Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9137-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-9137-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ozone and water vapor variability in the polar middle atmosphere observed with ground-based microwave radiometers
Institute of Applied Physics, University of Bern, Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
Witali Krochin
Institute of Applied Physics, University of Bern, Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
Eric Sauvageat
Institute of Applied Physics, University of Bern, Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
Gunter Stober
Institute of Applied Physics, University of Bern, Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2024-65, https://doi.org/10.5194/egusphere-2024-65, 2024
Short summary
Short summary
In our study, we investigated ozone anomalies over polar regions during SSW and FSW events with ground-based microwave radiometers at polar latitudes, comparing them with reanalysis and satellite data. We document the underlying dynamical and chemical mechanisms that are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Li Dong, Hairu Ding, Guochun Shi, and Stephen J. Colucci
EGUsphere, https://doi.org/10.5194/egusphere-2022-1038, https://doi.org/10.5194/egusphere-2022-1038, 2022
Preprint archived
Short summary
Short summary
This paper investigated the spatial and temporal variations of static stability prior to blocking onsets. It quantified the relative contributions of static stability versus absolute vorticity in that processes. Based on the budget analysis, the decreasing static stability is found to be taken into account by the roles of horizontal advection, vertical advection, stretching effect and diabatic heating. In particular, the indirect effect of diabatic heating assumes an important role.
Florian Günzkofer, Gunter Stober, Johan Kero, David R. Themens, Njål Gulbrandsen, Masaki Tsutsumi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2024-2708, https://doi.org/10.5194/egusphere-2024-2708, 2024
Short summary
Short summary
The Earth’s magnetic field is not closed at high latitudes. Electrically charged particles can penetrate the Earth’s atmosphere, deposit their energy, and heat the local atmosphere-ionosphere. This presumably causes an upwelling of the neutral atmosphere which affects the atmosphere-ionosphere coupling. We apply a new analysis technique to infer the atmospheric density from incoherent scatter radar measurements. We show qualitatively how particle precipitation affects the neutral atmosphere.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474, https://doi.org/10.5194/egusphere-2024-2474, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle atmosphere water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13 year long dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2024-65, https://doi.org/10.5194/egusphere-2024-65, 2024
Short summary
Short summary
In our study, we investigated ozone anomalies over polar regions during SSW and FSW events with ground-based microwave radiometers at polar latitudes, comparing them with reanalysis and satellite data. We document the underlying dynamical and chemical mechanisms that are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Eric Sauvageat, Klemens Hocke, Eliane Maillard Barras, Shengyi Hou, Quentin Errera, Alexander Haefele, and Axel Murk
Atmos. Chem. Phys., 23, 7321–7345, https://doi.org/10.5194/acp-23-7321-2023, https://doi.org/10.5194/acp-23-7321-2023, 2023
Short summary
Short summary
In Switzerland, two microwave radiometers can measure continuous ozone profiles in the middle atmosphere. From these instruments, we can study the diurnal variation of ozone, which is difficult to observe otherwise. It is valuable to validate the model simulations of diurnal variations in this region. We present results obtained during the last decade and compare them against various models. For the first time, we also show that the winter diurnal variations have some short-term fluctuations.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Eric Sauvageat, Eliane Maillard Barras, Klemens Hocke, Alexander Haefele, and Axel Murk
Atmos. Meas. Tech., 15, 6395–6417, https://doi.org/10.5194/amt-15-6395-2022, https://doi.org/10.5194/amt-15-6395-2022, 2022
Short summary
Short summary
We present new harmonized ozone time series from two ground-based microwave radiometers in Switzerland. The new series consist of hourly ozone profiles in the middle atmosphere (~ 20–70 km) from 2009 until 2021. Cross-validation of the new data series shows the benefit of the harmonization process compared to the previous versions. Comparisons with collocated satellite observations is used to further validate these time series for long-term ozone monitoring over central Europe.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Li Dong, Hairu Ding, Guochun Shi, and Stephen J. Colucci
EGUsphere, https://doi.org/10.5194/egusphere-2022-1038, https://doi.org/10.5194/egusphere-2022-1038, 2022
Preprint archived
Short summary
Short summary
This paper investigated the spatial and temporal variations of static stability prior to blocking onsets. It quantified the relative contributions of static stability versus absolute vorticity in that processes. Based on the budget analysis, the decreasing static stability is found to be taken into account by the roles of horizontal advection, vertical advection, stretching effect and diabatic heating. In particular, the indirect effect of diabatic heating assumes an important role.
Witali Krochin, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022, https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Short summary
This study leverages atmospheric temperature measurements performed with a ground-based radiometer making use of data that was collected during a 4-year observational campaign applying a new retrieval algorithm that improves the maximal altitude range from 45 to 55 km. The measurements are validated against two independent data sets, MERRA2 reanalysis data and the meteorological analysis of NAVGEM-HA.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, https://doi.org/10.5194/amt-14-7693-2021, 2021
Short summary
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Gunter Stober, Kathrin Baumgarten, John P. McCormack, Peter Brown, and Jerry Czarnecki
Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, https://doi.org/10.5194/acp-20-11979-2020, 2020
Short summary
Short summary
This paper presents a first cross-comparison of meteor ground-based observations and a meteorological analysis (NAVGEM-HA) to compare a seasonal climatology of winds and temperatures at the mesosphere/lower thermosphere. The validation is insofar unique as we not only compare the mean state but also provide a detailed comparison of the short time variability of atmospheric tidal waves. Our analysis questions previous results claiming the importance of lunar tides.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Eric Sauvageat, Yanick Zeder, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Thomas Konzelmann, Gian Lieberherr, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, https://doi.org/10.5194/amt-13-1539-2020, 2020
Short summary
Short summary
We present the first validation of the only operational automatic pollen monitoring system based on holography, the Swisens Poleno. The device produces real-time images of coarse aerosols, and by applying a machine learning algorithm we identify a range of pollen taxa with accuracy >90 %. The device was further validated in controlled chamber experiments to verify the counting ability and the performance of additional fluorescence measurements, which can further be used in pollen identification.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Sven Wilhelm, Gunter Stober, and Peter Brown
Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019, https://doi.org/10.5194/angeo-37-851-2019, 2019
Short summary
Short summary
We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere made over the last 2 decades for the northern-latitude locations of Andenes, Juliusruh, and Tavistock. The observations are based on meteor wind measurements and further include the long-term variability of winds, tides, and the kinetic energy of gravity waves and planetary waves. Furthermore, the influence on an 11-year oscillation on the winds and tides is presented.
