Articles | Volume 24, issue 21
https://doi.org/10.5194/acp-24-12341-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-12341-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Non-destructive Testing Laboratory, School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China
Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
Cancan Zhu
Non-destructive Testing Laboratory, School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China
Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
Donghui Zhou
Non-destructive Testing Laboratory, School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China
Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
Jinbao Han
Non-destructive Testing Laboratory, School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, Hebei University, Baoding 071002, China
Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
Related authors
Jia Liu, Donghui Zhou, Guangya Wang, Cancan Zhu, and Xuehai Zhang
Atmos. Meas. Tech., 18, 4045–4059, https://doi.org/10.5194/amt-18-4045-2025, https://doi.org/10.5194/amt-18-4045-2025, 2025
Short summary
Short summary
Single-particle soot photometer (SP2) measures the mixing state (Dp/Dc) of coated black carbon (BC) using core-shell Mie theory and coating refractive index is set to 1.50+0i. The retrieved Dp/Dc contains error due to the non-sphericity of BC and coatings with various refractive indices. We reveal the remarkable effects of coatings on the Dp/Dc retrieval accuracy of SP2 based on optical simulation of fractal BC aerosols, and further evaluate the simple radiative forcing efficiency of coated BC.
Jia Liu, Guangya Wang, Cancan Zhu, Donghui Zhou, and Lin Wang
Atmos. Meas. Tech., 16, 4961–4974, https://doi.org/10.5194/amt-16-4961-2023, https://doi.org/10.5194/amt-16-4961-2023, 2023
Short summary
Short summary
Single-particle soot photometer (SP2) employs the core-shell model to represent coated BC particles, which introduces retrieval errors in the mixing state (Dp/Dc) of BC. We construct fractal models to represent thinly and thickly coated BC particles, and the retrieval errors of the mixing state are investigated from the numerical aspect. We find that errors in Dp/Dc are noteworthy, and the errors in Dp/Dc can further affect the evaluation accuracy of the radiative forcing of BC.
Jia Liu, Donghui Zhou, Guangya Wang, Cancan Zhu, and Xuehai Zhang
Atmos. Meas. Tech., 18, 4045–4059, https://doi.org/10.5194/amt-18-4045-2025, https://doi.org/10.5194/amt-18-4045-2025, 2025
Short summary
Short summary
Single-particle soot photometer (SP2) measures the mixing state (Dp/Dc) of coated black carbon (BC) using core-shell Mie theory and coating refractive index is set to 1.50+0i. The retrieved Dp/Dc contains error due to the non-sphericity of BC and coatings with various refractive indices. We reveal the remarkable effects of coatings on the Dp/Dc retrieval accuracy of SP2 based on optical simulation of fractal BC aerosols, and further evaluate the simple radiative forcing efficiency of coated BC.
Jia Liu, Guangya Wang, Cancan Zhu, Donghui Zhou, and Lin Wang
Atmos. Meas. Tech., 16, 4961–4974, https://doi.org/10.5194/amt-16-4961-2023, https://doi.org/10.5194/amt-16-4961-2023, 2023
Short summary
Short summary
Single-particle soot photometer (SP2) employs the core-shell model to represent coated BC particles, which introduces retrieval errors in the mixing state (Dp/Dc) of BC. We construct fractal models to represent thinly and thickly coated BC particles, and the retrieval errors of the mixing state are investigated from the numerical aspect. We find that errors in Dp/Dc are noteworthy, and the errors in Dp/Dc can further affect the evaluation accuracy of the radiative forcing of BC.
Cited articles
Amin, H. M. F., Bennett, A., and Roberts, W. L.: Determining fractal properties of soot aggregates and primary particle size distribution in counterflow flames up to 10 atm, Proc. Combust. Inst., 37, 1161–1168, https://doi.org/10.1016/j.proci.2018.07.057, 2019.
Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., and Xu, W. Y.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain, Atmos. Chem. Phys., 14, 6417–6426, https://doi.org/10.5194/acp-14-6417-2014, 2014.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Corbin, J. C., Modini, R. L., and Gysel-Beer, M.: Mechanisms of soot-aggregate restructuring and compaction, Aerosol Sci. Technol., 57, 89–111, https://doi.org/10.1080/02786826.2022.2137385, 2023.
