Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of oil and gas methane emissions in the Delaware and Marcellus basins using a network of continuous tower-based measurements
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
Kenneth Davis
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
Natasha Miles
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
Scott Richardson
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
Aijun Deng
Utopus Insights, Inc, Valhalla, NY, USA
Benjamin Hmiel
Environmental Defense Fund, 301 Congress Ave., Suite 1300, Austin, TX, USA
David Lyon
Environmental Defense Fund, 301 Congress Ave., Suite 1300, Austin, TX, USA
Thomas Lauvaux
GSMA, University of Reims-Champagne Ardenne, UMR CNRS 7331, Reims, France
Related authors
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Vanessa C. Monteiro, Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth J. Davis
Earth Syst. Sci. Data, 14, 2401–2417, https://doi.org/10.5194/essd-14-2401-2022, https://doi.org/10.5194/essd-14-2401-2022, 2022
Short summary
Short summary
We describe a network of five ground-based in situ towers, equipped to measure concentrations of methane, carbon dioxide, hydrogen sulfide, and the isotopic ratio of methane, in the Permian Basin, United States. The main goal is to use methane concentrations with atmospheric models to determine methane emissions from one of the Permian sub-basins. These datasets can improve emissions estimations, leading to best practices in the oil and natural gas industry, and policies for emissions reduction.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua DiGangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, and Michael D. Obland
Atmos. Meas. Tech., 13, 6095–6112, https://doi.org/10.5194/amt-13-6095-2020, https://doi.org/10.5194/amt-13-6095-2020, 2020
Short summary
Short summary
The present study describes an autonomously operated instrument for high-precision (20–40 parts per trillion in 1 s) measurements of ethane during actual airborne operations on a small aircraft platform (NASA's King Air B200). This paper discusses the dynamic nature of airborne performance due to various aircraft-induced perturbations, methods devised to identify such events, and solutions we have enacted to circumvent these perturbations.
Jason P. Horne, Scott J. Richardson, Samantha L. Murphy, Helen C. Kenion, Bernd J. Haupt, Benjamin J. Ahlswede, Natasha L. Miles, and Kenneth J. Davis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-232, https://doi.org/10.5194/essd-2025-232, 2025
Preprint under review for ESSD
Short summary
Short summary
We present data from a network of towers in Indianapolis used to study how heat and gases move between the surface and atmosphere in a city. This rare, long-term urban experiment helps us understand things like carbon emissions from these urban areas. We explain what was measured, how we checked data quality, and why these observations help improve our overall understanding of the urban environment.
Tobias Gerken, Kenneth J. Davis, Klaus Keller, and Sha Feng
EGUsphere, https://doi.org/10.5194/egusphere-2025-341, https://doi.org/10.5194/egusphere-2025-341, 2025
Short summary
Short summary
We apply the Patient Rule Induction Method (PRIM) technique to airborne CO2 and meteorological data to better understand atmospheric conditions and implications for carbon dioxide model-observation-mismatches. We found PRIM is capable of separating observations from different seasons and levels based on atmospheric conditions. Large magnitude carbon dioxide model-observation-differences were associated with non-typical atmospheric conditions, with implications for transport model evaluation.
Bianca C. Baier, John B. Miller, Colm Sweeney, Scott Lehman, Chad Wolak, Joshua P. DiGangi, Yonghoon Choi, Kenneth Davis, Sha Feng, and Thomas Lauvaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-821, https://doi.org/10.5194/egusphere-2025-821, 2025
Short summary
Short summary
CO2 radiocarbon content (Δ14CO2) is a unique tracer helps to accurately quantify anthropogenic CO2 emitted into the atmosphere. Δ14CO2 measured in airborne flask samples is used to distinguish fossil versus biogenic CO2 sources. Mid-Atlantic U.S. CO2 variability is found to be driven by the biosphere. Errors in modeled fossil fuel CO2 are evaluated using Δ14CO2 airborne data as an avenue to improving future regional models of atmospheric CO2 transport.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Mark Omara, Ritesh Gautam, Madeleine A. O'Brien, Anthony Himmelberger, Alex Franco, Kelsey Meisenhelder, Grace Hauser, David R. Lyon, Apisada Chulakadabba, Christopher Chan Miller, Jonathan Franklin, Steven C. Wofsy, and Steven P. Hamburg
Earth Syst. Sci. Data, 15, 3761–3790, https://doi.org/10.5194/essd-15-3761-2023, https://doi.org/10.5194/essd-15-3761-2023, 2023
Short summary
Short summary
We acquire, integrate, and analyze ~ 6 million geospatial oil and gas infrastructure data records based on information available in the public domain and develop an open-access global database including all the major oil and gas facility types that are important sources of methane emissions. This work helps fulfill a crucial geospatial data need, in support of the assessment, attribution, and mitigation of global oil and gas methane emissions at high resolution.