Kathrin Baumgarten and Gunter Stober
Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, https://doi.org/10.5194/angeo-37-581-2019, 2019
Short summary
Short summary
The paper presents the variability in thermal tides in the middle atmosphere from temperature observations as well as from horizontal wind data using a new diagnostic approach which takes into account a possible intermittency of tides. The data are analyzed from a local as well as from a global perspective to distinguish between different tidal modes. Surprisingly, there are dominating tidal modes, which are seen in the local data, and a phase relation between temperature and winds is evaluated.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Nikoloz Gudadze, Gunter Stober, and Jorge L. Chau
Atmos. Chem. Phys., 19, 4485–4497, https://doi.org/10.5194/acp-19-4485-2019, https://doi.org/10.5194/acp-19-4485-2019, 2019
Short summary
Short summary
We show a possibility of measuring mean vertical winds during the summer months using polar mesosphere summer echo (PMSE) observations. Middle Atmosphere Alomar Radar System observations of PMSE five-beam radial velocities are analysed to obtain the results. We found that sampling issues are the reason for bias in vertical wind measurements at the edges of PMSE altitudes. However, the PMSE is a good tracer for the mean vertical wind estimation at the central altitudes with its peak occurrence.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891–4907, https://doi.org/10.5194/amt-11-4891-2018, https://doi.org/10.5194/amt-11-4891-2018, 2018
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Dimitry Pokhotelov, Erich Becker, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 36, 825–830, https://doi.org/10.5194/angeo-36-825-2018, https://doi.org/10.5194/angeo-36-825-2018, 2018
Short summary
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Short summary
OH*-spectrometer measurements allow the analysis of gravity wave ground-based periods, but spatial information cannot necessarily be deduced. We combine the approach of Wachter at al. (2015) in order to derive horizontal wavelengths (but based on only one OH* spectrometer) with additional information about wind and temperature and compute vertical wavelengths. Knowledge of these parameters is a precondition for the calculation of further information such as the wave group velocity.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Qiang Li, Markus Rapp, Gunter Stober, and Ralph Latteck
Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, https://doi.org/10.5194/angeo-36-577-2018, 2018
Short summary
Short summary
With the powerful MAARSY radar, we detected 3D wind fields and the vertical winds show a non-Gaussian distribution. We further obtained the frequency spectrum of vertical wind. The distribution of the spectral slopes under different wind conditions is derived and their comparisons with the background horizontal winds show that the spectra become steeper with increasing wind velocities under quiet conditions, approach a slope of −5/3 at 10 m/s and then maintain this slope for even stronger winds.
Sven Wilhelm, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, https://doi.org/10.5194/angeo-35-893-2017, 2017
Short summary
Short summary
A comparison between winds and tides in the mesosphere and lower thermosphere based on measurements from a meteor radar (MR) and a medium-frequency radar in northern Norway was done to estimate potential biases between the two systems. Our results indicate reasonable agreement for the zonal and meridional wind components between 78 and 92 km. Based on these findings, we have taken the MR data as a reference and thus construct a consistent and homogenous wind from approximately 60 to 110 km.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209–1229, https://doi.org/10.5194/angeo-34-1209-2016, https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Short summary
Turbulence is an essential process in the atmosphere and ocean. Clear-air turbulence is a well-known threat for the safety of aviation. Using a powerful MST radar, we detected turbulence and compared it with the results from radiosondes. The correlation between turbulence and background conditions, e.g., Richardson number and wind shears, is determined. There is a nearly negative correlation between turbulence and Richardson number independent of the length scale over which it was calculated.
Ch. Jacobi, N. Samtleben, and G. Stober
Adv. Radio Sci., 14, 169–174, https://doi.org/10.5194/ars-14-169-2016, https://doi.org/10.5194/ars-14-169-2016, 2016
Short summary
Short summary
VHF meteor radar observations of mesosphere/lower thermosphere daily temperatures have been performed at Collm, Germany. The data have been analyzed with respect to long-period oscillations at time scales of 2 to 30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The results are comparable with analyses from radar wind measurements.
Juha Vierinen, Jorge L. Chau, Nico Pfeffer, Matthias Clahsen, and Gunter Stober
Atmos. Meas. Tech., 9, 829–839, https://doi.org/10.5194/amt-9-829-2016, https://doi.org/10.5194/amt-9-829-2016, 2016
Short summary
Short summary
This paper describes the use of pseudorandom coded continuous wave radar transmissions for meteor radar. This avoids range-aliased echoes, maximizes pulse compression gain, is less susceptible to RFI, allows time resolution to be changed flexibly, and enables multiple transmitters to operate on the same frequency without interfering each other. These features make the radar well suited for multi-static meteor radar networks. We show results from a measurement campaign to demonstrate the method.