Cotterell, M. I., Willoughby, R. E., Bzdek, B. R., Orr-Ewing, A. J., and Reid, J. P.: A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles, Atmos. Chem. Phys., 17, 9837–9851, https://doi.org/10.5194/acp-17-9837-2017, 2017.
Feng, X., Wang, J. D., Teng, S. W., Xu, X. F., Zhu, B., Wang, J. P., Zhu, X. J., Yurkin, M. A., and Liu, C.: Can light absorption of black carbon still be enhanced by mixing with absorbing materials?, Atmos. Environ., 253, 8, https://doi.org/10.1016/j.atmosenv.2021.118358, 2021.
Fierce, L., Bond, T. C., Bauer, S. E., Mena, F., and Riemer, N.: Black carbon absorption at the global scale is affected by particle-scale diversity in composition, Nat. Commun., 7, 8, https://doi.org/10.1038/ncomms12361, 2016.
He, C., Liou, K.-N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P., Li, Q., and Leung, L. R.: Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison, Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, 2015.
He, Q. F., Bluvshtein, N., Segev, L., Meidan, D., Flores, J. M., Brown, S. S., Brune, W., and Rudich, Y.: Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging, Environ. Sci. Technol., 52, 3456–3465, https://doi.org/10.1021/acs.est.7b05742, 2018.
Kholghy, M. R.: The Evolution of Soot Morphology in Laminar Co-Flow Diffusion Flames of the Surrogates for Jet A-1 and a Synthetic Kerosene, Heritage Branch, ISBN 978-0-494-91969-9, 2012.
Kong, S., Wang, Z., and Bi, L.: Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment, Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, 2024.
Kuang, Y., Xu, W. Y., Tao, J. C., Ma, N., Zhao, C. S., and Shao, M.: A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels, Curr. Pollut. Rep., 6, 410–424, https://doi.org/10.1007/s40726-020-00164-2, 2020.
Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N., and Bian, Y. X.: A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system, Atmos. Meas. Tech., 11, 2967–2982, https://doi.org/10.5194/amt-11-2967-2018, 2018.
Levoni, C., Cervino, M., Guzzi, R., and Torricella, F.: Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes, Appl. Opt., 36, 8031–8041, https://doi.org/10.1364/ao.36.008031, 1997.
Li, D. M., Cui, S. J., Wu, Y., Wang, J. F., and Ge, X. L.: Direct Measurement of Aerosol Liquid Water Content: A Case Study in Summer in Nanjing, China, Toxics, 12, 14, https://doi.org/10.3390/toxics12030164, 2024a.
Li, W. J., Riemer, N., Xu, L., Wang, Y. Y., Adachi, K., Shi, Z. B., Zhang, D. Z., Zheng, Z. H., and Laskin, A.: Microphysical properties of atmospheric soot and organic particles: measurements, modeling, and impacts, npj Clim. Atmos. Sci., 7, 14, https://doi.org/10.1038/s41612-024-00610-8, 2024b.
Liu, J., Zhu, C., Zhou, D., and Han, J.: Optical equivalent CRI of coated BC at different RH, ResearchGate [data set], https://doi.org/10.13140/RG.2.2.21765.36321, 2024.
Liu, L., Zhang, J., Zhang, Y., Wang, Y., Xu, L., Yuan, Q., Liu, D., Sun, Y., Fu, P., Shi, Z., and Li, W.: Persistent residential burning-related primary organic particles during wintertime hazes in North China: insights into their aging and optical changes, Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, 2021.
Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K., and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain, Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014, 2014.
Luo, J., Zhang, Y. M., and Zhang, Q. X.: A model study of aggregates composed of spherical soot monomers with an acentric carbon shell, J. Quant. Spectrosc. Radiat. Transf., 205, 184–195, https://doi.org/10.1016/j.jqsrt.2017.10.024, 2018a.
