Articles | Volume 23, issue 6
https://doi.org/10.5194/acp-23-3517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-3517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterisations of Europe's integrated water vapour and assessments of atmospheric reanalyses using more than 2 decades of ground-based GPS
Geodetic Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
Roeland Van Malderen
KMI-IRM, Royal Meteorological Institute of Belgium, Brussels 1180, Belgium
Xungang Yin
NOAA National Centers for Environmental Information, Asheville, NC 28801, USA
Hannes Vogelmann
IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
Weiping Jiang
GNSS Research Center, Wuhan University, Wuhan 430079, China
Joseph Awange
School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
Bernhard Heck
Geodetic Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
Hansjörg Kutterer
Geodetic Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
Related authors
B. Kamm, A. Schenk, P. Yuan, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 153–159, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, 2023
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
Atmos. Chem. Phys., 25, 9905–9935, https://doi.org/10.5194/acp-25-9905-2025, https://doi.org/10.5194/acp-25-9905-2025, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant whose distribution and time variability are mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences but also consistently higher pre-COVID than post-COVID trends.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
Carlo Arosio, Viktoria Sofieva, Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Klaus-Peter Heue, Diego Loyola, Edward Malina, Ryan M. Stauffer, David Tarasick, Roeland Van Malderen, Jerry R. Ziemke, and Mark Weber
Atmos. Meas. Tech., 18, 3247–3265, https://doi.org/10.5194/amt-18-3247-2025, https://doi.org/10.5194/amt-18-3247-2025, 2025
Short summary
Short summary
Tropospheric ozone affects air quality and climate, being a pollutant and a greenhouse gas. We analyze satellite data of tropospheric ozone columns obtained by combining two types of observations: one providing stratospheric and the other total ozone. We compare common climatological features and study the influence of the tropopause (troposphere to stratosphere boundary) on the results. We also examine trends over the last 20 years and compare satellite data with ozonesondes to identify drifts.
Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
Atmos. Chem. Phys., 25, 7187–7225, https://doi.org/10.5194/acp-25-7187-2025, https://doi.org/10.5194/acp-25-7187-2025, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000–2022 period.
Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard Barras, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerard Ancellet, Richard Querel, Roeland Van Malderen, and Daniel Zawada
Atmos. Chem. Phys., 25, 2895–2936, https://doi.org/10.5194/acp-25-2895-2025, https://doi.org/10.5194/acp-25-2895-2025, 2025
Short summary
Short summary
Observational records show that stratospheric ozone is recovering in accordance with the implementation of the Montreal Protocol and its amendments. Natural ozone variability complicates the detection of small trends. This study optimizes a statistical model fit in ground-station-based observational records by adding parameters that interpret seasonal and long-term changes in atmospheric circulation and airmass mixing, which reduces uncertainties in detecting the stratospheric ozone recovery.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, Mark Weber, Roeland Van Malderen, Ryan Stauffer, and David Tarasick
EGUsphere, https://doi.org/10.5194/egusphere-2025-306, https://doi.org/10.5194/egusphere-2025-306, 2025
Short summary
Short summary
This study presents the CLCD (CHORA Local Cloud Decision) algorithm for retrieving near-global tropospheric ozone using TROPOMI data. The approach refines the Convective Cloud Differential method by using a local cloud reference sector to minimize errors from stratospheric ozone variability, particularly in mid-latitudes. Validation against ground-based data shows good accuracy, highlighting its potential for improving air quality monitoring and supporting current and future satellite missions.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Arno Keppens, Daan Hubert, José Granville, Oindrila Nath, Jean-Christopher Lambert, Catherine Wespes, Pierre-François Coheur, Cathy Clerbaux, Anne Boynard, Richard Siddans, Barry Latter, Brian Kerridge, Serena Di Pede, Pepijn Veefkind, Juan Cuesta, Gaelle Dufour, Klaus-Peter Heue, Melanie Coldewey-Egbers, Diego Loyola, Andrea Orfanoz-Cheuquelaf, Swathi Maratt Satheesan, Kai-Uwe Eichmann, Alexei Rozanov, Viktoria F. Sofieva, Jerald R. Ziemke, Antje Inness, Roeland Van Malderen, and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3746, https://doi.org/10.5194/egusphere-2024-3746, 2025
Short summary
Short summary
The first Tropospheric Ozone Assessment Report (TOAR) encountered discrepancies between several satellite sensors’ estimates of the distribution and change of ozone in the free troposphere. Therefore, contributing to the second TOAR, we harmonise as much as possible the observational perspective of sixteen tropospheric ozone products from satellites. This only partially accounts for the observed discrepancies, with a reduction of 10–40 % of the inter-product dispersion upon harmonisation.
