Articles | Volume 23, issue 8
https://doi.org/10.5194/acp-23-4663-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4663-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Summertime fluorescence characteristics of atmospheric water-soluble organic carbon in the marine boundary layer of the western Arctic Ocean
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Yuzo Miyazaki
Institute of Low Temperature Science, Hokkaido University, Sapporo
060-0819, Japan
Jin Hur
Department of Environment & Energy, Sejong University, 209
Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
Yun Kyung Lee
Department of Environment & Energy, Sejong University, 209
Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
Mi Hae Jeon
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Youngju Lee
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Kyoung-Ho Cho
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Hyun Young Chung
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Department of Polar Sciences, University of Science and Technology,
Incheon 21990, Republic of Korea
Kitae Kim
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Department of Polar Sciences, University of Science and Technology,
Incheon 21990, Republic of Korea
Jung-Ok Choi
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Catherine Lalande
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Joo-Hong Kim
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Taejin Choi
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Young Jun Yoon
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Eun Jin Yang
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Sung-Ho Kang
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon
21990, Republic of Korea
Related authors
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Jiyeon Park, Manuel Dall'Osto, Kihong Park, Yeontae Gim, Hyo Jin Kang, Eunho Jang, Ki-Tae Park, Minsu Park, Seong Soo Yum, Jinyoung Jung, Bang Yong Lee, and Young Jun Yoon
Atmos. Chem. Phys., 20, 5573–5590, https://doi.org/10.5194/acp-20-5573-2020, https://doi.org/10.5194/acp-20-5573-2020, 2020
Short summary
Short summary
The physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V Araon during the summer of 2017. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. This suggests that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, affecting
radiative forcing.
Jinyoung Jung, Sang-Bum Hong, Meilian Chen, Jin Hur, Liping Jiao, Youngju Lee, Keyhong Park, Doshik Hahm, Jung-Ok Choi, Eun Jin Yang, Jisoo Park, Tae-Wan Kim, and SangHoon Lee
Atmos. Chem. Phys., 20, 5405–5424, https://doi.org/10.5194/acp-20-5405-2020, https://doi.org/10.5194/acp-20-5405-2020, 2020
Short summary
Short summary
Characteristics of atmospheric sulfur and organic carbon species in marine aerosols and the environmental factors influencing their distributions were investigated over the Southern Ocean and the Amundsen Sea, Antarctica, during austral summer. The simultaneous measurements of chemical species in aerosols as well as the chemical and biological properties of seawater in the Amundsen Sea allowed for a better understanding of the effect of the ocean ecosystem on marine aerosols.
Jinpei Yan, Jinyoung Jung, Miming Zhang, Federico Bianchi, Yee Jun Tham, Suqing Xu, Qi Lin, Shuhui Zhao, Lei Li, and Liqi Chen
Atmos. Chem. Phys., 20, 3259–3271, https://doi.org/10.5194/acp-20-3259-2020, https://doi.org/10.5194/acp-20-3259-2020, 2020
Short summary
Short summary
Methanesulfonic acid (MSA) is important to the CCN in the MBL. The uptake of MSA on particles is lacking in knowledge. The characteristics of MSA uptake on different particles were studied in the Southern Ocean. The MSA uptake on different particles was associated with particle properties. Uptake of MSA on sea salt particles was favored, while acidic and hydrophobic particles suppressed the MSA uptake. The results extend the knowledge of MSA formation and behavior in the atmosphere.
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, https://doi.org/10.5194/bg-15-5847-2018, 2018
Short summary
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
J. Jung, H. Furutani, M. Uematsu, S. Kim, and S. Yoon
Atmos. Chem. Phys., 13, 411–428, https://doi.org/10.5194/acp-13-411-2013, https://doi.org/10.5194/acp-13-411-2013, 2013
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3265, https://doi.org/10.5194/egusphere-2024-3265, 2024
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment trap derived time-series of sinking particles in the northwest Labrador Sea. We found that sea ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Hee-Sung Jung, Sang-Moo Lee, Joo-Hong Kim, and Kyungsoo Lee
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-264, https://doi.org/10.5194/essd-2024-264, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset consists of true-like sea ice concentration (SIC) data records over the Arctic Ocean, which was derived from the 30 m resolution imagery from the Operational Land Imager (OLI) onboard Landsat-8. Each SIC map are given in a 6.25 km polar stereographic grid, and are catalogued into one of the twelve sub-regions of the Arctic Ocean. This dataset was produced to be used as reference in validation of various SIC products.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987, https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
Atmos. Chem. Phys., 23, 13625–13646, https://doi.org/10.5194/acp-23-13625-2023, https://doi.org/10.5194/acp-23-13625-2023, 2023
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station on the Antarctic Peninsula continuously from 1 January to 31 December 2018. During the pristine and clean periods, 97 new particle formation (NPF) events were detected. For 83 of these, CCN concentrations increased by 2 %–268 % (median 44 %) following 1 to 36 h (median 8 h) after NPF events.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
EGUsphere, https://doi.org/10.5194/egusphere-2023-862, https://doi.org/10.5194/egusphere-2023-862, 2023
Short summary
Short summary
This study is motivated by the fact that there are no general factors that represent the overall properties of mixed-phase clouds. The absence of these factors contributes to the high uncertainty in the prediction of climate change. Hence, this study finds a general factor that explains differences in the properties of different mixed-phase clouds, using a modeling tool. This factor is useful to develop a general way of using climate models to better predict climate change.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Sehyun Jang, Ki-Tae Park, Kitack Lee, Young Jun Yoon, Kitae Kim, Hyun Young Chung, Eunho Jang, Silvia Becagli, Bang Yong Lee, Rita Traversi, Konstantinos Eleftheriadis, Radovan Krejci, and Ove Hermansen
Atmos. Chem. Phys., 21, 9761–9777, https://doi.org/10.5194/acp-21-9761-2021, https://doi.org/10.5194/acp-21-9761-2021, 2021
Short summary
Short summary
This study provides comprehensive datasets encompassing seasonal and interannual variations in sulfate and MSA concentration in aerosol particles in the Arctic atmosphere. As oxidation products of DMS have important roles in new particle formation and growth, we focused on factors affecting their variability and the branching ratio of DMS oxidation. We found a strong correlation between the ratio and the light condition, chemical properties of particles, and biological activities near Svalbard.
Haebum Lee, Kwangyul Lee, Chris Rene Lunder, Radovan Krejci, Wenche Aas, Jiyeon Park, Ki-Tae Park, Bang Yong Lee, Young Jun Yoon, and Kihong Park
Atmos. Chem. Phys., 20, 13425–13441, https://doi.org/10.5194/acp-20-13425-2020, https://doi.org/10.5194/acp-20-13425-2020, 2020
Short summary
Short summary
New particle formation (NPF) contributes to enhance the number of particles in the ambient atmosphere, affecting local air quality and cloud condensation nuclei (CCN) concentration. This study investigated NPF characteristics in the Arctic and showed that although formation and growth rates of nanoparticles were much lower than those in continental areas, NPF occurrence frequency was comparable and marine biogenic sources played important roles in production of condensing vapors for NPF.
Jiyeon Park, Manuel Dall'Osto, Kihong Park, Yeontae Gim, Hyo Jin Kang, Eunho Jang, Ki-Tae Park, Minsu Park, Seong Soo Yum, Jinyoung Jung, Bang Yong Lee, and Young Jun Yoon
Atmos. Chem. Phys., 20, 5573–5590, https://doi.org/10.5194/acp-20-5573-2020, https://doi.org/10.5194/acp-20-5573-2020, 2020
Short summary
Short summary
The physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V Araon during the summer of 2017. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. This suggests that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, affecting
radiative forcing.
