Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-1987-2023
https://doi.org/10.5194/acp-23-1987-2023
Research article
 | 
08 Feb 2023
Research article |  | 08 Feb 2023

Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood

Julia Thomas, Andrew Barrett, and Corinna Hoose

Related authors

The Atmospheric Composition Component of the ICON modeling framework: ICON-ART version 2025.04
Gholam Ali Hoshyaripour, Andreas Baer, Sascha Bierbauer, Julia Bruckert, Dominik Brunner, Jochen Foerstner, Arash Hamzehloo, Valentin Hanft, Corina Keller, Martina Klose, Pankaj Kumar, Patrick Ludwig, Enrico Metzner, Lisa Muth, Andreas Pauling, Nikolas Porz, Thomas Reddmann, Luca Reißig, Roland Ruhnke, Khompat Satitkovitchai, Axel Seifert, Miriam Sinnhuber, Michael Steiner, Stefan Versick, Heike Vogel, Michael Weimer, Sven Werchner, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2025-3400,https://doi.org/10.5194/egusphere-2025-3400, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Occurrence of seeding multi-layer clouds in the Arctic from ground-based observations
Peggy Achtert, Torsten Seelig, Gabriella Wallentin, Luisa Ickes, Matthew D. Shupe, Corinna Hoose, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3529,https://doi.org/10.5194/egusphere-2025-3529, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Pseudo-Global Warming Simulations Reveal Enhanced Supercell Intensity and Hail Growth in a Future Central European Climate
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069,https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Influence of Fire-Induced Heat and Moisture Release on Pyro-Convective Cloud Dynamics During the Australian New Year's Event: A Study Using Convection-Resolving Simulations and Satellite Data
Lisa Janina Muth, Sascha Bierbauer, Corinna Hoose, Bernhard Vogel, Heike Vogel, and Gholam Ali Hoshyaripour
EGUsphere, https://doi.org/10.5194/egusphere-2025-402,https://doi.org/10.5194/egusphere-2025-402, 2025
Short summary

Cited articles

Alizadeh-Choobari, O.: Impact of aerosol number concentration on precipitation under different precipitation rates, Meteorol. Appl., 25, 596–605, https://doi.org/10.1002/met.1724, 2018. a, b
Alizadeh-Choobari, O. and Gharaylou, M.: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation, Atmos. Res., 185, 53–64, https://doi.org/10.1016/j.atmosres.2016.10.021, 2017. a
Allen, R. and Ingram, W.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bergeron, T.: On the low-level redistribution of atmospheric water caused by orography, Proceedings of the international conference on cloud physics, Tokyo and Sapporo-shi, Japan, 24 May–1 June 1965, 96–100, 1965. a, b
Download
Short summary
We study the sensitivity of rain formation processes during a heavy-rainfall event over mountains to changes in temperature and pollution. Total rainfall increases by 2 % K−1, and a 6 % K−1 increase is found at the highest altitudes, caused by a mixed-phase seeder–feeder mechanism (frozen cloud particles melt and grow further as they fall through a liquid cloud layer). In a cleaner atmosphere this process is enhanced. Thus the risk of severe rainfall in mountains may increase in the future.
Share
Altmetrics
Final-revised paper
Preprint