Gaëlle Dufour, Maxim Eremenko, Juan Cuesta, Gérard Ancellet, Michael Gill, Eliane Maillard Barras, and Roeland Van Malderen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4096, https://doi.org/10.5194/egusphere-2024-4096, 2025
Short summary
Short summary
The IASI-O3 KOPRA v3.0 product shows strong consistency (<1 %) for the three IASI instruments. The validation against homogenized ozone sondes reveals an overall good agreement with slight biases (3–6 %) in tropospheric ozone and a possible temporal drift but difficult to assess due to the limited number of sites. No specific trends are estimated for the tropospheric ozone column for 2008–2022, but persistent negative trends are observed in the lower troposphere.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Robin Björklund, Corinne Vigouroux, Peter Effertz, Omaira E. García, Alex Geddes, James Hannigan, Koji Miyagawa, Michael Kotkamp, Bavo Langerock, Gerald Nedoluha, Ivan Ortega, Irina Petropavlovskikh, Deniz Poyraz, Richard Querel, John Robinson, Hisako Shiona, Dan Smale, Penny Smale, Roeland Van Malderen, and Martine De Mazière
Atmos. Meas. Tech., 17, 6819–6849, https://doi.org/10.5194/amt-17-6819-2024, https://doi.org/10.5194/amt-17-6819-2024, 2024
Short summary
Short summary
Different ground-based ozone measurements from the last 2 decades at Lauder are compared to each other. We want to know why different trends have been observed in the stratosphere. Also, the quality and relevance of tropospheric datasets need to be evaluated. While remaining drifts are still present, our study explains roughly half of the differences in observed trends in previous studies and shows the necessity for continuous review and improvement of the measurements.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Jielong Wang, Yunzhong Shen, and Joseph Awange
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 389–394, https://doi.org/10.5194/isprs-annals-X-4-2024-389-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-389-2024, 2024
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Guang Zeng, Richard Querel, Hisako Shiona, Deniz Poyraz, Roeland Van Malderen, Alex Geddes, Penny Smale, Dan Smale, John Robinson, and Olaf Morgenstern
Atmos. Chem. Phys., 24, 6413–6432, https://doi.org/10.5194/acp-24-6413-2024, https://doi.org/10.5194/acp-24-6413-2024, 2024
Short summary
Short summary
We present a homogenised ozonesonde record (1987–2020) for Lauder, a Southern Hemisphere mid-latitude site; identify factors driving ozone trends; and attribute them to anthropogenic forcings using statistical analysis and model simulations. We find that significant negative lower-stratospheric ozone trends identified at Lauder are associated with an increase in tropopause height and that CO2-driven dynamical changes have played an increasingly important role in driving ozone trends.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Guodong Chen, Weiping Jiang, Zhijie Zhang, Taoyong Jin, and Dawei Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-3030, https://doi.org/10.5194/egusphere-2023-3030, 2024
Preprint archived
Short summary
Short summary
This paper attempts to determine Arctic mean sea surface and sea level change by combining ICESat-2 and CryoSat-2 data. Our results show that the SSH flag identified in ATL07 may be too strict, resulting in a small number of lead identifications. Combining the two missions can obtain sea surface height with higher accuracy and coverage in the Arctic. The results are helpful for the study of sea level, sea ice, and the accuracy of ICESat-2 and CryoSat-2 data in the Arctic.