Jinyoung Jung, Sang-Bum Hong, Meilian Chen, Jin Hur, Liping Jiao, Youngju Lee, Keyhong Park, Doshik Hahm, Jung-Ok Choi, Eun Jin Yang, Jisoo Park, Tae-Wan Kim, and SangHoon Lee
Atmos. Chem. Phys., 20, 5405–5424, https://doi.org/10.5194/acp-20-5405-2020, https://doi.org/10.5194/acp-20-5405-2020, 2020
Short summary
Short summary
Characteristics of atmospheric sulfur and organic carbon species in marine aerosols and the environmental factors influencing their distributions were investigated over the Southern Ocean and the Amundsen Sea, Antarctica, during austral summer. The simultaneous measurements of chemical species in aerosols as well as the chemical and biological properties of seawater in the Amundsen Sea allowed for a better understanding of the effect of the ocean ecosystem on marine aerosols.
Thomas Lachlan-Cope, David C. S. Beddows, Neil Brough, Anna E. Jones, Roy M. Harrison, Angelo Lupi, Young Jun Yoon, Aki Virkkula, and Manuel Dall'Osto
Atmos. Chem. Phys., 20, 4461–4476, https://doi.org/10.5194/acp-20-4461-2020, https://doi.org/10.5194/acp-20-4461-2020, 2020
Short summary
Short summary
We present a statistical cluster analysis of the physical characteristics of particle size distributions collected at Halley (Antarctica) for the year 2015. Complex interactions between multiple ecosystems, coupled with different atmospheric circulation, result in very different aerosol size distributions populating the Southern Hemisphere.
Jinpei Yan, Jinyoung Jung, Miming Zhang, Federico Bianchi, Yee Jun Tham, Suqing Xu, Qi Lin, Shuhui Zhao, Lei Li, and Liqi Chen
Atmos. Chem. Phys., 20, 3259–3271, https://doi.org/10.5194/acp-20-3259-2020, https://doi.org/10.5194/acp-20-3259-2020, 2020
Short summary
Short summary
Methanesulfonic acid (MSA) is important to the CCN in the MBL. The uptake of MSA on particles is lacking in knowledge. The characteristics of MSA uptake on different particles were studied in the Southern Ocean. The MSA uptake on different particles was associated with particle properties. Uptake of MSA on sea salt particles was favored, while acidic and hydrophobic particles suppressed the MSA uptake. The results extend the knowledge of MSA formation and behavior in the atmosphere.
Eun-Hyuk Baek, Joo-Hong Kim, Sungsu Park, Baek-Min Kim, and Jee-Hoon Jeong
Atmos. Chem. Phys., 20, 2953–2966, https://doi.org/10.5194/acp-20-2953-2020, https://doi.org/10.5194/acp-20-2953-2020, 2020
Short summary
Short summary
Many general circulation models (GCMs) have difficulty simulating Arctic clouds and climate, causing substantial inter-model spread. By analyzing various model simulation results, we found that the association between the enhanced poleward transports of heat and moisture and an increase in liquid clouds over the Arctic is evident in GCMs. Our study demonstrates that enhanced poleward heat and moisture transport in a model can improve simulations of Arctic clouds and climate.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Minkyoung Kim, Eun Jin Yang, Hyung Jeek Kim, Dongseon Kim, Tae-Wan Kim, Hyoung Sul La, SangHoon Lee, and Jeomshik Hwang
Biogeosciences, 16, 2683–2691, https://doi.org/10.5194/bg-16-2683-2019, https://doi.org/10.5194/bg-16-2683-2019, 2019
Short summary
Short summary
Unexpectedly, in sediment traps deployed in the Antarctic Amundsen Sea to catch small sinking particles in the water, large benthic invertebrates such as long and slender worms, baby sea urchins, and small scallops were found. We suggest three hypotheses: lifting of these animals by anchor ice formation and subsequent transport by ice rafting, spending their juvenile period in a habitat underneath the sea ice and subsequent falling, or their active use of the current as a means of dispersal.
Jaeseok Kim, Young Jun Yoon, Yeontae Gim, Jin Hee Choi, Hyo Jin Kang, Ki-Tae Park, Jiyeon Park, and Bang Yong Lee
Atmos. Chem. Phys., 19, 7583–7594, https://doi.org/10.5194/acp-19-7583-2019, https://doi.org/10.5194/acp-19-7583-2019, 2019
Short summary
Short summary
This paper focuses on the seasonal variation in parameters related to particle formation (e.g., occurrence, formation rate, growth rate, condensation sink and source rate of condensable vapor) at King Sejong Station in the Antarctic Peninsula from March 2009 to December 2016. The contribution of particle formation to cloud condensation nuclei concentration (CCN) is also investigated. This study is the first to report the characteristics of new particle formation (NPF) in the Antarctic Peninsula.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Manuel Dall'Osto, David C. S. Beddows, Peter Tunved, Roy M. Harrison, Angelo Lupi, Vito Vitale, Silvia Becagli, Rita Traversi, Ki-Tae Park, Young Jun Yoon, Andreas Massling, Henrik Skov, Robert Lange, Johan Strom, and Radovan Krejci
Atmos. Chem. Phys., 19, 7377–7395, https://doi.org/10.5194/acp-19-7377-2019, https://doi.org/10.5194/acp-19-7377-2019, 2019
Short summary
Short summary
We present a cluster analysis of particle size distributions simultaneously collected from three European high Arctic sites centred in the Fram Strait during a 3-year period. Confined for longer time periods by consolidated pack sea ice regions, the Greenland site shows lower ultrafine-mode aerosol concentrations during summer relative to the Svalbard sites. Our study supports international environmental cooperation concerning the Arctic region.
Yuzo Miyazaki, Divyavani Gowda, Eri Tachibana, Yoshiyuki Takahashi, and Tsutom Hiura
Biogeosciences, 16, 2181–2188, https://doi.org/10.5194/bg-16-2181-2019, https://doi.org/10.5194/bg-16-2181-2019, 2019
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids and can act as surface-active atmospheric organic aerosols, influencing the cloud formation. We identified five secondary FAs in atmospheric aerosols at two temperate forest sites and revealed their distinct seasonal variation for the first time. Our results suggest that they originated mostly from plant wax and could be used as useful tracers for primary biological aerosol particles.
Tomoki Mochizuki, Kimitaka Kawamura, Yuzo Miyazaki, Bhagawati Kunwar, and Suresh Kumar Reddy Boreddy
Atmos. Chem. Phys., 19, 2421–2432, https://doi.org/10.5194/acp-19-2421-2019, https://doi.org/10.5194/acp-19-2421-2019, 2019
Short summary
Short summary
Monocarboxylic acids (MCAs) in gases and particles were measured in deciduous forest. Formic acid in the gas phase and isopentanoic acid in the particle phase were dominant MCAs. Gaseous normal monoacids showed positive correlations with isobutyric acid. Particulate isopentanoic acid showed a positive correlation with lactic acid. The florest floor with soil microbes contributes to emission of MCAs. Our results may be useful to improve understanding of organic aerosol formation in the forest.