T. Renkwitz, C. Schult, R. Latteck, and G. Stober
Adv. Radio Sci., 13, 41–48, https://doi.org/10.5194/ars-13-41-2015, https://doi.org/10.5194/ars-13-41-2015, 2015
S. Sommer, G. Stober, J. L. Chau, and R. Latteck
Adv. Radio Sci., 12, 197–203, https://doi.org/10.5194/ars-12-197-2014, https://doi.org/10.5194/ars-12-197-2014, 2014
G. Stober, S. Sommer, M. Rapp, and R. Latteck
Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, https://doi.org/10.5194/amt-6-2893-2013, 2013
C. Schult, G. Stober, J. L. Chau, and R. Latteck
Ann. Geophys., 31, 1843–1851, https://doi.org/10.5194/angeo-31-1843-2013, https://doi.org/10.5194/angeo-31-1843-2013, 2013
V. Matthias, P. Hoffmann, A. Manson, C. Meek, G. Stober, P. Brown, and M. Rapp
Ann. Geophys., 31, 1397–1415, https://doi.org/10.5194/angeo-31-1397-2013, https://doi.org/10.5194/angeo-31-1397-2013, 2013
G. Stober, C. Schult, C. Baumann, R. Latteck, and M. Rapp
Ann. Geophys., 31, 473–487, https://doi.org/10.5194/angeo-31-473-2013, https://doi.org/10.5194/angeo-31-473-2013, 2013
T. Dunker, U.-P. Hoppe, G. Stober, and M. Rapp
Ann. Geophys., 31, 61–73, https://doi.org/10.5194/angeo-31-61-2013, https://doi.org/10.5194/angeo-31-61-2013, 2013
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, https://doi.org/10.5194/angeo-30-1661-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
South Pole Station ozonesondes: variability and trends in the springtime Antarctic ozone hole 1986–2021
Global seasonal distribution of CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere
Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016
Comparison of inorganic chlorine in the Antarctic and Arctic lowermost stratosphere by separate late winter aircraft measurements
Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: insights into the transport pathways and total bromine
GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites
Mixing at the extratropical tropopause as characterized by collocated airborne H2O and O3 lidar observations
Gravitational separation of Ar∕N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model
Effect of deep convection on the tropical tropopause layer composition over the southwest Indian Ocean during austral summer
Investigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11
Bromine from short-lived source gases in the extratropical northern hemispheric upper troposphere and lower stratosphere (UTLS)
Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017
Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016
EuBrewNet – A European Brewer network (COST Action ES1207), an overview
Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance
Continued increase of CFC-113a (CCl3CF3) mixing ratios in the global atmosphere: emissions, occurrence and potential sources
Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials
Water vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns
A refined method for calculating equivalent effective stratospheric chlorine
Hemispheric asymmetry in stratospheric NO2 trends
Mean age of stratospheric air derived from AirCore observations
Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection
An assessment of the climatological representativeness of IAGOS-CARIBIC trace gas measurements using EMAC model simulations
Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
20 years of ClO measurements in the Antarctic lower stratosphere
Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012
An objective determination of optimal site locations for detecting expected trends in upper-air temperature and total column ozone
First quasi-Lagrangian in situ measurements of Antarctic Polar springtime ozone: observed ozone loss rates from the Concordiasi long-duration balloon campaign
Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere
Diurnal variations of stratospheric ozone measured by ground-based microwave remote sensing at the Mauna Loa NDACC site: measurement validation and GEOSCCM model comparison
Trends in stratospheric ozone profiles using functional mixed models
Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results
Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012
Atmospheric test of the J(BrONO2)/kBrO+NO2 ratio: implications for total stratospheric Bry and bromine-mediated ozone loss
Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer
Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases
Detection in the summer polar stratosphere of pollution plume from East Asia and North America by balloon-borne in situ CO measurements
Commentary on using equivalent latitude in the upper troposphere and lower stratosphere
Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011
ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight
In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere
Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
Evidence for heterogeneous chlorine activation in the tropical UTLS
A closer look at Arctic ozone loss and polar stratospheric clouds
Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species
Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere
More evidence for very short-lived substance contribution to stratospheric chlorine inferred from HCl balloon-borne in situ measurements in the tropics
Bryan J. Johnson, Patrick Cullis, John Booth, Irina Petropavlovskikh, Glen McConville, Birgit Hassler, Gary A. Morris, Chance Sterling, and Samuel Oltmans
Atmos. Chem. Phys., 23, 3133–3146, https://doi.org/10.5194/acp-23-3133-2023, https://doi.org/10.5194/acp-23-3133-2023, 2023
Short summary
Short summary
In 1986, soon after the discovery of the Antarctic ozone hole, NOAA began year-round ozonesonde observations at South Pole Station to measure vertical profiles of ozone and temperature from the surface to 35 km. Balloon-borne ozonesondes launched at this unique site allow for tracking all phases of the yearly springtime ozone hole beginning in late winter and after sunrise, when rapid ozone depletion begins over the South Pole throughout the month of September.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021, https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Short summary
This study presents and compares inorganic chlorine (Cly) derived from observations with the HALO research aircraft in the Antarctic late winter–early fall 2019 and the Arctic winter 2015–2016. Trend-corrected correlations from the Northern Hemisphere show excellent agreement with those from the Southern Hemisphere. After observation allocation inside and outside the vortex based on N2O measurements, results of the two campaigns reveal substantial differences in Cly within the respective vortex.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Short summary
Measurements of total ozone and effective cloud transmittance (eCLT) have been performed since 1995 at three Norwegian sites with GUV multi-filter instruments. The unique data sets of high-time-resolution measurements can be used for a broad range of studies. Data analyses reveal an increase in total ozone above Norway from 1995 to 2019. Measurements of GUV eCLT indicate changes in albedo in Ny-Ålesund (Svalbard) during the past 25 years, most likely resulting from increased Arctic ice melt.
Andreas Schäfler, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021, https://doi.org/10.5194/acp-21-5217-2021, 2021
Short summary
Short summary
First-ever, collocated ozone and water vapor lidar observations across the tropopause are applied to investigate the extratropical transition layer (ExTL). The combined view of a quasi-instantaneous cross section and its tracer–tracer depiction allows us to analyze the ExTL shape and composition and the formation of mixing lines in relation to the dynamic situation. Such lidar data are relevant for future upper-tropospheric and lower-stratospheric investigations and model validations.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Timo Keber, Harald Bönisch, Carl Hartick, Marius Hauck, Fides Lefrancois, Florian Obersteiner, Akima Ringsdorf, Nils Schohl, Tanja Schuck, Ryan Hossaini, Phoebe Graf, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 20, 4105–4132, https://doi.org/10.5194/acp-20-4105-2020, https://doi.org/10.5194/acp-20-4105-2020, 2020
Short summary
Short summary
In this paper we summarize observations of short-lived halocarbons in the tropopause region. We show that, especially during winter, the levels of short-lived bromine gases at the extratropical tropopause are higher than at the tropical tropopause. We discuss the impact of the distributions on stratospheric bromine levels and compare our observations to two models with four different emission scenarios.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Johannes Bieser, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Markus Hermann, Bengt G. Martinsson, Peter van Velthoven, Harald Bönisch, Marco Neumaier, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, https://doi.org/10.5194/acp-18-12329-2018, 2018
Short summary
Short summary
Total and elemental mercury were measured in the upper troposphere and lower stratosphere onboard a passenger aircraft. Their concentrations in the upper troposphere were comparable implying low concentrations of oxidized mercury in this region. Large scale seasonally dependent influence of emissions from biomass burning was also observed. Their distributions in the lower stratosphere implies a long stratospheric lifetime, which precludes significant mercury oxidation by ozone.