Herman G. J. Smit, Deniz Poyraz, Roeland Van Malderen, Anne M. Thompson, David W. Tarasick, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 73–112, https://doi.org/10.5194/amt-17-73-2024, https://doi.org/10.5194/amt-17-73-2024, 2024
Short summary
Short summary
This paper revisits fundamentals of ECC ozonesonde measurements to develop and characterize a methodology to correct for the fast and slow time responses using the JOSIE (Jülich Ozone Sonde Intercomparison Experiment) simulation chamber data. Comparing the new corrected ozonesonde profiles to an accurate ozone UV photometer (OPM) as reference allows us to evaluate the time response correction (TRC) method and to determine calibration functions traceable to one reference with 5 % uncertainty.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
B. Kamm, A. Schenk, P. Yuan, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 153–159, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, 2023
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Jiasheng Shi, Taoyong Jin, Mao Zhou, Xiangcheng Wan, and Weiping Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1018, https://doi.org/10.5194/egusphere-2022-1018, 2022
Preprint withdrawn
Short summary
Short summary
SWOT has significant potential for detecting mesoscale eddies, but the detecting method, which is used for nadir altimeters, may be not optimal. We propose to improve the method based on the spatial and temporal features of SWOT, to reduce the long-wavelength errors and enhance the high spatial features. The accuracy of gridded results are improved especially when the number of observations is limited. The reconstruction and detected temporal scales of mesoscale eddy variations is also enhanced.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021, https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
Short summary
The main aim of initiating measurements of the vertical distribution of the ozone concentration by means of ozonesondes attached to weather balloons at Uccle in 1969 was to improve weather forecasts. Since then, this measurement technique has barely changed, but the dense, long-term, and homogeneous Uccle dataset currently remains crucial for studying the temporal evolution of ozone from the surface to the stratosphere and is also the backbone of the validation of satellite ozone retrievals.
Thomas Wagner, Steffen Beirle, Steffen Dörner, Christian Borger, and Roeland Van Malderen
Atmos. Chem. Phys., 21, 5315–5353, https://doi.org/10.5194/acp-21-5315-2021, https://doi.org/10.5194/acp-21-5315-2021, 2021
Short summary
Short summary
A global long-term (1995–2015) data set of total column water vapour (TCWV) derived from satellite observations is used to quantify the influence of teleconnections. Based on a newly developed empirical method more than 40 teleconnection indices are significantly detected in our global TCWV data set. After orthogonalisation, only 20 indices are left significant. The global distribution of the cumulative influence of teleconnection indices is strongest in the tropics and high latitudes.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Thomas Trickl, Helmuth Giehl, Frank Neidl, Matthias Perfahl, and Hannes Vogelmann
Atmos. Meas. Tech., 13, 6357–6390, https://doi.org/10.5194/amt-13-6357-2020, https://doi.org/10.5194/amt-13-6357-2020, 2020
Short summary
Short summary
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool for atmospheric studies. The ozone lidar systems developed at Garmisch-Partenkirchen have reached an accuracy level almost matching that of in situ sensors. Since the late 1990s numerous important scientific discoveries have been made, such as the first observation of intercontinental transport of ozone and the very high occurrence of intrusions of stratospheric air into the troposphere.
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020, https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Short summary
The time response of electrochemical concentration cell (ECC) ozonesondes points to at least two distinct reaction pathways with time constants of approximately 20 s and 25 min. Properly considering these time constants eliminates the need for a poorly defined "background" and allows reducing ad hoc corrections based on laboratory tests. This reduces the uncertainty of ECC ozonesonde measurements throughout the profile and especially in regions of low ozone and strong gradients of ozone.
Cited articles
Alshawaf, F., Zus, F., Balidakis, K., Deng, Z., Hoseini, M., Dick, G., and
Wickert, J.: On the Statistical Significance of Climatic Trends Estimated
From GPS Tropospheric Time Series, J. Geophys. Res.-Atmos., 123,
10967–10990, https://doi.org/10.1029/2018JD028703, 2018.
Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.:
Lower troposphere refractivity bias in GPS occultation retrievals, J.
Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003.
Awange, J.: GNSS Environmental Sensing, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-58418-8, 2018.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Beirle, S., Lampel, J., Wang, Y., Mies, K., Dörner, S., Grossi, M., Loyola, D., Dehn, A., Danielczok, A., Schröder, M., and Wagner, T.: The ESA GOME-Evolution “Climate” water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2, Earth Syst. Sci. Data, 10, 449–468, https://doi.org/10.5194/essd-10-449-2018, 2018.
Bernet, L., Brockmann, E., von Clarmann, T., Kämpfer, N., Mahieu, E., Mätzler, C., Stober, G., and Hocke, K.: Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data, Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, 2020.
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger,
D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P.,
Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., and
Willis, P.: GipsyX/RTGx, a new tool set for space geodetic operations and
research, Adv. Space Res., 66, 469–489, https://doi.org/10.1016/j.asr.2020.04.015, 2020.
Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., and Ware, R.:
GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global
Positioning System, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol. Clim., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2, 1994.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data
explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623, 24 September 2018.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Troposphere Products, Nevada Geodetic Laboratory [data set], http://geodesy.unr.edu/gps_timeseries/trop, last access: 8 January 2023.