Luo, J., Zhang, Y., Wang, F., and Zhang, Q.: Effects of brown coatings on the absorption enhancement of black carbon: a numerical investigation, Atmos. Chem. Phys., 18, 16897–16914, https://doi.org/10.5194/acp-18-16897-2018, 2018b.
Mackowski, D. W.: A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media, J. Quant. Spectrosc. Radiat. Transf., 133, 264–270, https://doi.org/10.1016/j.jqsrt.2013.08.012, 2014.
Mackowski, D. W. and Mishchenko, M. I.: Calculation of the T matrix and the scattering matrix for ensembles of spheres, J. Opt. Soc. Am. A, 13, 2266–2278, https://doi.org/10.1364/JOSAA.13.002266, 1996.
Mason, B. J., Cotterell, M. I., Preston, T. C., Orr-Ewing, A. J., and Reid, J. P.: Direct Measurements of the Optical Cross Sections and Refractive Indices of Individual Volatile and Hygroscopic Aerosol Particles, J. Phys. Chem. A, 119, 5701–5713, https://doi.org/10.1021/acs.jpca.5b00435, 2015.
Mishchenko, M. I. and Mackowski, D. W.: The multiple-sphere T-matrix code, GitHub [code], https://github.com/oldoldstone/MSTM (last access: 31 October 2024), 2024.
Mishchenko, M., Lacis, A., Carlson, B., and Travis, L.: Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling, Geophys. Res. Lett., 22, 1077–1080, https://doi.org/10.1029/95gl00798, 1995.
Pang, Y. E., Wang, Y. Y., Wang, Z. C., Zhang, Y. X., Liu, L., Kong, S. F., Liu, F. S., Shi, Z. B., and Li, W. J.: Quantifying the Fractal Dimension and Morphology of Individual Atmospheric Soot Aggregates, J. Geophys. Res.-Atmos., 127, 11, https://doi.org/10.1029/2021jd036055, 2022.
Pang, Y. E., Chen, M. H., Wang, Y. Y., Chen, X. Y., Teng, X. M., Kong, S. F., Zheng, Z. H., and Li, W. J.: Morphology and Fractal Dimension of Size-Resolved Soot Particles Emitted From Combustion Sources, J. Geophys. Res.-Atmos., 128, 13, https://doi.org/10.1029/2022jd037711, 2023.
Radney, J. G. and Zangmeister, C. D.: Comparing aerosol refractive indices retrieved from full distribution and size- and mass-selected measurements, J. Quant. Spectrosc. Radiat. Transf., 220, 52–66, https://doi.org/10.1016/j.jqsrt.2018.08.021, 2018.
Sipkens, T. A. and Corbin, J. C.: Effective density and packing of compacted soot aggregates, Carbon, 226, 10, https://doi.org/10.1016/j.carbon.2024.119197, 2024.
Tan, H. B., Yin, Y., Gu, X. S., Li, F., Chan, P. W., Xu, H. B., Deng, X. J., and Wan, Q. L.: An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region, Atmos. Environ., 77, 817–826, https://doi.org/10.1016/j.atmosenv.2013.05.049, 2013.
Virkkula, A., Koponen, I. K., Teinilä, K., Hillamo, R., Kerminen, V. M., and Kulmala, M.: Effective real refractive index of dry aerosols in the Antarctic boundary layer, Geophys. Res. Lett., 33, 4, https://doi.org/10.1029/2005gl024602, 2006.
Wang, J. D., Wang, J. P., Cai, R. L., Liu, C., Jiang, J. K., Nie, W., Wang, J. B., Moteki, N., Zaveri, R. A., Huang, X., Ma, N., Chen, G. Z., Wang, Z. L., Jin, Y. Z., Cai, J., Zhang, Y. X., Chi, X. G., Holanda, B. A., Xing, J., Liu, T. Y., Qi, X. M., Wang, Q. Q., Pöhlker, C., Su, H., Cheng, Y. F., Wang, S. X., Hao, J. M., Andreae, M. O., and Ding, A. J.: Unified theoretical framework for black carbon mixing state allows greater accuracy of climate effect estimation, Nat. Commun., 14, 8, https://doi.org/10.1038/s41467-023-38330-x, 2023.