John S. Rimmer, Alberto Redondas, and Tomi Karppinen
Atmos. Chem. Phys., 18, 10347–10353, https://doi.org/10.5194/acp-18-10347-2018, https://doi.org/10.5194/acp-18-10347-2018, 2018
Short summary
Short summary
The Vienna Convention to Protect the Ozone Layer was signed in 1985 to promote research and information exchange on the science of ozone depletion including monitoring of total ozone column and spectrally resolved solar ultraviolet radiation. This is a global challenge and, as such, all efforts to gather data should be consistent. This work has resulted in a framework for all Brewer Ozone spectrophotometers to provide data in a consistent way in terms of calibration and quality assurance.
Johannes Staehelin, Pierre Viatte, Rene Stübi, Fiona Tummon, and Thomas Peter
Atmos. Chem. Phys., 18, 6567–6584, https://doi.org/10.5194/acp-18-6567-2018, https://doi.org/10.5194/acp-18-6567-2018, 2018
Short summary
Short summary
In 1926, total ozone series started in Arosa (Switzerland). Since the mid-1970s ozone is measured to document the effects of anthropogenic ozone-depleting substances (ODSs). ODSs peaked around the mid-1990s, resulting from the Montreal Protocol (1987) and its enforcement. Chemical ozone depletion stopped worsening around the mid-1990s but the large variability complicates demonstrations of the success of the protocol and the effect of ongoing climate change still requires continuous measurement.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Emma C. Leedham Elvidge, Harald Bönisch, Carl A. M. Brenninkmeijer, Andreas Engel, Paul J. Fraser, Eileen Gallacher, Ray Langenfelds, Jens Mühle, David E. Oram, Eric A. Ray, Anna R. Ridley, Thomas Röckmann, William T. Sturges, Ray F. Weiss, and Johannes C. Laube
Atmos. Chem. Phys., 18, 3369–3385, https://doi.org/10.5194/acp-18-3369-2018, https://doi.org/10.5194/acp-18-3369-2018, 2018
Short summary
Short summary
Chemical species measured in stratospheric air can be used as proxies for stratospheric circulation changes which cannot be measured directly. A range of tracers is important to understand changing stratospheric dynamics. We demonstrate the suitability of PFCs and HFCs as tracers and support recent work that reduces the current stratospheric lifetime of SF6. Updates to policy-relevant parameters (e.g. stratospheric lifetime) linked to this change are provided for O3-depleting substances.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Andreas Engel, Harald Bönisch, Jennifer Ostermöller, Martyn P. Chipperfield, Sandip Dhomse, and Patrick Jöckel
Atmos. Chem. Phys., 18, 601–619, https://doi.org/10.5194/acp-18-601-2018, https://doi.org/10.5194/acp-18-601-2018, 2018
Short summary
Short summary
We present a new method to derive equivalent effective stratospheric chlorine (EESC), which is based on an improved formulation of the propagation of trends of species with chemical loss from the troposphere to the stratosphere. EESC calculated with the new method shows much better agreement with model-derived ESC. Based on this new formulation, we expect the halogen impact on midlatitude stratospheric ozone to return to 1980 values about 10 years later, then using the current formulation.
Margarita Yela, Manuel Gil-Ojeda, Mónica Navarro-Comas, David Gonzalez-Bartolomé, Olga Puentedura, Bernd Funke, Javier Iglesias, Santiago Rodríguez, Omaira García, Héctor Ochoa, and Guillermo Deferrari
Atmos. Chem. Phys., 17, 13373–13389, https://doi.org/10.5194/acp-17-13373-2017, https://doi.org/10.5194/acp-17-13373-2017, 2017
Short summary
Short summary
The paper focuses on stratospheric trends of NO2, a species involved in the ozone equilibrium, using data from four NDACC stations. The global stratospheric NO2 trend has not yet been established conclusively. We analyse DOAS data from stations in the Northern Hemisphere and Southern Hemisphere during 1993–2014. The most relevant finding is the hemispheric asymmetry found in the sign of the NO2 trend, providing further evidence of changes in the stratosphere dynamics on the global scale.
Andreas Engel, Harald Bönisch, Markus Ullrich, Robert Sitals, Olivier Membrive, Francois Danis, and Cyril Crevoisier
Atmos. Chem. Phys., 17, 6825–6838, https://doi.org/10.5194/acp-17-6825-2017, https://doi.org/10.5194/acp-17-6825-2017, 2017
Short summary
Short summary
AirCore is new technique for sampling stratospheric air. We present new observations of CO2 and CH4 using AirCore and derive stratospheric transport time, called the mean age of air. The purpose of using AirCore is to provide a cost-effective tool for deriving mean age. Mean age may serve as a proxy to investigate changes in stratospheric circulation. We show that there is no statistically significant trend in our 40-year time series of mean age, which is now extended using AirCore.
Robert L. Herman, Eric A. Ray, Karen H. Rosenlof, Kristopher M. Bedka, Michael J. Schwartz, William G. Read, Robert F. Troy, Keith Chin, Lance E. Christensen, Dejian Fu, Robert A. Stachnik, T. Paul Bui, and Jonathan M. Dean-Day
Atmos. Chem. Phys., 17, 6113–6124, https://doi.org/10.5194/acp-17-6113-2017, https://doi.org/10.5194/acp-17-6113-2017, 2017
Short summary
Short summary
This study reports new aircraft field observations of elevated water vapor greater than 10 ppmv in the overworld stratosphere over the summertime continental US. Back trajectories from the flight track intersect overshooting convective tops within the previous 1 to 7 days, suggesting that ice is convectively and irreversibly transported to the stratosphere in the most energetic overshooting convective events. Satellite measurements (Aura MLS) indicate that such events are uncommon (< 1 %).