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, https://doi.org/10.5194/bg-15-5847-2018, 2018
Short summary
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018, https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
Jaeseok Kim, Young Jun Yoon, Yeontae Gim, Hyo Jin Kang, Jin Hee Choi, Ki-Tae Park, and Bang Yong Lee
Atmos. Chem. Phys., 17, 12985–12999, https://doi.org/10.5194/acp-17-12985-2017, https://doi.org/10.5194/acp-17-12985-2017, 2017
Short summary
Short summary
This paper reports the long-term measurements of atmospheric aerosol physical properties at King Sejong Station, Antarctic Peninsula. It has been found that a strong seasonality of the characteristics exists in aerosol concentration and cloud condensation nuclei.
Ki-Tae Park, Sehyun Jang, Kitack Lee, Young Jun Yoon, Min-Seob Kim, Kihong Park, Hee-Joo Cho, Jung-Ho Kang, Roberto Udisti, Bang-Yong Lee, and Kyung-Hoon Shin
Atmos. Chem. Phys., 17, 9665–9675, https://doi.org/10.5194/acp-17-9665-2017, https://doi.org/10.5194/acp-17-9665-2017, 2017
Short summary
Short summary
We evaluated the connection between DMS and the formation of aerosol particles in the Arctic atmosphere by analyzing multiple datasets of atmospheric DMS, aerosol particle size distributions and aerosol chemical composition that were collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April–May 2015. The key finding from this research is that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the phytoplankton bloom period.
Yuzo Miyazaki, Sean Coburn, Kaori Ono, David T. Ho, R. Bradley Pierce, Kimitaka Kawamura, and Rainer Volkamer
Atmos. Chem. Phys., 16, 7695–7707, https://doi.org/10.5194/acp-16-7695-2016, https://doi.org/10.5194/acp-16-7695-2016, 2016
Short summary
Short summary
We conducted a WSOC-specific 13C analysis of submicron marine aerosols over the eastern equatorial Pacific for the first time. The analysis of 13C combined with monosaccharides provides evidence of a significant contribution of marine dissolved organic carbon (DOC) to submicron particles in the MBL regardless of the oceanic area. The study demonstrates that DOC is closely correlated with the submicron WSOC and implies that it may characterize background OA in the MBL over the study region.
J. Zábori, N. Rastak, Y. J. Yoon, I. Riipinen, and J. Ström
Atmos. Chem. Phys., 15, 13803–13817, https://doi.org/10.5194/acp-15-13803-2015, https://doi.org/10.5194/acp-15-13803-2015, 2015
T. Mochizuki, Y. Miyazaki, K. Ono, R. Wada, Y. Takahashi, N. Saigusa, K. Kawamura, and A. Tani
Atmos. Chem. Phys., 15, 12029–12041, https://doi.org/10.5194/acp-15-12029-2015, https://doi.org/10.5194/acp-15-12029-2015, 2015
Short summary
Short summary
Simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene in a forest, along with their oxidation products in aerosols, suggest that the inflow of anthropogenic precursors/aerosols enhanced the formation of both isoprene- and α-pinene-derived secondary organic aerosol (SOA) within the forest canopy even when the flux was low. We also emphasize the role of vegetation/soils near the forest floor as important sources of isoprene and α-pinene in the forest.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
Y. Kim, K. Nishina, N. Chae, S. J. Park, Y. J. Yoon, and B. Y. Lee
Biogeosciences, 11, 5567–5579, https://doi.org/10.5194/bg-11-5567-2014, https://doi.org/10.5194/bg-11-5567-2014, 2014
Y. Miyazaki, M. Sawano, and K. Kawamura
Biogeosciences, 11, 4407–4414, https://doi.org/10.5194/bg-11-4407-2014, https://doi.org/10.5194/bg-11-4407-2014, 2014
Y. M. Noh, H. Lee, D. Mueller, K. Lee, D. Shin, S. Shin, T. J. Choi, Y. J. Choi, and K. R. Kim
Atmos. Chem. Phys., 13, 7619–7629, https://doi.org/10.5194/acp-13-7619-2013, https://doi.org/10.5194/acp-13-7619-2013, 2013
J. Jung, H. Furutani, M. Uematsu, S. Kim, and S. Yoon
Atmos. Chem. Phys., 13, 411–428, https://doi.org/10.5194/acp-13-411-2013, https://doi.org/10.5194/acp-13-411-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Cited articles
Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahreman, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Ardyna, M. and Arrigo, K. R.: Phytoplankton dynamics in a changing Arctic
Ocean, Nat. Clim. Change, 10, 892–903,
https://doi.org/10.1038/s41558-020-0905-y, 2020.
Arrigo, K. R. and van Dijken, G. L.: Secular trends in Arctic Ocean net
primary production, J. Geophys. Res., 116, C09011,
https://doi.org/10.1029/2011JC007151, 2011.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arrigo, K. R., Lowry, K. E., and van Dijken, G. L.: Annual changes in sea
ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica, Deep-Sea
Res. Part II, 71–76, 5–15, https://doi.org/10.1016/j.dsr2.2012.03.006,
2012.
Ayers, G. P., Ivey, J. P., and Gillett, R. W.: Coherence between seasonal
cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air,
Nature, 349, 404–406, https://doi.org/10.1038/349404a0, 1991.
Ballinger, T. J., Overland, J. E., Wang, M., Bhatt, U. S., Hanna, E.,
Hanssen-Bauer, I., Kim, S. -J., Thomas, R. L., and Walsh, J. E.: Surface air
temperature, NOAA Arctic Report Card 2020,
https://www.arctic.noaa.gov/Report-Card (last access: 21 May 2022), 2020.
Barsotti, F., Ghigo, G., and Vione, D.: Computational assessment of the
fluorescence emission of phenol oligomers: a possible insight into the
fluorescence properties of humic-like substances (HULIS), J. Photochem.
Photobiol., A 315, 87–93, https://doi.org/10.1016/j.jphotochem.2015.09.012,
2016.
Bates, T. S., Calhoun, J. A., and Quinn, P. K.: Variations in the
methanesulfonate to sulfate molar ratio in submicrometer marine aerosol
particles over the South Pacific Ocean, J. Geophys. Res., 97, 9859–9865,
https://doi.org/10.1029/92JD00411, 1992.
Beine, H., Anastasio, C., Domine, F., Douglas, T., Barret, M., France, J.,
King, M., Hall, S., and Ullmann, K.: Soluble chromophores in marine snow,
seawater, sea ice and frost flowers near Barrow, Alaska, J. Geophys. Res.,
117, D00R15, https://doi.org/10.1029/2011JD016650, 2012.
Beine, H. J., Dominè, F., Ianniello, A., Nardino, M., Allegrini, I., Teinilä, K., and Hillamo, R.: Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic, Atmos. Chem. Phys., 3, 335–346, https://doi.org/10.5194/acp-3-335-2003, 2003.
Bergin, M. H., Jaffrezo, J. -L., Davidson, C. I., Dibb, J. E., Pandis, S.
N., Hillamo, R., Maenhaut, W., Kuhns, H. D., and Makela, T.: The
contributions of snow, fog, and dry deposition to the summer flux of anions
and cations at Summit, Greenland, J. Geophys. Res., 100, 16275–16288,
https://doi.org/10.1029/95JD01267, 1995.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic
matter in cave and spring waters using UV–vis absorbance and fluorescence
spectroscopy, Org. Geochem., 41, 270–280,
https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in
cloud and fog droplets: a literature evaluation of plausibility, Atmos.
Environ., 34, 1623–1632, https://doi.org/10.1016/S1352-2310(99)00392-1,
2000.