Wang, S., Crumeyrolle, S., Zhao, W. X., Xu, X. Z., Fang, B., Derimian, Y., Chen, C., Chen, W. D., Zhang, W. J., Huang, Y., Deng, X. L., and Tong, Y. X.: Real-time retrieval of aerosol chemical composition using effective density and the imaginary part of complex refractive index, Atmos. Environ., 245, 14, https://doi.org/10.1016/j.atmosenv.2020.117959, 2021a.
Wang, Y. Y., Pang, Y. E., Huang, J., Bi, L., Che, H. Z., Zhang, X. Y., and Li, W. J.: Constructing Shapes and Mixing Structures of Black Carbon Particles With Applications to Optical Calculations, J. Geophys. Res.-Atmos., 126, 15, https://doi.org/10.1029/2021jd034620, 2021b.
Wang, Y. Y., Li, W. J., Huang, J., Liu, L., Pang, Y. E., He, C. L., Liu, F. S., Liu, D. T., Bi, L., Zhang, X. Y., and Shi, Z. B.: Nonlinear Enhancement of Radiative Absorption by Black Carbon in Response to Particle Mixing Structure, Geophys. Res. Lett., 48, 10, https://doi.org/10.1029/2021gl096437, 2021c.
Wozniak, M., Onofri, F. R. A., Barbosa, S., Yon, J., and Mroczka, J.: Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images, J. Aerosol. Sci., 47, 12–26, https://doi.org/10.1016/j.jaerosci.2011.12.008, 2012.
Wu, Y., Cheng, T. H., Gu, X. F., Zheng, L. J., Chen, H., and Xu, H.: The single scattering properties of soot aggregates with concentric core-shell spherical monomers, J. Quant. Spectrosc. Radiat. Transf., 135, 9–19, https://doi.org/10.1016/j.jqsrt.2013.11.009, 2014.
Wu, Y., Cheng, T. H., Zheng, L. J., and Chen, H.: Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols, J. Quant. Spectrosc. Radiat. Transf., 182, 1–11, https://doi.org/10.1016/j.jqsrt.2016.05.011, 2016.
Wu, Y., Cheng, T. H., Zheng, L. J., and Chen, H.: Sensitivity of mixing states on optical properties of fresh secondary organic carbon aerosols, J. Quant. Spectrosc. Radiat. Transf., 195, 147–155, https://doi.org/10.1016/j.jqsrt.2017.01.013, 2017.
Xu, X., Zhao, W., Zhang, Q., Wang, S., Fang, B., Chen, W., Venables, D. S., Wang, X., Pu, W., Wang, X., Gao, X., and Zhang, W.: Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign, Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, 2016.
Xu, X., Zhao, W., Qian, X., Wang, S., Fang, B., Zhang, Q., Zhang, W., Venables, D. S., Chen, W., Huang, Y., Deng, X., Wu, B., Lin, X., Zhao, S., and Tong, Y.: The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo, Atmos. Chem. Phys., 18, 16829–16844, https://doi.org/10.5194/acp-18-16829-2018, 2018.
Yin, J. Y. and Liu, L. H.: Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere, J. Quant. Spectrosc. Radiat. Transf., 111, 2115–2126, https://doi.org/10.1016/j.jqsrt.2010.05.016, 2010.
Zhang, J., Wang, Y. Y., Teng, X. M., Liu, L., Xu, Y. S., Ren, L. H., Shi, Z. B., Zhang, Y., Jiang, J. K., Liu, D. T., Hu, M., Shao, L. Y., Chen, J. M., Martin, S. T., Zhang, X. Y., and Li, W. J.: Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols, Communications Earth & Environment, 3, 9, https://doi.org/10.1038/s43247-022-00462-1, 2022.
Zhang, J., Li, W. J., Wang, Y. Y., Teng, X. M., Zhang, Y. X., Xu, L., Yuan, Q., Wu, G. F., Niu, H. Y., and Shao, L. Y.: Structural Collapse and Coating Composition Changes of Soot Particles During Long-Range Transport, J. Geophys. Res.-Atmos., 128, 13, https://doi.org/10.1029/2023jd038871, 2023.