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Gwenaël Berthet, Fabrice Jégou, Valéry Catoire, Gisèle Krysztofiak, Jean-Baptiste Renard, Adam E. Bourassa, Doug A. Degenstein, Colette Brogniez, Marcel Dorf, Sebastian Kreycy, Klaus Pfeilsticker, Bodo Werner, Franck Lefèvre, Tjarda J. Roberts, Thibaut Lurton, Damien Vignelles, Nelson Bègue, Quentin Bourgeois, Daniel Daugeron, Michel Chartier, Claude Robert, Bertrand Gaubicher, and Christophe Guimbaud
Atmos. Chem. Phys., 17, 2229–2253, https://doi.org/10.5194/acp-17-2229-2017, https://doi.org/10.5194/acp-17-2229-2017, 2017
Short summary
Short summary
Since the last major volcanic event, i.e. the Pinatubo eruption in 1991, only
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016, https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Short summary
Chlorine monoxide (ClO) is central to the formation of the springtime Antarctic ozone hole since it is the catalytic agent in the most important ozone-depleting chemical cycle. We present 20 years of measurements of ClO from the Chlorine monOxide Experiment at Scott Base, Antarctica, and 12 years of measurements from the Aura Microwave Limb Sounder to show that the trends in ClO during the ozone hole season are consistent with changes in stratospheric chlorine observed elsewhere.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
K. Kreher, G. E. Bodeker, and M. Sigmond
Atmos. Chem. Phys., 15, 7653–7665, https://doi.org/10.5194/acp-15-7653-2015, https://doi.org/10.5194/acp-15-7653-2015, 2015
Short summary
Short summary
This manuscript aims to answer the following question: which of the existing sites engaged in upper-air temperature measurements are best located to detect expected future trends within the shortest time possible? To do so, we explore one objective method for selecting the optimal locations for detecting projected 21st century trends and then demonstrate a similar technique for objectively selecting optimal locations for detecting expected future trends in total column ozone.
R. Schofield, L. M. Avallone, L. E. Kalnajs, A. Hertzog, I. Wohltmann, and M. Rex
Atmos. Chem. Phys., 15, 2463–2472, https://doi.org/10.5194/acp-15-2463-2015, https://doi.org/10.5194/acp-15-2463-2015, 2015
Short summary
Short summary
Ozone measurements onboard three Concordiasi balloons flown in the stratosphere in
the Antarctic spring of 2010 are presented. These measurements are the first long-duration in situ measurements of Antarctic springtime stratospheric ozone. By matching air parcels, ozone loss rates where derived. Downwind of the Antarctic Peninsula, very large ozone losses of up to 230 ppb per day or 16 ppbv per sunlit hour were observed. These high rates are consistent with almost complete chlorine activation.
L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker
Atmos. Chem. Phys., 14, 9555–9566, https://doi.org/10.5194/acp-14-9555-2014, https://doi.org/10.5194/acp-14-9555-2014, 2014
A. Parrish, I. S. Boyd, G. E. Nedoluha, P. K. Bhartia, S. M. Frith, N. A. Kramarova, B. J. Connor, G. E. Bodeker, L. Froidevaux, M. Shiotani, and T. Sakazaki
Atmos. Chem. Phys., 14, 7255–7272, https://doi.org/10.5194/acp-14-7255-2014, https://doi.org/10.5194/acp-14-7255-2014, 2014
A. Park, S. Guillas, and I. Petropavlovskikh
Atmos. Chem. Phys., 13, 11473–11501, https://doi.org/10.5194/acp-13-11473-2013, https://doi.org/10.5194/acp-13-11473-2013, 2013
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
B. J. Connor, T. Mooney, G. E. Nedoluha, J. W. Barrett, A. Parrish, J. Koda, M. L. Santee, and R. M. Gomez
Atmos. Chem. Phys., 13, 8643–8650, https://doi.org/10.5194/acp-13-8643-2013, https://doi.org/10.5194/acp-13-8643-2013, 2013
S. Kreycy, C. Camy-Peyret, M. P. Chipperfield, M. Dorf, W. Feng, R. Hossaini, L. Kritten, B. Werner, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 6263–6274, https://doi.org/10.5194/acp-13-6263-2013, https://doi.org/10.5194/acp-13-6263-2013, 2013
R. A. Stachnik, L. Millán, R. Jarnot, R. Monroe, C. McLinden, S. Kühl, J. Puķīte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J. P. Pommereau, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 3307–3319, https://doi.org/10.5194/acp-13-3307-2013, https://doi.org/10.5194/acp-13-3307-2013, 2013
J. C. Laube, A. Keil, H. Bönisch, A. Engel, T. Röckmann, C. M. Volk, and W. T. Sturges
Atmos. Chem. Phys., 13, 2779–2791, https://doi.org/10.5194/acp-13-2779-2013, https://doi.org/10.5194/acp-13-2779-2013, 2013
G. Krysztofiak, R. Thiéblemont, N. Huret, V. Catoire, Y. Té, F. Jégou, P. F. Coheur, C. Clerbaux, S. Payan, M. A. Drouin, C. Robert, P. Jeseck, J.-L. Attié, and C. Camy-Peyret
Atmos. Chem. Phys., 12, 11889–11906, https://doi.org/10.5194/acp-12-11889-2012, https://doi.org/10.5194/acp-12-11889-2012, 2012
L. L. Pan, A. Kunz, C. R. Homeyer, L. A. Munchak, D. E. Kinnison, and S. Tilmes
Atmos. Chem. Phys., 12, 9187–9199, https://doi.org/10.5194/acp-12-9187-2012, https://doi.org/10.5194/acp-12-9187-2012, 2012
R. Lindenmaier, K. Strong, R. L. Batchelor, M. P. Chipperfield, W. H. Daffer, J. R. Drummond, T. J. Duck, H. Fast, W. Feng, P. F. Fogal, F. Kolonjari, G. L. Manney, A. Manson, C. Meek, R. L. Mittermeier, G. J. Nott, C. Perro, and K. A. Walker
Atmos. Chem. Phys., 12, 3821–3835, https://doi.org/10.5194/acp-12-3821-2012, https://doi.org/10.5194/acp-12-3821-2012, 2012
O. Sumińska-Ebersoldt, R. Lehmann, T. Wegner, J.-U. Grooß, E. Hösen, R. Weigel, W. Frey, S. Griessbach, V. Mitev, C. Emde, C. M. Volk, S. Borrmann, M. Rex, F. Stroh, and M. von Hobe