Brogi, S. R., Jung, J. Y., Ha, S.-Y., and Hur, J.: Seasonal differences in
dissolved organic matter properties and sources in an Arctic fjord:
Implications for future conditions, Sci. Total Environ., 694, 133740,
https://doi.org/10.1016/j.scitotenv.2019.133740, 2019.
Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601–13629, https://doi.org/10.5194/acp-14-13601-2014, 2014.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
Cavalli, F., Facchini, M. C., Decesari, S., Mircea, M., Emblico, L., Fuzzi,
S., Ceburnis, D., Yoon, Y. J., O'Dowd, C. D., Putaud, J. -P., and
Dell'Acqua, A.: Advances in characterization of size-resolved organic matter
in marine aerosol over the North Atlantic, J. Geophys. Res., 109, D24215,
https://doi.org/10.1029/2004JD005137, 2004.
Ceburnis, D., O'Dowd, C. D., Jennings, G. S., Facchini, M. C., Emblico, L.,
Decesari, S., Fuzzi, S., and Sakalys, J.: Marine aerosol chemistry
gradients: Elucidating primary and secondary processes and fluxes, Geophys.
Res. Lett., 35, L07804, https://doi.org/10.1029/2008GL033462, 2008.
Chang, R. Y.-W., Leck, C., Graus, M., Müller, M., Paatero, J., Burkhart, J. F., Stohl, A., Orr, L. H., Hayden, K., Li, S.-M., Hansel, A., Tjernström, M., Leaitch, W. R., and Abbatt, J. P. D.: Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem. Phys., 11, 10619–10636, https://doi.org/10.5194/acp-11-10619-2011, 2011.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,
Ida, A., Kajii, Y., and Mochida, M.: Characterization of chromophoric
water-soluble organic matter in urban, forest, and marine aerosols by
HR-ToF-AMS analysis and excitation–emission matrix spectroscopy, Environ.
Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643,
2016.
Chen, M., Jung, J., Lee, Y. K., and Hur, J.: Surface accumulation of low
molecular weight dissolved organic matter in surface waters and horizontal
off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi
Sea of the Arctic Ocean, Sci. Total Environ., 639, 624–632,
https://doi.org/10.1016/j.scitotenv.2018.05.205, 2018.
Cini, R., Innocenti, N. D., Loglio, G., Stortini, A. M., and Tesei, U.:
Spectrofluorimetric evidence of the transport of marine organic matter in
Antarctic snow via air-sea interaction, Int. J. Environ. Anal. Chem., 55,
285–295, https://doi.org/10.1080/03067319408026226, 1994.
Cini, R., Degliinnocenti, N., Loglio, G., Oppo, C., Orlandi, G., Stortini,
A. M., Tesei, U., and Udisti, R.: Air-sea exchange: Sea salt and organic
microcomponents in Antarctic Snow, Int. J. Environ. Anal. Chem., 63, 15–27,
https://doi.org/10.1080/03067319608039806, 1996.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitation-emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Coble, P. G., Del Castillo, C. E., and Avril, B.: Distribution and optical
properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,
Deep-Sea Res. Part II, 45, 2195–2223,
https://doi.org/10.1016/S0967-0645(98)00068-X, 1998.
Dainard, P. G., Guéguen, C., McDonald, N., and Williams, W. J.:
Photobleaching of fluorescent dissolved organic matter in Beaufort Sea and
North Atlantic Subtropical gyre, Mar. Chem., 177, 630–637,
https://doi.org/10.1016/j.marchem.2015.10.004, 2015.
Dall'Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C. S., Ceburnis,
D., Cree, C., Cortés, P., Zamanillo, M., Nunes, S. O., Pérez, G. L.,
Ortega-Retuerta, E., Emelianov, M., Vaqué, D., Marrasé, C., Estrada,
M., Sala, M. M., Vidal, M., Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi,
M., Decesari, S., Facchini, M. C., Harrison, R. M., O'Dowd, C., and
Simó, R.: Antarctic sea ice region as a source of biogenic organic
nitrogen in aerosols, Sci. Rep., 7, 6047,
https://doi.org/10.1038/s41598-017-06188-x, 2017.
D'Andrilli, J. and McConnell, J. R.: Polar ice core organic matter
signatures reveal past atmospheric carbon composition and spatial trends
across ancient and modern timescales, J. Glaciol., 67, 1028–1042,
https://doi.org/10.1017/jog.2021.51, 2021.
Davis, J. and Benner, R.: Seasonal trends in the abundance, composition and
bioavailability of particulate and dissolved organic matter in the
Chukchi/Beaufort Seas and western Canada Basin, Deep-Sea Res. Part II, 52,
3396–3410, https://doi.org/10.1016/j.dsr2.2005.09.006, 2005.
de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E.
R., O'Dowd, C., Schulz, M., and Schwartz, S. E.: Production flux of sea
spray aerosol, Rev. Geophys., 49, RG2001,
https://doi.org/10.1029/2010RG000349, 2011.
Decesari, S., Facchini, M. C., Matta, E., Lettini, F., Mircea, M., Fuzzi,
S., Tagliavini, E., and Putaud, J. -P.: Chemical features and seasonal
variation of fine aerosol water-soluble organic compounds in the Po Valley,
Italy, Atmos. Environ., 35, 3691–3699,
https://doi.org/10.1016/S1352-2310(00)00509-4, 2001.
Duarte, R. M. B. O., Pio, C. A., and Duarte, A. C.: Synchronous scan and
excitation-emission matrix fluorescence spectroscopy of water-soluble
organic compounds in atmospheric aerosols, J. Atmos. Chem., 48, 157–171,
https://doi.org/10.1023/b:joch.0000036845.82039.8c, 2004.
Elliott, S., Burrows, S. M., Deal, C., Liu, X., Long, M., Ogunro, O.,
Russell, L. M., and Wingenter, O.: Prospects for simulating macromolecular
surfactant chemistry at the ocean–atmosphere boundary, Environ. Res. Lett.,
9, 064012, https://doi.org/10.1088/1748-9326/9/6/064012, 2014.
Ervens, B., Feingold, G., and Kreidenweis, S.: Influence of water-soluble
organic carbon on cloud drop number concentration, J. Geophys. Res., 110,
D18211, https://doi.org/10.1029/2004JD005634, 2005.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw,
G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine
aerosol dominated by insoluble organic colloids and aggregates, Geophys.
Res. Lett., 35, L17814, https://doi.org/10.1029/2008GL034210, 2008.
Fan, X., Wei, S., Zhu, M., Song, J., and Peng, P.: Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels, Atmos. Chem. Phys., 16, 13321–13340, https://doi.org/10.5194/acp-16-13321-2016, 2016.
Fellman, J. B., Spencer, R. G. M., Hernes, P. J., Edwards, R. T., D'Amore,
D. V., and Hood, E.: The impact of glacier runoff on the biodegradability
and biochemical composition of terrigenous dissolved organic matter in
near-shore marine ecosystems, Mar. Chem., 121, 112–122,
https://doi.org/10.1016/j.marchem.2010.03.009, 2010.
Frka, S., Grgić, I., Turšič, J., Gini, M. I., and Eleftheriadis,
K.: Seasonal variability of carbon in humic-like matter of ambient
size-segregated water soluble organic aerosols from urban background
environment, Atmos. Environ., 173, 239–247,
https://doi.org/10.1016/j.atmosenv.2017.11.013, 2018.
Frossard, A. A., Shaw, P. M., Russell, L. M., Kroll, J. H., Canagaratna, M.