Bock, O. and Parracho, A. C.: Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis, Atmos. Chem. Phys., 19, 9453–9468, https://doi.org/10.5194/acp-19-9453-2019, 2019.
Bock, O., Keil, C., Richard, E., Flamant, C., and Bouin, M.: Validation of
precipitable water from ECMWF model analyses with GPS and radiosonde data
during the MAP SOP, Q. J. R. Meteorol. Soc., 131, 3013–3036,
https://doi.org/10.1256/qj.05.27, 2005.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS
and very long baseline interferometry from European Centre for Medium-Range
Weather Forecasts operational analysis data, J. Geophys. Res.-Sol. Ea.,
111, B02406, https://doi.org/10.1029/2005JB003629, 2006.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast error analysis of continuous GNSS observations with missing data, J. Geodesy, 87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2012.
Bruyninx, C., Becker, M., and Stangl, G.: Regional densification of the IGS
in europe using the EUREF permanent GPS network (EPN), Phys. Chem. Earth Pt. A, 26, 531–538, https://doi.org/10.1016/S1464-1895(01)00096-5, 2001.
Bruyninx, C., Habrich, H., Söhne, W., Kenyeres, A., Stangl, G., and
Völksen, C.: Enhancement of the EUREF Permanent Network Services and
Products, in: Geodesy for Planet Earth, edited by: Kenyon, S., Pacino, M., and Marti, U., Berlin, Heidelberg, 27–34, https://doi.org/10.1007/978-3-642-20338-1_4, 2012.
Chen, B. and Liu, Z.: Global water vapor variability and trend from the
latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde,
GPS, and microwave satellite, J. Geophys. Res.-Atmos., 121, 11442–11462,
https://doi.org/10.1002/2016JD024917, 2016.
Copernicus: European State of the Climate 2019, https://climate.copernicus.eu/ESOTC/2019, last access: 20 September 2021.
Dai, A., Wang, J., Ware, R. H., and Hove, T. V.: Diurnal variation in water
vapor over North America and its implications for sampling errors in
radiosonde humidity, J. Geophys. Res.-Atmos., 107, ACL 11-1–ACL 11-14,
https://doi.org/10.1029/2001JD000642, 2002.
Dai, A., Wang, J., Thorne, P. W., Parker, D. E., Haimberger, L., and Wang,
X. L.: A New Approach to Homogenize Daily Radiosonde Humidity Data, J.
Climate, 24, 965–991, https://doi.org/10.1175/2010JCLI3816.1, 2011.
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered,
G.: Geodesy by radio interferometry: Effects of atmospheric modeling errors
on estimates of baseline length, Radio Sci., 20, 1593–1607,
https://doi.org/10.1029/RS020i006p01593, 1985.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. de, Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diedrich, H., Wittchen, F., Preusker, R., and Fischer, J.: Representativeness of total column water vapour retrievals from instruments on polar orbiting satellites, Atmos. Chem. Phys., 16, 8331–8339, https://doi.org/10.5194/acp-16-8331-2016, 2016.
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014.
Drobinski, P., Bastin, S., Arsouze, T., Béranger, K., Flaounas, E., and
Stéfanon, M.: North-western Mediterranean sea-breeze circulation in a
regional climate system model, Clim. Dynam., 51, 1077–1093,
https://doi.org/10.1007/s00382-017-3595-z, 2018.
Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing
the Data Coverage in the Integrated Global Radiosonde Archive, J. Atmos.
Ocean. Tech., 35, 1753–1770, https://doi.org/10.1175/JTECH-D-17-0223.1, 2018.
ECMWF: ERA Interim, Daily, ECMWF [data set], https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl, last access: 8 January 2023.
Ejigu, Y. G., Teferle, F. N., Klos, A., Bogusz, J., and Hunegnaw, A.:
Monitoring and prediction of hurricane tracks using GPS tropospheric
products, GPS Solut., 25, 76, https://doi.org/10.1007/s10291-021-01104-3, 2021.
Enriquez-Alonso, A., Sanchez-Lorenzo, A., Calbó, J., González,
J.-A., and Norris, J. R.: Cloud cover climatologies in the Mediterranean
obtained from satellites, surface observations, reanalyses, and CMIP5
simulations: validation and future scenarios, Clim. Dynam., 47, 249–269,
https://doi.org/10.1007/s00382-015-2834-4, 2016.