Atmos. Chem. Phys., 12, 1353–1365, https://doi.org/10.5194/acp-12-1353-2012, https://doi.org/10.5194/acp-12-1353-2012, 2012
A. Roiger, H. Schlager, A. Schäfler, H. Huntrieser, M. Scheibe, H. Aufmhoff, O. R. Cooper, H. Sodemann, A. Stohl, J. Burkhart, M. Lazzara, C. Schiller, K. S. Law, and F. Arnold
Atmos. Chem. Phys., 11, 10975–10994, https://doi.org/10.5194/acp-11-10975-2011, https://doi.org/10.5194/acp-11-10975-2011, 2011
S. Kremser, R. Schofield, G. E. Bodeker, B. J. Connor, M. Rex, J. Barret, T. Mooney, R. J. Salawitch, T. Canty, K. Frieler, M. P. Chipperfield, U. Langematz, and W. Feng
Atmos. Chem. Phys., 11, 5183–5193, https://doi.org/10.5194/acp-11-5183-2011, https://doi.org/10.5194/acp-11-5183-2011, 2011
M. von Hobe, J.-U. Grooß, G. Günther, P. Konopka, I. Gensch, M. Krämer, N. Spelten, A. Afchine, C. Schiller, A. Ulanovsky, N. Sitnikov, G. Shur, V. Yushkov, F. Ravegnani, F. Cairo, A. Roiger, C. Voigt, H. Schlager, R. Weigel, W. Frey, S. Borrmann, R. Müller, and F. Stroh
Atmos. Chem. Phys., 11, 241–256, https://doi.org/10.5194/acp-11-241-2011, https://doi.org/10.5194/acp-11-241-2011, 2011
N. R. P. Harris, R. Lehmann, M. Rex, and P. von der Gathen
Atmos. Chem. Phys., 10, 8499–8510, https://doi.org/10.5194/acp-10-8499-2010, https://doi.org/10.5194/acp-10-8499-2010, 2010
S. Park, E. L. Atlas, R. Jiménez, B. C. Daube, E. W. Gottlieb, J. Nan, D. B. A. Jones, L. Pfister, T. J. Conway, T. P. Bui, R.-S. Gao, and S. C. Wofsy
Atmos. Chem. Phys., 10, 6669–6684, https://doi.org/10.5194/acp-10-6669-2010, https://doi.org/10.5194/acp-10-6669-2010, 2010
J. C. Laube, A. Engel, H. Bönisch, T. Möbius, W. T. Sturges, M. Braß, and T. Röckmann
Atmos. Chem. Phys., 10, 1093–1103, https://doi.org/10.5194/acp-10-1093-2010, https://doi.org/10.5194/acp-10-1093-2010, 2010
Y. Mébarki, V. Catoire, N. Huret, G. Berthet, C. Robert, and G. Poulet
Atmos. Chem. Phys., 10, 397–409, https://doi.org/10.5194/acp-10-397-2010, https://doi.org/10.5194/acp-10-397-2010, 2010
Cited articles
Andrews, D. and Mcintyre, M. E.: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci., 33, 2031–2048, 1976. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021. a
Bazhenov, O.: Increased humidity in the stratosphere as a possible factor of
ozone destruction in the Arctic during the spring 2011 using Aura MLS
observations, Int. J. Remote Sens., 40, 3448–3460, 2019. a
Becker, E.: Dynamical Control of the Middle Atmosphere, Space Sci. Rev., 168, 283–314, https://doi.org/10.1007/s11214-011-9841-5, 2012. a
Becker, E. and Fritts, D. C.: Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002, Ann. Geophys., 24, 1175–1188, https://doi.org/10.5194/angeo-24-1175-2006, 2006. a
Bernet, L., Boyd, I., Nedoluha, G., Querel, R., Swart, D., and Hocke, K.:
Validation and Trend Analysis of Stratospheric Ozone Data from Ground-Based
Observations at Lauder, New Zealand, Remote Sens., 13, 1–15,
https://doi.org/10.3390/rs13010109, 2021. a
Brewer, A.: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949. a
Brinksma, E. J., Swart, D. P. J., Bergwerff, J. B., Meijer, Y. J., and Ormel,
F. T.: RIVM Stratospheric Ozone Lidar at NDSC Station Lauder: Routine
Measurements and Validation During the OPAL Campaign, in: Advances in
Atmospheric Remote Sensing with Lidar, edited by: Ansmann, A., Neuber, R.,
Rairoux, P., and Wandinger, U., Springer Berlin Heidelberg,
Berlin, Heidelberg, 529–532, 1997. a
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017. a, b, c, d
de Wit, R. J., Hibbins, R. E., Espy, P. J., and Hennum, E. A.: Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming, Ann. Geophys., 33, 309–319, https://doi.org/10.5194/angeo-33-309-2015, 2015. a
Dobson, G. M. B.: Origin and distribution of the polyatomic molecules in the atmosphere, P. Roy. Soc. Lond. A Mat., 236, 187–193, 1956. a
Eckstein, J., Ruhnke, R., Zahn, A., Neumaier, M., Kirner, O., and Braesicke, P.: An assessment of the climatological representativeness of IAGOS-CARIBIC trace gas measurements using EMAC model simulations, Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, 2017. a
Eriksson, P., Jiménez, C., and Buehler, S. A.: Qpack, a general tool for instrument simulation and retrieval work, J. Quant. Spectrosc. Ra., 91, 47–64, https://doi.org/10.1016/j.jqsrt.2004.05.050, 2005. a, b
Eriksson, P., Buehler, S., Davis, C., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011. a, b
Espy, P. J., Ochoa Fernández, S., Forkman, P., Murtagh, D., and Stegman, J.: The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures, Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, 2011. a
Fernandez, S., Murk, A., and Kämpfer, N.: GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns, Atmos. Meas. Tech., 8, 2649–2662, https://doi.org/10.5194/amt-8-2649-2015, 2015. a, b
Flury, T., Hocke, K., Haefele, A., Kämpfer, N., and Lehmann, R.: Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming, J. Geophys. Res.-Atmos., 114, 7903–7914, https://doi.org/10.1029/2009JD011940, 2009. a
Forkman, P., Eriksson, P., Murtagh, D., and Espy, P.: Observing the vertical
branch of the mesospheric circulation at latitude 60 N using ground-based
measurements of CO and H2O, J. Geophys. Res.-Atmos.,
110, D05107, https://doi.org/10.1029/2004JD004916, 2005. a
Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex?, J. Atmos. Sci., 69, 1713–1733, 2012. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. da, Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017. a, b, c