R., Worsnop, D. R., Quinn, P. K., and Bates, T. S.: Springtime Arctic haze
contributions of submicron organic particles from European and Asian
combustion sources, J. Geophys. Res. Atmos., 116, D05205,
https://doi.org/10.1029/2010JD015178, 2011.
Frossard, A. A., Russell, L. M., Burrows, S. M., Elliott, S. M., Bates, T.
S., and Quinn, P. K.: Sources and composition of submicron organic mass in
marine aerosol particles, J. Geophys. Res.-Atmos., 119, 12977–13003,
https://doi.org/10.1002/2014JD021913, 2014.
Fu, P., Kawamura, K., and Barrie, L. A.: Photochemical and other sources of
organic compounds in the Canadian high Arctic aerosol pollution during
winter-spring, Environ. Sci. Technol., 43, 286–292,
https://doi.org/10.1021/es803046q, 2009.
Fu, P., Kawamura, K., Chen, J., Qin, M., Ren, L., Sun, Y., Wang, Z., Barrie,
L. A., Tachibana, E., Ding, A., and Yamashita, Y.: Fluorescent water-soluble
organic aerosols in the High Arctic atmosphere, Sci. Rep., 5, 9845,
https://doi.org/10.1038/srep09845, 2015.
Fu, P. Q., Kawamura, K., Chen, J., Charrière, B., and Sempéré, R.: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, 2013.
Gantt, B., Meskhidze, N., Facchini, M. C., Rinaldi, M., Ceburnis, D., and O'Dowd, C. D.: Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol, Atmos. Chem. Phys., 11, 8777–8790, https://doi.org/10.5194/acp-11-8777-2011, 2011.
Gao, Z. and Guéguen, C.: Size distribution of absorbing and fluorescing
DOM in Beaufort Sea, Canada Basin, Deep-Sea Res. Part I, 121, 30–37,
https://doi.org/10.1016/j.dsr.2016.12.014, 2017.
Gelencsér, A., Hoffer, A., Krivacsy, Z., Kiss, G., Molnár, A., and
Mészáros, E.: On the possible origin of humic matter in fine
continental aerosol, J. Geophys. Res., 107, 4137,
https://doi.org/10.1029/2001JD001299, 2002.
Gelencsér, A., Hoffer, A., Kiss, G., Tombacz, E., Kurdi, R., and Bencze,
L.: In-situ formation of light-absorbing organic matter in cloud water, J.
Atmos. Chem., 45, 25–33, https://doi.org/10.1023/A:1024060428172, 2003.
Ghahremaninezhad, R., Norman, A.-L., Abbatt, J. P. D., Levasseur, M., and Thomas, J. L.: Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer, Atmos. Chem. Phys., 16, 5191–5202, https://doi.org/10.5194/acp-16-5191-2016, 2016.
Gonçalves-Araujo, R., Granskog, M. A., Bracher, A., Azetsu-Scott, K.,
Dodd, P. A., and Stedmon, C. A.: Using fluorescent dissolved organic matter
to trace and distinguish the origin of Arctic surface waters, Sci. Rep., 6,
33978, https://doi.org/10.1038/srep33978, 2016.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hara, K., Osada, K., Hayashi, M., Matsunaga, K., Shibata, T., Iwasaka, Y.,
and Furuya, K.: Fractionation of inorganic nitrates in winter Arctic
troposphere: Coarse aerosol particles containing inorganic nitrates, J.
Geophys. Res.-Atmos., 104, 23671–23679,
https://doi.org/10.1029/1999JD900348, 1999.
Hawkins, L. N. and Russell, L. M.: Polysaccharides, proteins, and
phytoplankton fragments: Four chemically distinct types of marine primary
organic aerosol classified by Single Particle spectromicroscopy, Adv.
Meteorol., 2010, 1–14, https://doi.org/10.1155/2010/612132, 2010.
Held, A., Brooks, I. M., Leck, C., and Tjernström, M.: On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration, Atmos. Chem. Phys., 11, 3093–3105, https://doi.org/10.5194/acp-11-3093-2011, 2011.
Herckes, P., Chang, H., Lee, T., and Collett Jr., J. L.: Air pollution
processing by radiation fogs, Water Air Soil Pollut., 181, 65–75,
https://doi.org/10.1007/s11270-006-9276-x, 2007.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006.
Hole, L. R., Christensen, J. H., Ruoho-Airola, T., Tørseth, K., Ginzburg,
V., and Glowacki, P.: Past and future trends in concentrations of sulphur
and nitrogen compounds in the Arctic, Atmos. Environ., 43, 928–939,
https://doi.org/10.1016/j.atmosenv.2008.10.043, 2009.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and annual fluxes of nutrients and organic matter from large
rivers to the Arctic Ocean and surrounding seas, Estuaries Coasts, 35,
369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and
Parlanti, E.: Properties of fluorescent dissolved organic matter in the
Gironde Estuary, Org. Geochem., 40, 706–719,
https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009.
Hynes, A. J., Wine, P. H., and Semmes, D. H.: Kinetics and mechanism of
hydroxyl reactions with organic sulfides, J. Phys. Chem., 90, 4148–4156,
https://doi.org/10.1021/j100408a062, 1986.
Ishii, S. K. L. and Boyer, T. H.: Behavior of reoccurring PARAFAC components
in fluorescent dissolved organic matter in natural and engineered systems: A
critical review, Environ. Sci. Technol., 46, 2006–2017,
https://doi.org/10.1021/es2043504, 2012.
Jacob, D. J., Waldman, J. M., Munger, J. W., and Hoffmann, M. R.: A field
investigation of physical and chemical mechanisms affecting pollutant
concentrations in fog droplets, Tellus B, 36, 272–285,
https://doi.org/10.3402/tellusb.v36i4.14909, 1984.
Jung, J., Furutani, H., Uematsu, M., Kim, S., and Yoon, S.: Atmospheric inorganic nitrogen input via dry, wet, and sea fog deposition to the subarctic western North Pacific Ocean, Atmos. Chem. Phys., 13, 411–428, https://doi.org/10.5194/acp-13-411-2013, 2013.
Jung, J., Furutani, H., Uematsu, M., and Park, J.: Distributions of
atmospheric non-sea-salt sulfate and methanesulfonic acid over the Pacific
Ocean between 48∘ N and 55∘ S during summer, Atmos.
Environ., 99, 374–384, https://doi.org/10.1016/j.atmosenv.2014.10.009,
2014.
Jung, J., Han, B., Rodriguez, B., Miyazaki, Y., Chung, H. Y., Kim, K., Choi,
J.-O., Park, K., Kim, I.-N., Kim, S., Yang, E. J., and Kang, S.-H.:
Atmospheric dry deposition of water-soluble nitrogen to the subarctic
western north Pacific Ocean during summer, Atmosphere, 10, 351,
https://doi.org/10.3390/atmos10070351, 2019.
Jung, J., Hong, S.-B., Chen, M., Hur, J., Jiao, L., Lee, Y., Park, K., Hahm, D., Choi, J.-O., Yang, E. J., Park, J., Kim, T.-W., and Lee, S.: Characteristics of methanesulfonic acid, non-sea-salt sulfate and organic carbon aerosols over the Amundsen Sea, Antarctica, Atmos. Chem. Phys., 20, 5405–5424, https://doi.org/10.5194/acp-20-5405-2020, 2020.
Jung, J., Son, J. E., Lee, Y. K., Cho, K.-H., Lee, Y., Yang, E. J., Kang,
S.-H., and Hur, J.: Tracing riverine dissolved organic carbon and its
transport to the halocline layer in the Chukchi Sea (western Arctic Ocean)
using humic-like fluorescence fingerprinting, Sci. Total Environ., 772,
145542, https://doi.org/10.1016/j.scitotenv.2021.145542, 2021.