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Lu Shen, Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, Joannes D. Maasakkers, Tia R. Scarpelli, Alba Lorente, David Lyon, Jianxiong Sheng, Daniel J. Varon, Hannah Nesser, Zhen Qu, Xiao Lu, Melissa P. Sulprizio, Steven P. Hamburg, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022, https://doi.org/10.5194/acp-22-11203-2022, 2022
Short summary
Short summary
We use 22 months of TROPOMI satellite observations to quantity methane emissions from the oil (O) and natural gas (G) sector in the US and Canada at the scale of both individual basins as well as country-wide aggregates. We find that O/G-related methane emissions are underestimated in these inventories by 80 % for the US and 40 % for Canada, and 70 % of the underestimate in the US is from five O/G basins, including Permian, Haynesville, Anadarko, Eagle Ford, and Barnett.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Vanessa C. Monteiro, Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth J. Davis
Earth Syst. Sci. Data, 14, 2401–2417, https://doi.org/10.5194/essd-14-2401-2022, https://doi.org/10.5194/essd-14-2401-2022, 2022
Short summary
Short summary
We describe a network of five ground-based in situ towers, equipped to measure concentrations of methane, carbon dioxide, hydrogen sulfide, and the isotopic ratio of methane, in the Permian Basin, United States. The main goal is to use methane concentrations with atmospheric models to determine methane emissions from one of the Permian sub-basins. These datasets can improve emissions estimations, leading to best practices in the oil and natural gas industry, and policies for emissions reduction.
David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
Short summary
Short summary
The OCO-2 satellite measures many closely spaced column-averaged CO2 values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2 measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
Tao Zheng, Sha Feng, Kenneth J. Davis, Sandip Pal, and Josep-Anton Morguí
Geosci. Model Dev., 14, 3037–3066, https://doi.org/10.5194/gmd-14-3037-2021, https://doi.org/10.5194/gmd-14-3037-2021, 2021
Short summary
Short summary
Carbon dioxide is the most important greenhouse gas. We develop the numerical model that represents carbon dioxide transport in the atmosphere. This model development is based on the MPAS model, which has a variable-resolution capability. The purpose of developing carbon dioxide transport in MPAS is to allow for high-resolution transport model simulation that is not limited by the lateral boundaries. It will also form the base for a future development of MPAS-based carbon inversion system.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua DiGangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, and Michael D. Obland
Atmos. Meas. Tech., 13, 6095–6112, https://doi.org/10.5194/amt-13-6095-2020, https://doi.org/10.5194/amt-13-6095-2020, 2020
Short summary
Short summary
The present study describes an autonomously operated instrument for high-precision (20–40 parts per trillion in 1 s) measurements of ethane during actual airborne operations on a small aircraft platform (NASA's King Air B200). This paper discusses the dynamic nature of airborne performance due to various aircraft-induced perturbations, methods devised to identify such events, and solutions we have enacted to circumvent these perturbations.