Fadnavis, S., Müller, R., Chakraborty, T., Sabin, T. P., Laakso, A.,
Rap, A., Griessbach, S., Vernier, J.-P., and Tilmes, S.: The role of
tropical volcanic eruptions in exacerbating Indian droughts, Sci. Rep.-UK, 11, 2714, https://doi.org/10.1038/s41598-021-81566-0, 2021.
Field, C. B., Barros, V. R., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., and Genova, R.: IPCC, 2014: Climate change 2014: Impacts, adaptation, and vulnerability – Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, New York, NY, USA, https://doi.org/10.1017/CBO9781107415386, 2014.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly,Instantaneous,Pressure-Level,Assimilation,Assimilated Meteorological Fields V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/QBZ6MG944HW0, 2015.
Grossi, M., Valks, P., Loyola, D., Aberle, B., Slijkhuis, S., Wagner, T., Beirle, S., and Lang, R.: Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B, Atmos. Meas. Tech., 8, 1111–1133, https://doi.org/10.5194/amt-8-1111-2015, 2015.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hagemann, S., Bengtsson, L., and Gendt, G.: On the determination of
atmospheric water vapor from GPS measurements, J. Geophys. Res., 108, 4678, https://doi.org/10.1029/2002JD003235, 2003.
Harries, J. E.: Atmospheric radiation and atmospheric humidity, Q. J. Roy.
Meteor. Soc., 123, 2173–2186, https://doi.org/10.1002/qj.49712354402, 1997.
Heise, S., Dick, G., Gendt, G., Schmidt, T., and Wickert, J.: Integrated water vapor from IGS ground-based GPS observations: initial results from a global 5-min data set, Ann. Geophys., 27, 2851–2859, https://doi.org/10.5194/angeo-27-2851-2009, 2009.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.
de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Huang, L., Peng, H., Liu, L., Xiong, S., Xie, S., Chen, J., Li, J., and He,
H.: GNSS Precipitable Water Vapor Retrieval With the Aid of NWM Data for
China, Earth Space Sci., 8, e2020EA001550, https://doi.org/10.1029/2020EA001550, 2021.
Jade, S. and Vijayan, M. S. M.: GPS-based atmospheric precipitable water
vapor estimation using meteorological parameters interpolated from NCEP
global reanalysis data, J. Geophys. Res., 113, D03106, https://doi.org/10.1029/2007JD008758, 2008.
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6HH6H41, 2013.
Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., and Sneeuw, N.:
Annual variations of monsoon and drought detected by GPS: A case study in
Yunnan, China, Sci. Rep.-UK, 7, 5874, https://doi.org/10.1038/s41598-017-06095-1,
2017.
Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E.,
Bock, O., Pacione, R., and van Malderen, R. (Eds.): Advanced GNSS
Tropospheric Products for Monitoring Severe Weather Events and Climate: COST
Action ES1206 Final Action Dissemination Report, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-030-13901-8, 2020.
Kämpfer, N. (Ed.): Monitoring Atmospheric Water Vapour: Ground-Based
Remote Sensing and In-situ Methods, Springer, New York, NY,
https://doi.org/10.1007/978-1-4614-3909-7, 2013.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kiehl, J. T. and Trenberth, K. E.: Earth's Annual Global Mean Energy Budget,
B. Am. Meteorol. Soc., 78, 197–208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2, 1997.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425,
264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn., Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koji, A. K., Van Malderen, R., Pottiaux, E., and Van Schaeybroeck, B.:
Understanding the Present-Day Spatiotemporal Variability of Precipitable
Water Vapor over Ethiopia: A Comparative Study between ERA5 and GPS, Remote
Sens.-Basel, 14, 686, https://doi.org/10.3390/rs14030686, 2022.
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E., Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M., Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger, P., Quaas, J., and Sourdeval, O.: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations, Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020.
Kunz, A., Müller, R., Homonnai, V., M. Jánosi, I., Hurst, D., Rap,
A., M. Forster, P., Rohrer, F., Spelten, N., and Riese, M.: Extending water
vapor trend observations over Boulder into the tropopause region: Trend
uncertainties and resulting radiative forcing, J. Geophys. Res.-Atmos., 118, 11269–11284, https://doi.org/10.1002/jgrd.50831, 2013.
Kunz, A., Spelten, N., Konopka, P., Müller, R., Forbes, R. M., and Wernli, H.: Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data, Atmos. Chem. Phys., 14, 10803–10822, https://doi.org/10.5194/acp-14-10803-2014, 2014.