Jung, J., Miyazaki, Y., Hur, J., Lee, Y. K., Jeon, M. H., Lee, Y., Cho, K.-H., Chung, H. Y., Kim, K., Choi, J.-O., Lalande, C., Kim, J.-H., Choi, T., Yoon, Y. J., Yang, E. J., and Kang, S.-H.: Measurement Report: Summertime fluorescence characteristics of atmospheric water-soluble organic carbon in the marine boundary layer of the western Arctic Ocean [data set], https://doi.org/10.22663/KOPRI-KPDC-00002181.1, 2023.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kawamura, K., Narukawa, M., Li, S.-M., and Barrie, L. A.: Size distributions
of dicarboxylic acids and inorganic ions in atmospheric aerosols collected
during polar sunrise in the Canadian high Arctic, J. Geophys. Res., 112,
D10307, https://doi.org/10.1029/2006JD008244, 2007.
Kawamura, K., Ono, K., Tachibana, E., Charriére, B., and Sempéré, R.: Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer, Biogeosciences, 9, 4725–4737, https://doi.org/10.5194/bg-9-4725-2012, 2012.
Keene, W. C., Maring, H., Maben, J. R., Kieber, D. J., Pszenny, A. A. P.,
Dahl, E. E., Izaguirre, M. A., Davis, A. J., Long, M. S., Zhou, X.,
Smoydzin, L., and Sander, R.: Chemical and physical characteristics of
nascent aerosols produced by bursting bubbles at a model air-sea interface,
J. Geophys. Res., 112, D21202, https://doi.org/10.1029/2007JD008464, 2007.
Kerminen, V.-M. and Leck, C.: Sulfur chemistry over the central Arctic Ocean
during the summer: Gas-to-particle transformation, J. Geophys. Res., 106,
32087–32099, https://doi.org/10.1029/2000JD900604, 2001.
Kieber, R. J., Whitehead, R. F., Reid, S. N., Willey, J. D., and Seaton, P.
J.: Chromophoric dissolved organic matter (CDOM) in rainwater, southeastern
North Carolina, USA, J. Atmos. Chem., 54, 21–41,
https://doi.org/10.1007/s10874-005-9008-4, 2006.
Kiss, G., Varga, B., Galambos, I., and Ganszky, I.: Characterization of
water-soluble organic matter isolated from atmospheric fine aerosol, J.
Geophys. Res., 107, 8339, https://doi.org/10.1029/2001JD000603, 2002.
Krivácsy, Z., Kiss, Gy., Varga, B., Galambos, I., Sárvári, Z.,
Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M. C., Zappoli,
S., Andracchio, A., Alsberg, T., Hansson, H. C., and Persson, L.: Study of
humic-like substances in fog and interstitial aerosol by size-exclusion
chromatography and capillary electrophoresis, Atmos. Environ., 34,
4273–4281, https://doi.org/10.1016/S1352-2310(00)00211-9, 2000.
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift
speed: Decadal trends and ocean currents, J. Geophys. Res.-Oceans, 118,
2408–2425, https://doi.org/10.1002/jgrc.20191, 2013.
Lannuzel, D., Tedesco, L., van Leeuwe, M., Campbell, K., Flores, H.,
Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K.,
Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A.,
Fripiat, F., Geilfus, N.-X., Jacques, C., Jones, E., Kaartokallio, H.,
Kotovitch, M., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala,
J.-M., Steiner, N., Tison, J.-L., Vancoppenolle, M., Van der Linden, F.,
Vichi, M., and Wongpan, P.: The future of Arctic sea-ice biogeochemistry and
ice-associated ecosystems, Nat. Clim. Change, 10, 983–992,
https://doi.org/10.1038/s41558-020-00940-4, 2020.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence intensity calibration using
the Raman scatter peak of water, Appl. Spectrosc., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009.
Leaitch, W. R., Sharma, S., Huang, L., Toom-Sauntry, D., Chivulescu, A.,
Macdonald, A. M., von Salzen, K., Pierce, J. R., Bertram, A. K., Schroder,
J. C., Shantz, N. C., Chang, R. Y. -W., and Norman, A.-L.: Dimethyl sulfide
control of the clean summertime Arctic aerosol and cloud, Elem. Sci. Anth., 1, 17, https://doi.org/10.12952/journal.elementa.000017, 2013.
Leaitch, W. R., Russell, L. M., Liu, J., Kolonjari, F., Toom, D., Huang, L., Sharma, S., Chivulescu, A., Veber, D., and Zhang, W.: Organic functional groups in the submicron aerosol at 82.5∘ N, 62.5∘ W from 2012 to 2014, Atmos. Chem. Phys., 18, 3269–3287, https://doi.org/10.5194/acp-18-3269-2018, 2018.
Leck, C. and Persson, C.: Seasonal and short-term variability in dimethyl
sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles
in the arctic marine boundary layer during summer and autumn, Tellus B, 48,
272–299, https://doi.org/10.1034/j.1600-0889.48.issue2.1.x, 1996.
Lee, H. J. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Excitation–emission spectra and fluorescence quantum yields for fresh and
aged biogenic secondary organic aerosols, Environ. Sci. Technol., 47,
5763–5770, https://doi.org/10.1021/es400644c, 2013.
Lee, Y., Min, J. O., Yang, E. J., Cho, K.-H., Jung, J., Park, J., Moon, J.
K., and Kang, S.-H.: Influence of sea ice concentration on phytoplankton
community structure in the Chukchi and East Siberian Seas, Pacific Arctic
Ocean, Deep-Sea Res. Part I, 147, 54–64,
https://doi.org/10.1016/j.dsr.2019.04.001, 2019.
Levasseur, M.: Impact of Arctic meltdown on the microbial cycling of
sulphur, Nat. Geosci., 6, 691–700, https://doi.org/10.1038/ngeo1910, 2013.
Lewis, K. M., van Dijken, G. L., and Arrigo, K. R.: Changes in phytoplankton
concentration now drive increased Arctic Ocean primary production, Science,
369, 198–202, https://doi.org/10.1126/science.aay8380, 2020.
Matsumoto, K., Tanaka, H., Nagao, I., and Ishizaka, Y.: Contribution of
particulate sulfate and organic carbon to cloud condensation nuclei in the
marine atmosphere, Geophys. Res. Lett., 24, 655–658,
https://doi.org/10.1029/97GL00541, 1997.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038,
2001.
McNeill, V. F., Grannas, A. M., Abbatt, J. P. D., Ammann, M., Ariya, P., Bartels-Rausch, T., Domine, F., Donaldson, D. J., Guzman, M. I., Heger, D., Kahan, T. F., Klán, P., Masclin, S., Toubin, C., and Voisin, D.: Organics in environmental ices: sources, chemistry, and impacts, Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012, 2012.
Millero, F. J. and Sohn, M. L.: Chemical oceanography, CRC Press, Boca
Raton, FL, 521 pp., 1992.
Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M.: Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific, Atmos. Chem. Phys., 11, 3037–3049, https://doi.org/10.5194/acp-11-3037-2011, 2011.
Miyazaki, Y., Coburn, S., Ono, K., Ho, D. T., Pierce, R. B., Kawamura, K., and Volkamer, R.: Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific, Atmos. Chem. Phys., 16, 7695–7707, https://doi.org/10.5194/acp-16-7695-2016, 2016.