Cited articles
Allen, D. T., Chen, Q., and Dunn, J. B.: Consistent Metrics Needed for
Quantifying Methane Emissions from Upstream Oil and Gas Operations, Environ. Sci. Technol. Lett., 8, 345–349, https://doi.org/10.1021/acs.estlett.0c00907, 2021. a
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R.,
Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort,
E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara,
M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C.,
Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane
emissions from the U.S. oil and gas supply chain, Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. a, b, c
Baker Hughes: Rig Count, https://rigcount.bakerhughes.com/na-rig-count (last access: September 2022), 2022. a
Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Miles, N. L., Richardson, S. J., Cao, Y., Sweeney, C., Karion, A., Smith, M., Kort, E. A., Schwietzke, S., Murphy, T., Cervone, G., Martins, D., and Maasakkers, J. D.: Quantifying methane emissions from natural gas production in north-eastern
Pennsylvania, Atmos. Chem. Phys., 17, 13941–13966,
https://doi.org/10.5194/acp-17-13941-2017, 2017. a, b, c, d, e, f, g
Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Fried, A., Weibring, P.,
Richter, D., Walega, J. G., DiGangi, J., Ehrman, S. H., Ren, X., and
Dickerson, R. R.: Estimating Methane Emissions From Underground Coal and
Natural Gas Production in Southwestern Pennsylvania, Geophys. Res. Lett., 46, 4531–4540, https://doi.org/10.1029/2019GL082131, 2019a. a, b, c, d
Barkley, Z. R., Davis, K. J., Feng, S., Balashov, N., Fried, A., DiGangi, J.,
Choi, Y., and Halliday, H. S.: Forward modeling and optimization of methane
emissions in the south central United States using aircraft transects across
frontal boundaries, Geophys. Res. Lett., 46, 13564–13573,
https://doi.org/10.1029/2019GL084495, 2019b. a
Barkley, Z. R., Davis, K. J., Feng, S., Cui, Y. Y., Fried, A., Weibring, P.,
Richter, D., Walega, J. G., Miller, S. M., Eckl, M., Roiger, A., Fiehn, A.,
and Kostinek, J.: Analysis of Oil and Gas Ethane and Methane Emissions in the
Southcentral and Eastern United States Using Four Seasons of Continuous
Aircraft Ethane Measurements, J. Geophys. Res.-Atmos., 126, e2020JD034194, https://doi.org/10.1029/2020JD034194, 2021. a, b, c, d, e
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden,
J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland
methane emissions and uncertainty dataset for atmospheric chemical transport
models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017. a
Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G., Jordaan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., and Harriss, R.: Methane Leaks from North American Natural Gas Systems, Science, 343, 733–735, https://doi.org/10.1126/science.1247045, 2014. a
Caulton, D., Lu, J., Lane, H., Buchholz, B., Fitts, J., Golston, L., Guo, X.,
Li, Q., McSpiritt, J., Pan, D., Wendt, L., Bou-Zeid, E., and Zondlo, M.:
Importance of Super-Emitter Natural Gas Well Pads in the Marcellus Shale,
Environ. Sci. Technol., 53, 4747–4754, https://doi.org/10.1021/acs.est.8b06965, 2019. a, b, c, d, e
Chen, Y., Sherwin, E. D., Berman, E. S., Jones, B. B., Gordon, M. P.,
Wetherley, E. B., Kort, E. A., and Brandt, A. R.: Quantifying Regional
Methane Emissions in the New Mexico Permian Basin with a Comprehensive Aerial
Survey, Environ. Sci. Technol., 56, 4317–4323, https://doi.org/10.1021/acs.est.1c06458, 2022. a
Cusworth, D. H., Duren, R. M., Thorpe, A. K., Olson-Duvall, W., Heckler, J.,
Chapman, J. W., Eastwood, M. L., Helmlinger, M. C., Green, R. O., Asner,
G. P., Dennison, P. E., and Miller, C. E.: Intermittency of Large Methane
Emitters in the Permian Basin, Environ. Sci. Technol. Lett., 8, 567–573, https://doi.org/10.1021/acs.estlett.1c00173, 2021. a, b
Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner,
G. P., Miller, C. E., Yadav, V., Chapman, J. W., Eastwood, M. L., Green,
R. O., Hmiel, B., Lyon, D. R., and Duren, R. M.: Strong methane point sources
contribute a disproportionate fraction of total emissions across multiple