Kursinski, E. R., Hajj, G. A., Hardy, K. R., Romans, L. J., and Schofield,
J. T.: Observing tropospheric water vapor by radio occultation using the
Global Positioning System, Geophys. Res. Lett., 22, 2365–2368,
https://doi.org/10.1029/95GL02127, 1995.
Lavers, D. A., Pappenberger, F., Richardson, D. S., and Zsoter, E.: ECMWF
Extreme Forecast Index for water vapor transport: A forecast tool for
atmospheric rivers and extreme precipitation, Geophys. Res. Lett., 43,
11852–11858, https://doi.org/10.1002/2016GL071320, 2016.
McCarthy, M. P., Thorne, P. W., and Titchner, H. A.: An Analysis of
Tropospheric Humidity Trends from Radiosondes, J. Climate, 22, 5820–5838,
https://doi.org/10.1175/2009JCLI2879.1, 2009.
Müller, R., Kunz, A., Hurst, D. F., Rolf, C., Krämer, M., and Riese,
M.: The need for accurate long-term measurements of water vapor in the upper
troposphere and lower stratosphere with global coverage, Earth's Future, 4,
25–32, https://doi.org/10.1002/2015EF000321, 2016.
Nguyen, K. N., Quarello, A., Bock, O., and Lebarbier, E.: Sensitivity of
Change-Point Detection and Trend Estimates to GNSS IWV Time Series
Properties, Atmosphere, 12, 1102, https://doi.org/10.3390/atmos12091102, 2021.
Nilsson, T. and Elgered, G.: Long-term trends in the atmospheric water vapor
content estimated from ground-based GPS data, J. Geophys. Res., 113, D19101,
https://doi.org/10.1029/2008JD010110, 2008.
Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., and
Schöne, T.: Homogenized Time Series of the Atmospheric Water Vapor
Content Obtained from the GNSS Reprocessed Data, J. Climate, 29, 2443–2456,
https://doi.org/10.1175/JCLI-D-15-0158.1, 2016.
NOAA PSL: NCEP/DOE Reanalysis II, NOAA PSL [data set], https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, last access: 8 January 2023.
Pacione, R., Araszkiewicz, A., Brockmann, E., and Dousa, J.: EPN-Repro2: A reference GNSS tropospheric data set over Europe, Atmos. Meas. Tech., 10, 1689–1705, https://doi.org/10.5194/amt-10-1689-2017, 2017.
Parracho, A. C., Bock, O., and Bastin, S.: Global IWV trends and variability in atmospheric reanalyses and GPS observations, Atmos. Chem. Phys., 18, 16213–16237, https://doi.org/10.5194/acp-18-16213-2018, 2018.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The
development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Sol. Ea., 117, https://doi.org/10.1029/2011JB008916, 2012.
Price, C., Michaelides, S., Pashiardis, S., and Alpert, P.: Long term
changes in diurnal temperature range in Cyprus, Atmos. Res., 51, 85–98,
https://doi.org/10.1016/S0169-8095(99)00022-8, 1999.
Randel, W. J. and Wu, F.: Kelvin wave variability near the equatorial
tropopause observed in GPS radio occultation measurements, J. Geophys. Res., 110, D03102, https://doi.org/10.1029/2004JD005006, 2005.
Randel, W. J., Wu, F., and Forster, P.: The Extratropical Tropopause
Inversion Layer: Global Observations with GPS Data, and a Radiative Forcing
Mechanism, J. Atmos. Sci., 64, 4489–4496, https://doi.org/10.1175/2007JAS2412.1, 2007.
Rebischung, P. and Schmid, R.: IGS14/igs14.atx: a new framework
for the IGS products, in: AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016, https://mediatum.ub.tum.de/doc/1341338/le.pdf (last access: 8 January 2023), 2016.
Saastamoinen, J.: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites, in: The Use of Artificial Satellites for Geodesy, edited by: Henriksen, S. W., Mancini, A., and Chovitz, B. H., American Geophysical Union (AGU), 15, 247–251, https://doi.org/10.1029/GM015p0247, 1972.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. van den, Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products, UCAR/NCAR – Research Data Archive [data set], https://doi.org/10.5065/D61C1TXF, 2011.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., Dool, H., van den Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Schneider, T., O'Gorman, P. A., and Levine, X. J.: Water Vapor and the
Dynamics of Climate Changes, Rev. Geophys., 48, RG3001,
https://doi.org/10.1029/2009RG000302, 2010.
Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Haar, T. H.
