic. Waves were stronger and varied more in winter, while in summer slow waves tied to Earth's rotation dominated. We also observed new patterns in how energy is shared between both energy types and height-dependent changes in wave behaviour. These results refine our view of such waves.
We studied gravity waves using a unique lidar that measures both temperature and wind. This is...
Altmetrics
Final-revised paper
Preprint