basins in the United States, P. Natl. Acad. Sci. USA, 119, e2202338119, https://doi.org/10.1073/pnas.2202338119, 2022. a, b, c, d
Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global
atmospheric methane: budget, changes and dangers, Philos. T. Roy. Soc. A, 369, 2058–2072, 2011. a
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang,
H.: The Earth's energy budget, climate feedbacks, and climate sensitivity,
in: book section 7, Cambridge University Press, Cambridge, UK and New
York, NY, USA, https://doi.org/10.1017/9781009157896.009, 2021. a
Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A.,
Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., Conley,
S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. O.: Airborne methane
remote measurements reveal heavy-tail flux distribution in Four Corners
region, P. Natl. Acad. Sci, USA, 113, 9734–9739, https://doi.org/10.1073/pnas.1605617113, 2016. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler,
J., Miller, B. R., Newberger, T., Wolter, S., Banta, R., Brewer, A.,
Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer,
M., Zamora, R., and Conley, S.: Methane emissions estimate from airborne
measurements over a western United States natural gas field, Geophys. Res. Lett., 40, 4393–4397, https://doi.org/10.1002/grl.50811, 2013. a
Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza,
M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C.,
Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C.,
Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-Based
Estimate of Total Methane Emissions from the Barnett Shale Region, Environ. Sci. Technol., 49, 8124–8131, https://doi.org/10.1021/acs.est.5b00217, 2015. a
Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P., Lac, C.,
Davis, K. J., Ciais, P., Denning, A. S., and Rayner, P. J.: Mesoscale
inversion: first results from the CERES campaign with synthetic data,
Atmos. Chem. Phys., 8, 3459–3471, https://doi.org/10.5194/acp-8-3459-2008, 2008. a
Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews,
A. E., Sweeney, C., Diaz, L. I., Martins, D., Shepson, P. B., and Davis,
K. J.: Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system, Atmos. Chem. Phys., 12, 337–354, https://doi.org/10.5194/acp-12-337-2012, 2012. a, b
Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O.,
Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O'Keefe, D., Song, Y.,
Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson,
P., Sweeney, C., Turnbull, J., and Wu, K.: High-resolution atmospheric
inversion of urban CO2 emissions during the dormant season of the
Indianapolis Flux Experiment (INFLUX), J. Geophys. Res.-Atmos., 121, 5213–5236, https://doi.org/10.1002/2015JD024473, 2016. a, b
Lin, J. C., Bares, R., Fasoli, B., Garcia, M., Crosman, E., and Lyman, S.:
Declining methane emissions and steady, high leakage rates observed over
multiple years in a western US oil/gas production basin, Sci. Rep., 11, 1–12, 2021. a
Lorente, A., Borsdorff, T., Martinez-Velarte, M. C., and Landgraf, J.:
Accounting for surface reflectance spectral features in TROPOMI methane
retrievals, Atmos. Meas. Tech., 16, 1597–1608, https://doi.org/10.5194/amt-16-1597-2023, 2023. a
Lyon, D. R., Zavala-Araiza, D., Alvarez, R. A., Harriss, R., Palacios, V., Lan, X., Talbot, R., Lavoie, T., Shepson, P., Yacovitch, T. I., Herndon, S. C., Marchese, A. J., Zimmerle, D., Robinson, A. L., and Hamburg, S. P.:
Constructing a Spatially Resolved Methane Emission Inventory for the Barnett
Shale Region, Environ. Sci. Technol., 49, 8147–8157, https://doi.org/10.1021/es506359c, 2015. a
Lyon, D. R., Hmiel, B., Gautam, R., Omara, M., Roberts, K. A., Barkley, Z. R., Davis, K. J., Miles, N. L., Monteiro, V. C., Richardson, S. J., Conley, S., Smith, M. L., Jacob, D. J., Shen, L., Varon, D. J., Deng, A., Rudelis, X., Sharma, N., Story, K. T., Brandt, A. R., Kang, M., Kort, E. A., Marchese, A. J., and Hamburg, S. P.: Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic, Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, 2021. a, b, c, d, e, f, g, h
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M.,
Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad,
L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded
National Inventory of U.S. Methane Emissions, Environ. Sci. Technol., 50, 13123–13133, https://doi.org/10.1021/acs.est.6b02878, 2016. a, b, c
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser,
H., Sheng, J., Zhang, Y., Lu, X., Bloom, A. A., Bowman, K. W., Worden, J. R.,
and Parker, R. J.: 2010–2015 North American methane emissions, sectoral
contributions, and trends: a high-resolution inversion of GOSAT observations
of atmospheric methane, Atmospheric Chemistry and Physics, 21, 4339–4356,
https://doi.org/10.5194/acp-21-4339-2021, 2021. a
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a
Miles, N. M., Martins, D. K., Richardson, S. J., Lauvaux, T., Davis, K. J., Haupt, B. J., and Rella, C.: In-situ tower atmospheric methane mole fraction and isotopic ratio of methane data, Marcellus Shale Gas Region, Pennsylvania, USA, Penn State Datacommons [data set], https://doi.org/10.18113/D3SG6N, 2017. a
Miles, N. L., Martins, D. K., Richardson, S. J., Rella, C. W., Arata, C.,
Lauvaux, T., Davis, K. J., Barkley, Z. R., McKain, K., and Sweeney, C.:
Calibration and field testing of cavity ring-down laser spectrometers
measuring CH4, CO2, and δ13CH4 deployed on towers in
the Marcellus Shale region, Atmos. Meas. Tech., 11, 1273–1295, https://doi.org/10.5194/amt-11-1273-2018, 2018. a
Monteiro, V., Miles, N. L., Richardson, S. J., Barkley, Z. R., Haupt, B. J., and Davis, K. J.: Permian Basin: in-situ tower greenhouse gas data, Penn State Datacommons [data set], https://doi.org/10.26208/98y5-t941, 2021. a
Monteiro, V., Miles, N., Richardson, S., Turnbull, J., Karion, A., Kim, J.,
Mitchell, L., Lin, J., Sargent, M., Wofsy, S., Vogel, F., and Davis, K. J.: The impact of the COVID-19 lockdown on greenhouse gases: a multi-city analysis of in situ atmospheric observations, Environ. Res. Commun., 4, 041004, https://doi.org/10.1088/2515-7620/ac66cb, 2022a. a
Monteiro, V. C., Miles, N. L., Richardson, S. J., Barkley, Z., Haupt, B. J.,
Lyon, D., Hmiel, B., and Davis, K. J.: Methane, carbon dioxide, hydrogen
sulfide, and isotopic ratios of methane observations from the Permian Basin
tower network, Earth Syst. Sci. Data, 14, 2401–2417,
https://doi.org/10.5194/essd-14-2401-2022, 2022b. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing, in: book section 8, Cambridge University Press, Cambridge, UK and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013. a
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., Brownlow,
R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E.,
Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H., Warwick,
N. J., and White, J. W. C.: Very Strong Atmospheric Methane Growth in the
4 Years 2014–2017: Implications for the Paris Agreement, Global Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009, 2019. a
Ocko, I. B., Sun, T., Shindell, D., Oppenheimer, M., Hristov, A. N., Pacala,
S. W., Mauzerall, D. L., Xu, Y., and Hamburg, S. P.: Acting rapidly to deploy
readily available methane mitigation measures by sector can immediately slow
global warming, Environ. Res. Lett., 16, 054042, https://doi.org/10.1088/1748-9326/abf9c8, 2021. a, b
Omara, M., Sullivan, M. R., Li, X., Subramanian, R., Robinson, A. L., and
Presto, A. A.: Methane Emissions from Conventional and Unconventional Natural
Gas Production Sites in the Marcellus Shale Basin, Environ. Sci. Technol., 50, 2099–2107, https://doi.org/10.1021/acs.est.5b05503, 2016. a
Omara, M., Zimmerman, N., Sullivan, M. R., Li, X., Ellis, A., Cesa, R.,
Subramanian, R., Presto, A. A., and Robinson, A. L.: Methane Emissions from
Natural Gas Production Sites in the United States: Data Synthesis and
National Estimate, Environ. Sci. Technol., 52, 12915–12925,
https://doi.org/10.1021/acs.est.8b03535, 2018. a
Omara, M., Zavala-Araiza, D., Lyon, D. R., Hmiel, B., Roberts, K. A., and
Hamburg, S. P.: Methane emissions from US low production oil and natural gas
well sites, Nat. Commun., 13, 2085, https://doi.org/10.1038/s41467-022-29709-3, 2022. a, b
Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B.,