Miyazaki, Y., Suzuki, K., Tachibana, E., Yamashita, Y., Müller, A.,
Kawana, K., and Nishioka, J.: New index of organic mass enrichment in sea
spray aerosols linked with senescent status in marine phytoplankton, Sci.
Rep., 10, 17042, https://doi.org/10.1038/s41598-020-73718-5, 2020.
Miyazaki, Y., Yamashita, Y., Kawana, K., Tachibana, E., Kagami, S., Mochida,
M., Suzuki, K., and Nishioka, J.: Chemical transfer of dissolved organic
matter from surface seawater to sea spray water-soluble organic aerosol in
the marine atmosphere, Sci. Rep., 8, 14861,
https://doi.org/10.1038/s41598-018-32864-7, 2018.
Mladenov, N., Alados-Arboledas, L., Olmo, F. J., Lyamani, H., Delgado, A.,
Molina, A., and Reche, I.: Applications of optical spectroscopy and stable
isotope analyses to organic aerosol source discrimination in an urban area,
Atmos. Environ., 45, 1960–1969,
https://doi.org/10.1016/j.atmosenv.2011.01.029, 2011.
Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W.,
and Martins, J. M. F.: Tracing the origin and fate of NOx in the Arctic
atmosphere using stable isotopes in nitrate, Science, 322, 730–732,
https://doi.org/10.1126/science.1161910, 2008.
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y., Thomas,
J. L., Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., Willis, M.
D., and Liggio, J.: Microlayer source of oxygenated volatile organic
compounds in the summertime marine Arctic boundary layer, P. Natl. Acad.
Sci. USA, 114, 6203–6208, https://doi.org/10.1073/pnas.1620571114, 2017.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods, 6, 658–661, https://doi.org/10.1039/C3AY41935E,
2014.
Narukawa, M., Kawamura, K., Li, S.-M., and Bottenheim, J. W.: Stable carbon
isotopic ratios and ionic composition of the high-Arctic aerosols: An
increase in δ13C values from winter to spring, J. Geophys.
Res., 113, D02312, https://doi.org/10.1029/2007JD008755, 2008.
Nielsen, I. E., Skov, H., Massling, A., Eriksson, A. C., Dall'Osto, M., Junninen, H., Sarnela, N., Lange, R., Collier, S., Zhang, Q., Cappa, C. D., and Nøjgaard, J. K.: Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station, Atmos. Chem. Phys., 19, 10239–10256, https://doi.org/10.5194/acp-19-10239-2019, 2019.
Nilsson, E. D., Rannik, Ü., Swietlicki, E., Leck, C., Aalto, P. P.,
Zhou, J., and Norman, M.: Turbulent aerosol fluxes over the Arctic Ocean: 2.
Wind-driven sources from the sea, J. Geophys. Res., 106, 32139–32154,
https://doi.org/10.1029/2000JD900747, 2001.
Nozière, B., Dziedzic, P., and Córdova, A.: Formation of secondary
light-absorbing “fulvic-like” oligomers: A common process in aqueous and
ionic atmospheric particles?, Geophys. Res. Lett., 34, L21812,
https://doi.org/10.1029/2007GL031300, 2007.
O'Dowd, C. D. and De Leeuw, G.: Marine aerosol production: A review of the
current knowledge, Philos. T. R. Soc. A, 365, 1753–1774,
https://doi.org/10.1098/rsta.2007.2043, 2007.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y.-J., and Putaud, J.-P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Osburn, C. L., Anderson, N. J., Stedmon, C. A., Giles, M. E., Whiteford, E.
J., McGenity, T. J., Dumbrell, A. J., and Underwood, G. J. C.: Shifts in the
source and composition of dissolved organic matter in Southwest Greenland
lakes along a regional hydro-climatic gradient. J. Geophys. Res.-Biogeo., 122, 3431–3445, https://doi.org/10.1002/2017JG003999, 2017.
Pani, S. K., Lee, C.-T., Griffth, S. M., and Lin, N.-H.: Humic-like
substances (HULIS) in springtime aerosols at a high-altitude background
station in the western North Pacific: Source attribution, abundance, and
light-absorption, Sci. Total Environ., 809, 151180,
https://doi.org/10.1016/j.scitotenv.2021.151180, 2022.
Park, J., Dall'Osto, M., Park, K., Kim, J.-H., Park, J., Park, K.-T., Hwang,
C. Y., Jang, G. I., Gim, Y., Kang, S., Park, S., Jin, Y. K., Yum, S. S.,
Simó, R., and Yoon, Y.-J.: Arctic primary aerosol production strongly
influenced by riverine organic matter, Environ. Sci. Technol., 53,
8621–8630, https://doi.org/10.1021/acs.est.9b03399, 2019a.
Park, K., Kim, I., Choi, J.-O., Lee, Y., Jung, J., Ha, S.-Y., Kim, J.-H.,
and Zhang, M.: Unexpectedly high dimethyl sulfide concentration in
high-latitude Arctic sea ice melt ponds, Environ. Sci.-Proc. Imp.,
21, 1642–1649, https://doi.org/10.1039/c9em00195f, 2019b.
Perovich, D., Meier, W., Tschudi, T., Hendricks, S., Petty, A. A., Divine,
D., Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker,
R., Tian-Kunze, X., Webster, M., and Wood, K.: Sea ice, NOAA Arctic Report
Card 2020, https://www.arctic.noaa.gov/Report-Card (last access: 21 May 2022), 2020.
Psichoudaki, M. and Pandis, S. N.: Atmospheric aerosol water-soluble organic
carbon measurement: A theoretical analysis, Environ. Sci. Technol., 47,
9791–9798, https://doi.org/10.1021/es402270y, 2013.
Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan,
J.: Fluorescence fingerprinting properties for exploring water-soluble
organic compounds in PM2.5 in an industrial city of northwest China, Atmos.
Environ., 184, 203–211, https://doi.org/10.1016/j.atmosenv.2018.04.049,
2018.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., and
Shaw, G. E.: A 3-year record of simultaneously measured aerosol chemical and
optical properties at Barrow, Alaska, J. Geophys. Res., 107, AAC 8-1–AAC
8-15, https://doi.org/10.1029/2001JD001248, 2002.
Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., and
Gong, S. L.: Arctic haze: current trends and knowledge gaps, Tellus B, 59, 99–114,
https://doi.org/10.1111/j.1600-0889.2006.00236.x, 2007.
Quinn, P. K., Bates, T. S., Schulz, K., and Shaw, G. E.: Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008, Atmos. Chem. Phys., 9, 8883–8888, https://doi.org/10.5194/acp-9-8883-2009, 2009.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via
oceanic phytoplankton sulphur emissions, Nature, 480, 51–56,
https://doi.org/10.1038/nature10580, 2011.
Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,
Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surface
carbon pool to organic matter enrichment in sea spray aerosol, Nat. Geosci.,
7, 228–232, https://doi.org/10.1038/NGEO2092, 2014.
Rinaldi, M., Decesari, S., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi,
S., O'Dowd, C. D., Ceburnis, D., and Facchini, M. C.: Primary and secondary
organic marine aerosol and oceanic biological activity: Recent results and
new perspectives for future studies, Adv. Meteorol., 2010, 1–10,
https://doi.org/10.1155/2010/310682, 2010.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.