Global Modeling and Assimilation Office (GMAO): MERRA-2 inst3_3d_asm_Nv: 3d,3-Hourly,Instantaneous,Model-Level,Assimilation,Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/WWQSXQ8IVFW8, 2015a. a
Global Modeling and Assimilation Office (GMAO): MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly,Instantaneous,Pressure-Level,Assimilation,Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/QBZ6MG944HW0, 2015b. a
Graf, M., Scheidegger, P., Kupferschmid, A., Looser, H., Peter, T., Dirksen, R., Emmenegger, L., and Tuzson, B.: Compact and lightweight mid-infrared laser spectrometer for balloon-borne water vapor measurements in the UTLS, Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, 2021. a
Inness, A., Chabrillat, S., Flemming, J., Huijnen, V., Langenrock, B., Nicolas, J., Polichtchouk, I., and Razinger, M.: Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis, J. Geophys. Res.-Atmos., 125, e2020JD033563, https://doi.org/10.1029/2020JD033563, 2020. a
Karlsson, B., Körnich, H., and Gumbel, J.: Evidence for interhemispheric stratosphere-mesosphere coupling derived from noctilucent cloud properties, Geophys. Res. Lett., 34, L16806, https://doi.org/10.1029/2007GL030282, 2007. a
Knowland, K. E., Keller, C. A., Wales, P. A., Wargan, K., Coy, L., Johnson,
M. S., Liu, J., Lucchesi, R. A., Eastham, S. D., Fleming, E., Liang, Q., Leblanc, T., Livesey, N. J., Walker, K. A., Ott, L. E., and Pawson, S.: NASA
GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric
Composition, J. Adv. Model. Earth Sy., 14, e2021MS002852, https://doi.org/10.1029/2021MS002852, 2022. a, b
Körnich, H. and Becker, E.: A simple model for the interhemispheric
coupling of the middle atmosphere circulation, Adv. Space Res.,
45, 661–668, 2010. a
Lambert, A., Read, W., and Livesey, N.: MLS/Aura Level 2 Water Vapor (H2O) Mixing Ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/MLS/DATA2009, 2015. a
Langematz, U.: Stratospheric ozone: down and up through the anthropocene,
ChemTexts, 5, 1–12, 2019. a
Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H., and Nash, E. R.: The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss, J. Geophys. Res.-Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271
2020. a, b
Lee, J. N., Wu, D. L., Manney, G. L., Schwartz, M. J., Lambert, A., Livesey,
N. J., Minschwaner, K. R., Pumphrey, H. C., and Read, W. G.: Aura Microwave
Limb Sounder observations of the polar middle atmosphere: Dynamics and
transport of CO and H2O, J. Geophys. Res.-Atmos., 116, D05110, https://doi.org/10.1029/2010JD014608,
2011. a, b
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause, J. Geophys. Res.-Atmos., 121, 4518–4537, 2016. a
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal
breakdown, J. Geophys. Res.-Oceans, 86, 9707–9714,
https://doi.org/10.1029/JC086iC10p09707, 1981. a
Livesey, N., Van Snyder, W., Read, W., and Wagner, P.: Retrieval algorithms for the EOS Microwave limb sounder (MLS), IEEE T. Geosci. Remote, 44, 1144–1155, https://doi.org/10.1109/TGRS.2006.872327, 2006. a
Lossow, S., Khaplanov, M., Gumbel, J., Stegman, J., Witt, G., Dalin, P., Kirkwood, S., Schmidlin, F. J., Fricke, K. H., and Blum, U.: Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign, Atmos. Chem. Phys., 9, 4407–4417, https://doi.org/10.5194/acp-9-4407-2009, 2009. a
Marsh, D., Smith, A., Brasseur, G., Kaufmann, M., and Grossmann, K.: The existence of a tertiary ozone maximum in the high-latitude middle mesosphere,
Geophys. Res. Lett., 28, 4531–4534, 2001. a
Matsuno, T.: A Dynamical Model of the Stratospheric Sudden Warming, J. Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a
Matthias, V., Dörnbrack, A., and Stober, G.: The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016, Geophys. Res. Lett., 43, 12287–12294, https://doi.org/10.1002/2016GL071676, 2016. a
Matthias, V., Stober, G., Kozlovsky, A., Lester, M., Belova, E., and Kero, J.: Vertical structure of the Arctic spring transition in the middle atmosphere, J. Geophys. Res.-Atmos., 126, e2020JD034353, https://doi.org/10.1029/2020JD034353, 2021. a, b
McConnell, J. C. and Jin, J. J.: Stratospheric ozone chemistry,
Atmos.-Ocean, 46, 69–92, 2008. a
Orsolini, Y. J., Urban, J., Murtagh, D. P., Lossow, S., and Limpasuvan, V.: Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer, J. Geophys. Res.-Atmos., 115, D12305, https://doi.org/10.1029/2009JD013501, 2010. a, b
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A. M., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011. a
Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., and Notholt, J.: Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors, Atmos. Chem. Phys., 18, 1457–1474, https://doi.org/10.5194/acp-18-1457-2018, 2018. a
Scheiben, D., Schanz, A., Tschanz, B., and Kämpfer, N.: Diurnal variations in middle-atmospheric water vapor by ground-based microwave radiometry, Atmos. Chem. Phys., 13, 6877–6886, https://doi.org/10.5194/acp-13-6877-2013, 2013. a
Scheiben, D., Tschanz, B., Hocke, K., Kämpfer, N., Ka, S., and Oh, J. J.: The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012, Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, 2014. a
Schranz, F., Tschanz, B., Rüfenacht, R., Hocke, K., Palm, M., and Kämpfer, N.: Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund, Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, 2019. a, b, c, d, e
Schranz, F., Hagen, J., Stober, G., Hocke, K., Murk, A., and Kämpfer, N.: Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard, Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, 2020 (data available at: https://ndacc.larc.nasa.gov/stations/ny-alesund-norway). a, b, c, d, e