Holloway, J. S., Lerner, B. M., Nadkarni, R., Neuman, J. A., Nowak, J. B.,
Trainer, M., Warneke, C., and Parrish, D. D.: Quantifying atmospheric methane
emissions from the Haynesville, Fayetteville, and northeastern
Marcellus shale gas production regions, J. Geophys. Res.-Atmos., 120, 2119–2139, https://doi.org/10.1002/2014JD022697, 2015. a, b, c, d, e
Peischl, J., Eilerman, S. J., Neuman, J. A., Aikin, K. C., de Gouw, J., Gilman, J. B., Herndon, S. C., Nadkarni, R., Trainer, M., Warneke, C., and Ryerson, T. B.: Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions, J. Geophys. Res.-Atmos., 123, 7725–7740, https://doi.org/10.1029/2018JD028622, 2018. a
Pétron, G., Frost, G., Miller, B. R., Hirsch, A. I., Montzka, S. A., Karion, A., Trainer, M., Sweeney, C., Andrews, A. E., Miller, L., Kofler, J.,
Bar-Ilan, A., Dlugokencky, E. J., Patrick, L., Moore Jr., C. T., Ryerson,
T. B., Siso, C., Kolodzey, W., Lang, P. M., Conway, T., Novelli, P., Masarie,
K., Hall, B., Guenther, D., Kitzis, D., Miller, J., Welsh, D., Wolfe, D.,
Neff, W., and Tans, P.: Hydrocarbon emissions characterization in the
Colorado Front Range: A pilot study, J. Geophys. Res.-Atmos., 117, D04304, https://doi.org/10.1029/2011JD016360, 2012. a
Rella, C. W., Tsai, T. R., Botkin, C. G., Crosson, E. R., and Steele, D.:
Measuring Emissions from Oil and Natural Gas Well Pads Using the Mobile Flux
Plane Technique, Environ. Sci. Technol., 49, 4742–4748,
https://doi.org/10.1021/acs.est.5b00099, 2015. a
Robertson, A. M., Edie, R., Snare, D., Soltis, J., Field, R. A., Burkhart,
M. D., Bell, C. S., Zimmerle, D., and Murphy, S. M.: Variation in Methane
Emission Rates from Well Pads in Four Oil and Gas Basins with Contrasting
Production Volumes and Compositions, Environ. Sci. Technol., 51, 8832–8840, https://doi.org/10.1021/acs.est.7b00571, 2017. a
Robertson, A. M., Edie, R., Field, R. A., Lyon, D., McVay, R., Omara, M.,
Zavala-Araiza, D., and Murphy, S. M.: New Mexico Permian Basin measured well
pad methane emissions are a factor of 5–9 times higher than US EPA
estimates, Environ. Sci. Technol., 54, 13926–13934, 2020. a
Rutherford, J. S., Sherwin, E. D., Ravikumar, A. P., Heath, G. A., Englander,
J., Cooley, D., Lyon, D., Omara, M., Langfitt, Q., and Brandt, A. R.: Closing
the methane gap in US oil and natural gas production emissions inventories,
Nat. Commun., 12, 4715, https://doi.org/10.1038/s41467-021-25017-4, 2021. a
Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Jones,
T., McKain, K., Sweeney, C., Hegarty, J., Hardiman, B., Wang, J. A., and
Wofsy, S. C.: Anthropogenic and biogenic CO2 fluxes in the Boston
urban region, P. Natl. Acad. Sci. USA, 115, 7491–7496, https://doi.org/10.1073/pnas.1803715115, 2018. a
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G.,
Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra,
P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R.,
Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S.,
Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope,
G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L.,
Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M.,
Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G.,
Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller,
P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J.,
Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N.,
Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der
Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y.,
Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.:
The Global Methane Budget 2000–2017, Earth Syste. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a
Schwietzke, S., Pétron, G., Conley, S., Pickering, C., Mielke-Maday, I.,
Dlugokencky, E. J., Tans, P. P., Vaughn, T., Bell, C., Zimmerle, D., Wolter,
S., King, C. W., White, A. B., Coleman, T., Bianco, L., and Schnell, R. C.:
Improved Mechanistic Understanding of Natural Gas Methane Emissions from
Spatially Resolved Aircraft Measurements, Environ. Sci. Technol., 51, 7286–7294, https://doi.org/10.1021/acs.est.7b01810, 2017. a
Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J. D.,