S.: Carbohydrate-like composition of submicron atmospheric particles and
their production from ocean bubble bursting, P. Natl. Acad. Sci. USA,
107, 6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Salma, I., Mészáros, T., and Maenhaut, W.: Mass size distribution of
carbon in atmospheric humic-like substances and water soluble organic carbon
for an urban environment, J. Aerosol Sci., 56, 53–60,
https://doi.org/10.1016/j.jaerosci.2012.06.006, 2013.
Sasakawa, M., Ooki, A., and Uematsu, M.: Aerosol size distribution during
sea fog and its scavenge process of chemical substances over the
northwestern North Pacific, J. Geophys. Res., 108, 4120,
https://doi.org/10.1029/2002JD002329, 2003.
Saxena, P., Hildemann, L. M., McMurry, P. H., and Seinfeld, J. H.: Organics
alter hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100,
18755–18770, https://doi.org/10.1029/95JD01835, 1995.
Shaw, P. M., Russell, L. M., Jefferson, A., and Quinn, P. K.: Arctic organic
aerosol measurements show particles from mixed combustion in spring haze and
from frost flowers in winter, Geophys. Res. Lett., 37, L10803,
https://doi.org/10.1029/2010GL042831, 2010.
Shen, Y., Fichot, C. G., and Benner, R.: Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean, Biogeosciences, 9, 4993–5005, https://doi.org/10.5194/bg-9-4993-2012, 2012.
Shimada, K., Kamoshida, T., Itoh, M., Nishino, S., Carmack, E., McLaughlin,
F., Zimmermann, S., and Proshutinsky, A.: Pacific Ocean inflow: Influence on
catastrophic reduction of sea ice cover in the Arctic Ocean, Geophys. Res.
Lett., 33, L08605, https://doi.org/10.1029/2005GL025624, 2006.
Sirois, A. and Barrie, L. A.: Arctic lower tropospheric aerosol trends and
composition at Alert, Canada: 1980–1995, J. Geophys. Res., 104,
11599–11618, https://doi.org/10.1029/1999JD900077, 1999.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter
fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.
Methods, 6, 572–579, https://doi.org/10.4319/lom.2008.6.572, 2008.
Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter
in aquatic environments using a new approach to fluorescence spectroscopy,
Mar. Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0,
2003.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B, Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stohl, A.: Characteristics of atmospheric transport into the Arctic
troposphere, J. Geophys. Res., 111, D11306,
https://doi.org/10.1029/2005JD006888, 2006.
Sullivan, A. P., Weber, R. J., Clements, A. L., Turner, J. R., Bae, M. S.,
and Schauer, J. J.: A method for on-line measurement of water-soluble
organic carbon in ambient aerosol particles: Results from an urban site,
Geophys. Res. Lett., 31, L13105, https://doi.org/10.1029/2004GL019681, 2004.
Tang, J., Wang, J., Zhong, G., Jiang, H., Mo, Y., Zhang, B., Geng, X., Chen, Y., Tang, J., Tian, C., Bualert, S., Li, J., and Zhang, G.: Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning, Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, 2021.
Tsui, W. G. and McNeill, V. F.: Modeling secondary organic aerosol
production from photosensitized humic-like substances (HULIS), Environ. Sci.
Technol. Lett., 5, 255–259, https://doi.org/10.1021/acs.estlett.8b00101,
2018.
Vidovicì, K., Jurkovicì, D. L., Šala, M., Kroflič, A., and Grgic, I.:
Nighttime aqueous-phase formation of nitrocatechols in the atmospheric
condensed phase, Environ. Sci. Technol., 52, 9722–9730,
https://doi.org/10.1021/acs.est.8b01161, 2018.
Voisin, D., Jaffrezo, J.-L., Houdier, S., Barret, M., Cozic, J., King, M.
D., France, J. L., Reay, H. J., Grannas, A., Kos, G., Ariya, P. A., Beine,
H. J., and Domine, F.: Carbonaceous species and humic like substances
(HULIS) in Arctic snowpack during OASIS field campaign in Barrow, J.
Geophys. Res., 117, D00R19, https://doi.org/10.1029/2011JD016612, 2012.
Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes controlling
the composition and abundance of Arctic aerosol, Rev. Geophys., 56,
621–671, https://doi.org/10.1029/2018RG000602, 2018.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J.
J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V.,
Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P.
D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015.
Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang,
S., Wang, X., Laskin, A., and Cong, Z.: Fluorescence characteristics of
water-soluble organic carbon in atmospheric aerosol, Environ. Pollut., 268,
115906, https://doi.org/10.1016/j.envpol.2020.115906, 2021.
Xie, M., Mladenov, N., Williams, M. W., Neff, J. C., Wasswa, J., and
Hannigan, M. P.: Water soluble organic aerosols in the Colorado Rocky
Mountains, USA: composition, sources and optical properties, Sci. Rep., 6,
39339, https://doi.org/10.1038/srep39339, 2016.
Yamashita, Y. and Tanoue, E.: In situ production of chromophoric dissolved
organic matter in coastal environments, Geophys. Res. Lett., 31, L14302,
https://doi.org/10.1029/2004GL019734, 2004.
Yamashita, Y. and Tanoue, E.: Production of bio-refractory fluorescent
dissolved organic matter in the ocean interior, Nat. Geosci., 1, 579–582,
https://doi.org/10.1038/ngeo279, 2008.
Yamashita, Y., Jaffé, R., Maie, N., and Tanoue, E.: Assessing the
dynamics of dissolved organic matter (DOM) in coastal environments by
excitation emission matrix fluorescence and parallel factor analysis
(EEM-PARAFAC), Limnol. Oceanogr., 53, 1900–1908,
https://doi.org/10.4319/lo.2008.53.5.1900, 2008.
Yamashita, Y., Panton, A., Mahaffey, C., and Jaffé, R.: Assessing the
spatial and temporal variability of dissolved organic matter in Liverpool
Bay using excitation–emission matrix fluorescence and parallel factor
analysis, Ocean Dynam., 61, 569–579,
https://doi.org/10.1007/s10236-010-0365-4, 2011.
Yamashita, Y., Boyer, J. N., and Jaffé, R.: Evaluating the distribution
of terrestrial dissolved organic matter in a complex coastal ecosystem using
fluorescence spectroscopy, Con. Shelf Res., 66, 136–144,
https://doi.org/10.1016/j.csr.2013.06.010, 2013.
Yang, L., Chen, W., Zhuang, W. -E., Cheng, Q., Li, W., Wang, H., Guo, W.,
Chen, C. -T. A., and Liu, M.: Characterization and bioavailability of
rainwater dissolved organic matter at the southeast coast of China using
absorption spectroscopy and fluorescence EEM-PARAFAC, Estuar. Coast.
Shelf Sci., 217, 45–55, https://doi.org/10.1016/j.ecss.2018.11.002, 2019.
Yu, C., Yan, J., Zhang, H., Lin, Q., Zheng, H., Zhong, X., Zhao, S., Zhang,
M., Zhao, S., and Li, X.: Characteristics of aerosol WSI with
high-time-resolution observation over Arctic Ocean, Earth Space Sci., 7,
e2020EA001227, https://doi.org/10.1029/2020EA001227, 2020.
Zheng, G., He, K., Duan, F., Cheng, Y., and Ma, Y.: Measurement of
humic-like substances in aerosols: A review, Environ. Pollut., 181,
301–314, https://doi.org/10.1016/j.envpol.2013.05.055, 2013.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:
Differentiating with fluorescence spectroscopy the sources of dissolved
organic matter in soils subjected to drying, Chemosphere, 38, 45–50,
https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
This study examined the summertime fluorescence properties of water-soluble organic carbon...
Altmetrics
Final-revised paper
Preprint