V., and Bennartz, R.: The GEWEX Water Vapor Assessment: Results from
Intercomparison, Trend, and Homogeneity Analysis of Total Column Water
Vapor, J. Appl. Meteorol. Clim., 55, 1633–1649, https://doi.org/10.1175/JAMC-D-15-0304.1, 2016.
Schröder, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T., Bennartz, R., Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H., Kachi, M., Kobayashi, S., Kursinski, E. R., Loyola, D., Mears, C., Preusker, R., Rossow, W. B., and Saha, S.: The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses, Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, 2018.
Schueler, T.: On ground-based GPS tropospheric delay estimation, PhD thesis, Univ. der Bundeswehr München, Fak. für Bauingenieur-und Vermessungswesen, Studiengang Geodäsie und Geoinformation, Munich, https://athene-forschung.unibw.de/doc/85240/85240.pdf (last access: 8 January 2023), 2001.
Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464, https://doi.org/10.1214/aos/1176344136, 1978.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of Stratospheric Water
Vapor to Decadal Changes in the Rate of Global Warming, Science, 327,
1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Steinke, S., Wahl, S., and Crewell, S.: Benefit of high resolution COSMO
reanalysis: The diurnal cycle of column-integrated water vapor over Germany,
Meteorol. Z., 38, 165–177, https://doi.org/10.1127/metz/2019/0936, 2019.
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J.,
Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E.,
Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier,
A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager,
T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M.,
Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S.,
Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D.,
Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A.,
Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T.:
International Geomagnetic Reference Field: the 12th generation, Earth Planets Space, 67, 79, https://doi.org/10.1186/s40623-015-0228-9, 2015.
Tilmes, S., Pan, L. L., Hoor, P., Atlas, E., Avery, M. A., Campos, T.,
Christensen, L. E., Diskin, G. S., Gao, R.-S., Herman, R. L., Hintsa, E. J.,
Loewenstein, M., Lopez, J., Paige, M. E., Pittman, J. V., Podolske, J. R.,
Proffitt, M. R., Sachse, G. W., Schiller, C., Schlager, H., Smith, J.,
Spelten, N., Webster, C., Weinheimer, A., and Zondlo, M. A.: An
aircraft-based upper troposphere lower stratosphere O3, CO, and H2O
climatology for the Northern Hemisphere, J. Geophys. Res., 115, D14303,
https://doi.org/10.1029/2009JD012731, 2010.
Tregoning, P. and Herring, T. A.: Impact of a priori zenith hydrostatic
delay errors on GPS estimates of station heights and zenith total delays,
Geophys. Res. Lett., 33, L23303, https://doi.org/10.1029/2006GL027706, 2006.
Trenberth, K. E.: Framing the way to relate climate extremes to climate
change, Climatic Change, 115, 283–290, https://doi.org/10.1007/s10584-012-0441-5, 2012.
Trenberth, K. E. and Fasullo, J. T.: North American water and energy cycles,
Geophys. Res. Lett., 40, 365–369, https://doi.org/10.1002/grl.50107, 2013.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The
Changing Character of Precipitation, B. Am. Meteorol. Soc., 84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Turato, B., Reale, O., and Siccardi, F.: Water Vapor Sources of the October
2000 Piedmont Flood, J. Hydrometeorol., 5, 693–712,
https://doi.org/10.1175/1525-7541(2004)005<0693:WVSOTO>2.0.CO;2, 2004.
Van Malderen, R., Pottiaux, E., Klos, A., Domonkos, P., Elias, M., Ning, T.,
Bock, O., Guijarro, J., Alshawaf, F., Hoseini, M., Quarello, A., Lebarbier,
E., Chimani, B., Tornatore, V., Kazancı, S. Z., and Bogusz, J.:
Homogenizing GPS Integrated Water Vapor Time Series: Benchmarking Break
Detection Methods on Synthetic Data Sets, Earth and Space Science, 7,
e2020EA001121, https://doi.org/10.1029/2020EA001121, 2020.
Van Malderen, R., Pottiaux, E., Stankunavicius, G., Beirle, S., Wagner, T.,
Brenot, H., Bruyninx, C., and Jones, J.: Global Spatiotemporal Variability
of Integrated Water Vapor Derived from GPS, GOME/SCIAMACHY and ERA-Interim:
Annual Cycle, Frequency Distribution and Linear Trends, Remote Sens.-Basel, 14, 1050, https://doi.org/10.3390/rs14041050, 2022.