Scarpelli, T. R., Lorente, A., Lyon, D., Sheng, J., Varon, D. J., Nesser, H.,
Qu, Z., Lu, X., Sulprizio, M. P., Hamburg, S. P., and Jacob, D. J.: Satellite
quantification of oil and natural gas methane emissions in the US and Canada
including contributions from individual basins, Atmos. Chem. Phys., 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022, 2022. a, b, c, d
Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sulprizio, M. P., Bloom, A. A., Andrews, A. E., and Wunch, D.: High-resolution inversion of methane emissions in the Southeast US using SEAC4RS aircraft observations of atmospheric methane: anthropogenic and wetland sources, Atmos. Chem. Phys., 18, 6483–6491, https://doi.org/10.5194/acp-18-6483-2018, 2018. a, b
Staufer, J., Broquet, G., Bréon, F.-M., Puygrenier, V., Chevallier, F.,
Xueref-Rémy, I., Dieudonné, E., Lopez, M., Schmidt, M., Ramonet, M.,
Perrussel, O., Lac, C., Wu, L., and Ciais, P.: The first 1-year-long estimate
of the Paris region fossil fuel CO2 emissions based on atmospheric
inversion, Atmos. Chem. Phys., 16, 14703–14726, https://doi.org/10.5194/acp-16-14703-2016, 2016. a
Stauffer, D. R. and Seaman, N. L.: Multiscale Four-Dimensional Data
Assimilation, J. Appl. Meteorol. Clim., 33, 416–434,
https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2, 1994. a
Uliasz, M.: Lagrangian particle dispersion modeling in mesoscale applications, in: Environmental Modeling, Vol. II, edited by: Zannetti, P., Computational Mechanics Publications, Southampton, UK, ISBN 978-1-85312-281-1, 1994. a
US Energy Information Administration: Annual Natural Gas Vented and Flared,
https://www.eia.gov/dnav/ng/ng_prod_sum_a_EPG0_VGV_mmcf_a.htm (last
access: March 2022), 2022. a
US Environmental Protection Agency: Inventory of U.S. Greenhouse Gas
Emissions and Sinks: 1990–2018,
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
(last access: August 2020), 2020. a
Varon, D. J., Jacob, D. J., Hmiel, B., Gautam, R., Lyon, D. R., Omara, M., Sulprizio, M., Shen, L., Pendergrass, D., Nesser, H., Qu, Z., Barkley, Z. R., Miles, N. L., Richardson, S. J., Davis, K. J., Pandey, S., Lu, X., Lorente, A., Borsdorff, T., Maasakkers, J. D., and Aben, I.: Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-749, in review, 2022.
a, b
Zavala-Araiza, D., Lyon, D., Alvarez, R. A., Palacios, V., Harriss, R., Lan,
X., Talbot, R., and Hamburg, S. P.: Toward a functional definition of methane
super-emitters: Application to natural gas production sites, Environ.
Sci. Technol., 49, 8167–8174, https://doi.org/10.1021/acs.est.5b00133, 2015a. a
Zavala-Araiza, D., Lyon, D. R., Alvarez, R. A., Davis, K. J., Harriss, R.,
Herndon, S. C., Karion, A., Kort, E. A., Lamb, B. K., Lan, X., Marchese,
A. J., Pacala, S. W., Robinson, A. L., Shepson, P. B., Sweeney, C., Talbot,
R., Townsend-Small, A., Yacovitch, T. I., Zimmerle, D. J., and Hamburg, S. P.: Reconciling divergent estimates of oil and gas methane emissions,
P. Natl. Acad. Sci. USA, 112, 15597–15602, https://doi.org/10.1073/pnas.1522126112, 2015b. a
Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte, P., Lyon, D., Nesser, H., Sulprizio, M. P., Varon, D. J., Zhang, R., Houweling, S., Zavala-Araiza, D., Alvarez, R. A., Lorente, A., Hamburg, S. P., Aben, I., and Jacob, D. J.: Quantifying methane emissions from the largest oil-producing basin in the United States from space, Sci. Adv., 6, eaaz5120, https://doi.org/10.1126/sciadv.aaz5120, 2020. a, b, c, d, e, f
Short summary
Using methane monitoring instruments attached to towers, we measure methane concentrations and quantify methane emissions coming from the Marcellus and Permian oil and gas basins. In the Marcellus, emissions were 3 times higher than the state inventory across the entire monitoring period. In the Permian, we see a sharp decline in emissions aligning with the onset of the COVID-19 pandemic. Tower observational networks can be utilized in other basins for long-term monitoring of emissions.
Using methane monitoring instruments attached to towers, we measure methane concentrations and...
Altmetrics
Final-revised paper
Preprint