Zhang, X., Mao, M., and Yin, Y.: Optically effective complex refractive index of coated black carbon aerosols: from numerical aspects, Atmos. Chem. Phys., 19, 7507–7518, https://doi.org/10.5194/acp-19-7507-2019, 2019a.
Zhang, Y., Li, M., Cheng, Y., Geng, G., Hong, C., Li, H., Li, X., Tong, D., Wu, N., Zhang, X., Zheng, B., Zheng, Y., Bo, Y., Su, H., and Zhang, Q.: Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing, Atmos. Chem. Phys., 19, 9663–9680, https://doi.org/10.5194/acp-19-9663-2019, 2019c.
Zhang, X. L., Huang, Y. B., Rao, R. Z., and Wang, Z. E.: Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer, Opt. Express, 21, 17849–17862, https://doi.org/10.1364/oe.21.017849, 2013.
Zhang, X. L., Mao, M., Yin, Y., and Wang, B.: Numerical Investigation on Absorption Enhancement of Black Carbon Aerosols Partially Coated With Nonabsorbing Organics, J. Geophys. Res.-Atmos., 123, 1297–1308, https://doi.org/10.1002/2017jd027833, 2018.
Zhang, X. L., Jiang, H., Mao, M., and Yin, Y.: Does optically effective complex refractive index of internal-mixed aerosols have a physically-based meaning?, Opt. Express, 27, A1216–A1224, https://doi.org/10.1364/oe.27.0a1216, 2019b.
Zhang, X. L., Mao, M., and Chen, H. B.: Characterization of optically effective complex refractive index of black carbon composite aerosols, J. Atmos. Sol.-Terr. Phys., 198, 8, https://doi.org/10.1016/j.jastp.2019.105180, 2020.
Zhao, W., Xu, X., Dong, M., Chen, W., Gu, X., Hu, C., Huang, Y., Gao, X., Huang, W., and Zhang, W.: Development of a cavity-enhanced aerosol albedometer, Atmos. Meas. Tech., 7, 2551–2566, https://doi.org/10.5194/amt-7-2551-2014, 2014.
Zhao, G., Tan, T., Zhao, W., Guo, S., Tian, P., and Zhao, C.: A new parameterization scheme for the real part of the ambient urban aerosol refractive index, Atmos. Chem. Phys., 19, 12875–12885, https://doi.org/10.5194/acp-19-12875-2019, 2019.
Zhao, G., Li, F., and Zhao, C. S.: Determination of the refractive index of ambient aerosols, Atmos. Environ., 240, 9, https://doi.org/10.1016/j.atmosenv.2020.117800, 2020.
Zhao, G., Hu, M., Fang, X., Tan, T. Y., Xiao, Y., Du, Z. F., Zheng, J., Shang, D. J., Wu, Z. J., Guo, S., and Zhao, C. S.: Larger than expected variation range in the real part of the refractive index for ambient aerosols in China, Sci. Total Environ., 779, 9, https://doi.org/10.1016/j.scitotenv.2021.146443, 2021.
Zhao, P. S., Ge, S. S., Su, J., Ding, J., and Kuang, Y.: Relative Humidity Dependence of Hygroscopicity Parameter of Ambient Aerosols, J. Geophys. Res.-Atmos., 127, 10, https://doi.org/10.1029/2021jd035647, 2022.
Zhou, J., Xu, X., Zhao, W., Fang, B., Liu, Q., Cai, Y., Zhang, W., Venables, D. S., and Chen, W.: Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer, Atmos. Meas. Tech., 13, 2623–2634, https://doi.org/10.5194/amt-13-2623-2020, 2020.
Zong, R. R., Weng, F. Z., Bi, L., Lin, X. B., Rao, C., and Li, W. J.: Impact of hematite on dust absorption at wavelengths ranging from 0.2 to 1.0 µ: an evaluation of literature data using the T-matrix method, Opt. Express, 29, 17405–17427, https://doi.org/10.1364/oe.427611, 2021.
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the...
Altmetrics
Final-revised paper
Preprint