Schwartz, M., Froidevaux, L., Livesey, N., and Read, W.: MLS/Aura Level 2 Ozone (O3) Mixing Ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/MLS/DATA2017, 2015a. a
Schwartz, M., Froidevaux, L., Livesey, N., and Read, W.: MLS/Aura Level 2 Temperature V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/MLS/DATA2021, 2015b. a
Schwartz, M., Froidevaux, L., Livesey, N., and Read, W.: MLS/Aura Level 2 Ozone (O3) Mixing Ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/MLS/DATA2516, 2020. a
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019. a
Shepherd, T. G.: Dynamics, stratospheric ozone, and climate change,
Atmos.-Ocean, 46, 117–138, 2008. a
Sica, R. J. and Haefele, A.: Retrieval of temperature from a multiple-channel
Rayleigh-scatter lidar using an optimal estimation method, Appl. Opt., 54,
1872–1889, https://doi.org/10.1364/AO.54.001872, 2015. a
Sica, R. J. and Haefele, A.: Retrieval of water vapor mixing ratio from a
multiple channel Raman-scatter lidar using an optimal estimation method,
Appl. Opt., 55, 763–777, https://doi.org/10.1364/AO.55.000763, 2016. a
Smith, A., López-Puertas, M., García-Comas, M., and Tukiainen, S.:
SABER observations of mesospheric ozone during NH late winter 2002–2009,
Geophys. Res. Lett., 36, GL040942, https://doi.org/10.1029/2009GL040942, 2009. a
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012. a
Smith, A. K., Espy, P. J., López-Puertas, M., and Tweedy, O. V.: Spatial
and temporal structure of the tertiary ozone maximum in the polar winter
mesosphere, J. Geophys. Res.-Atmos., 123, 4373–4389,
2018. a
Solomon, S., Haskins, J., Ivy, D. J., and Min, F.: Fundamental differences between Arctic and Antarctic ozone depletion, P. Natl. Acad. Sci. USA, 111, 6220–6225, 2014. a
Stober, G., Matthias, V., Jacobi, C., Wilhelm, S., Höffner, J., and Chau, J. L.: Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, 2017. a
Straub, C., Murk, A., and Kämpfer, N.: MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns, Atmos. Meas. Tech., 3, 1271–1285, https://doi.org/10.5194/amt-3-1271-2010, 2010. a, b, c
Straub, C., Tschanz, B., Hocke, K., Kämpfer, N., and Smith, A. K.: Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation, Atmos. Chem. Phys., 12, 5413–5427, https://doi.org/10.5194/acp-12-5413-2012, 2012. a
Tao, M., Konopka, P., Ploeger, F., Yan, X., Wright, J. S., Diallo, M., Fueglistaler, S., and Riese, M.: Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products, Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, 2019. a
Tritscher, I., Pitts, M. C., Poole, L. R., Alexander, S. P., Cairo, F., Chipperfield, M. P., Grooß, J.-U., Höpfner, M., Lambert, A., Luo, B.,
Molleker, S., Orr, A., Salawitch, R., Snels, M., Spang, R., Woiwode, W., and Peter, T.: Polar stratospheric clouds: Satellite observations, processes, and
role in ozone depletion, Rev. Geophys., 59, e2020RG000702, https://doi.org/10.1029/2020RG000702, 2021. a
Tschanz, B., Straub, C., Scheiben, D., Walker, K. A., Stiller, G. P., and Kämpfer, N.: Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C, Atmos. Meas. Tech., 6, 1725–1745, https://doi.org/10.5194/amt-6-1725-2013, 2013. a, b
Waibel, A., Peter, T., Carslaw, K., Oelhaf, H., Wetzel, G., Crutzen, P., Poschl, U., Tsias, A., Reimer, E., and Fischer, H.: Arctic ozone loss due to
denitrification, Science, 283, 2064–2069, 1999. a
Wang, W., Hong, J., Shangguan, M., Wang, H., Jiang, W., and Zhao, S.: Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone, Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, 2022. a
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., and Partyka, G.: Evaluation of the ozone fields in NASA's MERRA-2 reanalysis, J. Climate, 30, 2961–2988, https://doi.org/10.1175/JCLI-D-16-0699.1, 2017. a, b, c, d
Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., Knowland, K. E., Wales, P. A., and Livesey, N. J.: M2-SCREAM: A stratospheric composition reanalysis
of Aura MLS data with MERRA-2 transport, Earth and Space Science, 10,
e2022EA002632, https://doi.org/10.1029/2022EA002632, 2023. a, b
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite, IEEE T. Geosci. Remote, 44, 1075–1092, 2006. a, b
Zahn, A., Christner, E., van Velthoven, P., Rauthe-Schöch, A., and
Brenninkmeijer, C.: Processes controlling water vapor in the upper
troposphere/lowermost stratosphere: An analysis of 8 years of monthly
measurements by the IAGOS-CARIBIC observatory, J. Geophys. Res.-Atmos., 119, 11–505, 2014. a
Zhang, J., Xie, F., Ma, Z., Zhang, C., Xu, M., Wang, T., and Zhang, R.: Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter, J. Geophys. Res.-Atmos., 124, 12568–12586, 2019. a
Zuber, R., Köhler, U., Egli, L., Ribnitzky, M., Steinbrecht, W., and Gröbner, J.: Total ozone column intercomparison of Brewers, Dobsons, and BTS-Solar at Hohenpeißenberg and Davos in 2019/2020, Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, 2021. a
Short summary
We present the interannual and climatological behavior of ozone and water vapor from microwave radiometers in the Arctic.
By defining a virtual conjugate latitude station in the Southern Hemisphere, we investigate altitude-dependent interhemispheric differences and estimate the ascent and descent rates of water vapor in both hemispheres. Ozone and water vapor measurements will create a deeper understanding of the evolution of middle atmospheric ozone and water vapor.
We present the interannual and climatological behavior of ozone and water vapor from microwave...
Altmetrics
Final-revised paper
Preprint