Vey, S., Dietrich, R., Rülke, A., Fritsche, M., Steigenberger, P., and
Rothacher, M.: Validation of Precipitable Water Vapor within the NCEP/DOE
Reanalysis Using Global GPS Observations from One Decade, J. Climate, 23,
1675–1695, https://doi.org/10.1175/2009JCLI2787.1, 2010.
Vogelmann, H. and Trickl, T.: Wide-range sounding of free-tropospheric water
vapor with a differential-absorption lidar (DIAL) at a high-altitude
station, Appl. Optics., 47, 2116–2132, https://doi.org/10.1364/AO.47.002116, 2008.
Vonder Haar, T. H., Bytheway, J. L., and Forsythe, J. M.: Weather and
climate analyses using improved global water vapor observations, Geophys. Res. Lett., 39, L15802, https://doi.org/10.1029/2012GL052094, 2012.
Wang, J. and Zhang, L.: Climate applications of a global, 2-hourly
atmospheric precipitable water dataset derived from IGS tropospheric
products, J. Geodesy, 83, 209–217, https://doi.org/10.1007/s00190-008-0238-5, 2009.
Wang, J., Zhang, L., and Dai, A.: Global estimates of water-vapor-weighted
mean temperature of the atmosphere for GPS applications, J. Geophys. Res., 110, D21101, https://doi.org/10.1029/2005JD006215, 2005.
Wang, J., Dai, A., and Mears, C.: Global Water Vapor Trend from 1988 to 2011
and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite
Measurements, J. Climate, 29, 5205–5222, https://doi.org/10.1175/JCLI-D-15-0485.1, 2016.
Wang, S., Xu, T., Nie, W., Jiang, C., Yang, Y., Fang, Z., Li, M., and Zhang,
Z.: Evaluation of Precipitable Water Vapor from Five Reanalysis Products
with Ground-Based GNSS Observations, Remote Sens.-Basel, 12, 1817,
https://doi.org/10.3390/rs12111817, 2020.
Wang, X., Zhang, K., Wu, S., Fan, S., and Cheng, Y.: Water vapor-weighted
mean temperature and its impact on the determination of precipitable water
vapor and its linear trend, J. Geophys. Res.-Atmos., 121, 833–852,
https://doi.org/10.1002/2015JD024181, 2016.
Wang, X. L.: Accounting for Autocorrelation in Detecting Mean Shifts in
Climate Data Series Using the Penalized Maximal t or F Test, J. Appl.
Meteorol. Clim., 47, 2423–2444, https://doi.org/10.1175/2008JAMC1741.1, 2008.
Wang, X. L. and Feng, Y.: RHtestsV4 User Manual. Climate Research Division,
Atmospheric Science and Technology Directorate, Science and Technology
Branch, Environment Canada, https://github.com/ECCC-CDAS/RHtests (last access: 8 January 2023), 2013.
Wang, X. L., Wen, Q. H., and Wu, Y.: Penalized Maximal t Test for Detecting
Undocumented Mean Change in Climate Data Series, J. Appl.
Meteorol. Clim., 46, 916–931, https://doi.org/10.1175/JAM2504.1, 2007.
World Meteorological Organization: Guide to Instruments and Methods of Observation, Measurement of Meteorological Variables, WMO-No. 8, 397–398, ISBN 978-92-63-10008-5, 2018.
Yuan, P., Hunegnaw, A., Alshawaf, F., Awange, J., Klos, A., Teferle, F. N.,
and Kutterer, H.: Feasibility of ERA5 integrated water vapor trends for
climate change analysis in continental Europe: An evaluation with GPS
(1994–2019) by considering statistical significance, Remote Sens. Environ.,
260, 112416, https://doi.org/10.1016/j.rse.2021.112416, 2021.
Zhu, Y. and Newell, R. E.: Atmospheric rivers and bombs, Geophys. Res.
Lett., 21, 1999–2002, https://doi.org/10.1029/94GL01710, 1994.
Short summary
Water vapour plays an important role in various weather and climate processes. However, due to its large spatiotemporal variability, its high-accuracy quantification remains a challenge. In this study, 20+ years of GPS-derived integrated water vapour (IWV) retrievals in Europe were obtained. They were then used to characterise the temporal features of Europe's IWV and assess six atmospheric reanalyses. Results show that ERA5 outperforms the other reanalyses at most temporal scales.
Water vapour plays an important role in various weather and climate processes. However, due to...
Altmetrics
Final-revised paper
Preprint