Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1259-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1259-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring sudden stratospheric warmings under climate change since 1980 based on reanalysis data verified by radio occultation
Ying Li
CORRESPONDING AUTHOR
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation
Academy for Precision Measurement Science and Technology (APM), Chinese
Academy of Sciences, Wuhan, 430071, China
Gottfried Kirchengast
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change (WEGC) and Institute
of Physics, University of Graz, 8010 Graz, Austria
Marc Schwaerz
Wegener Center for Climate and Global Change (WEGC) and Institute
of Physics, University of Graz, 8010 Graz, Austria
Yunbin Yuan
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation
Academy for Precision Measurement Science and Technology (APM), Chinese
Academy of Sciences, Wuhan, 430071, China
Related authors
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Congliang Liu, Gottfried Kirchengast, Yueqiang Sun, Kefei Zhang, Robert Norman, Marc Schwaerz, Weihua Bai, Qifei Du, and Ying Li
Atmos. Meas. Tech., 11, 2427–2440, https://doi.org/10.5194/amt-11-2427-2018, https://doi.org/10.5194/amt-11-2427-2018, 2018
Short summary
Short summary
In this study, we focused on investigating the causes of the higher-order residual ionospheric error (RIE) in the GNSS RO events, by employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects, where asymmetric ionospheric conditions play the primary role.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Christoph Schlager, Gottfried Kirchengast, Juergen Fuchsberger, Alexander Kann, and Heimo Truhetz
Geosci. Model Dev., 12, 2855–2873, https://doi.org/10.5194/gmd-12-2855-2019, https://doi.org/10.5194/gmd-12-2855-2019, 2019
Short summary
Short summary
Empirical high-resolution surface wind fields from two study areas, automatically generated by a weather diagnostic application, were intercompared with wind fields of different modeling approaches. The focus is on evaluating spatial differences and displacements between the different datasets. In general, the spatial verification indicates a better statistical agreement for the first study area (hilly WegenerNet Feldbach Region), than for the second one (mountainous WegenerNet Johnsbachtal).
Yueqiang Sun, Weihua Bai, Congliang Liu, Yan Liu, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Xiaoxin Zhang, Xiangguang Meng, Danyang Zhao, Junming Xia, Yuerong Cai, and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 5797–5811, https://doi.org/10.5194/amt-11-5797-2018, https://doi.org/10.5194/amt-11-5797-2018, 2018
Short summary
Short summary
The GNSS Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth’s neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BDS and the US GPS. This paper reviews the FY-3C GNOS mission.
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607–5627, https://doi.org/10.5194/amt-11-5607-2018, https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary
Short summary
In this work we further developed and evaluated an operational weather diagnostic application, the WegenerNet Wind Product Generator (WPG), and applied it to the WegenerNet Johnsbachtal (JBT), a dense meteorological station network located in a mountainous Alpine region. The WPG automatically generates gridded high-resolution wind fields in near-real time with a temporal resolution of 30 min and a spatial resolution of 100 m x 100 m.
Julia Danzer, Marc Schwärz, Veronika Proschek, Ulrich Foelsche, and Hans Gleisner
Atmos. Meas. Tech., 11, 4867–4882, https://doi.org/10.5194/amt-11-4867-2018, https://doi.org/10.5194/amt-11-4867-2018, 2018
Short summary
Short summary
Recently a new approach for the production of RO climatologies has been proposed. The idea is to propagate mean bending angle profiles through processing and retrieve directly climatological products of refractivity, density, pressure, and temperature. The averaging suppresses noise in the data, allowing the bending angles to be used up to 80 km without the need for background information. This work focuses on the comparison of the new climatologies between two processing centers.
Jakob Schwarz, Gottfried Kirchengast, and Marc Schwaerz
Atmos. Meas. Tech., 11, 2601–2631, https://doi.org/10.5194/amt-11-2601-2018, https://doi.org/10.5194/amt-11-2601-2018, 2018
Short summary
Short summary
We process global navigation satellite system radio occultation (RO) observations in a new way with integrated uncertainty propagation; in this study we focus on retrieving atmospheric bending angles from RO excess phase profiles. We find that this new approach within our novel Reference Occultation Processing System (rOPS) exploits the strengths of RO such as its high accuracy and long-term stability in a reliable manner for global climate monitoring and other weather and climate uses.
Congliang Liu, Gottfried Kirchengast, Yueqiang Sun, Kefei Zhang, Robert Norman, Marc Schwaerz, Weihua Bai, Qifei Du, and Ying Li
Atmos. Meas. Tech., 11, 2427–2440, https://doi.org/10.5194/amt-11-2427-2018, https://doi.org/10.5194/amt-11-2427-2018, 2018
Short summary
Short summary
In this study, we focused on investigating the causes of the higher-order residual ionospheric error (RIE) in the GNSS RO events, by employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects, where asymmetric ionospheric conditions play the primary role.
Weihua Bai, Congliang Liu, Xiangguang Meng, Yueqiang Sun, Gottfried Kirchengast, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Danyang Zhao, Junming Xia, Yuerong Cai, Lijun Liu, and Dongwei Wang
Atmos. Meas. Tech., 11, 819–833, https://doi.org/10.5194/amt-11-819-2018, https://doi.org/10.5194/amt-11-819-2018, 2018
Short summary
Short summary
In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing. From the statistics, average bias (and standard deviation) of the bending angle and refractivity profiles were found to be as small as about 0.05–0.2 % (and 0.7–1.6 %) over the upper troposphere and lower stratosphere, including for the GEO, IGSO, and MEO subsets. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise.
Michael E. Gorbunov and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 111–125, https://doi.org/10.5194/amt-11-111-2018, https://doi.org/10.5194/amt-11-111-2018, 2018
Short summary
Short summary
We study the systematic discreapancies between atmospheric refractivity derived from radio occulation (RO) sounding of the Earth's atmosphere and the reanalyses of the European Centre for Medium-Range Weather Forecasts. We construct a regression-based bias model. The model can be used for the RO data propagation in the new reference occultation processing system (rOPS) including the uncertainty propagation through the retrieval chain.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
Barbara Angerer, Florian Ladstädter, Barbara Scherllin-Pirscher, Marc Schwärz, Andrea K. Steiner, Ulrich Foelsche, and Gottfried Kirchengast
Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, https://doi.org/10.5194/amt-10-4845-2017, 2017
Short summary
Short summary
We present a detailed analysis of the latest Wegener Center GPS radio occultation reprocessing (OPSv5.6) output. Knowledge of differences in data quality, as well as of data consistency, is essential when combining data from different missions to a long-term climate record. We compare quality aspects of the various processed satellite missions and present satellite-dependent variations. Temperature data from various satellites are found to be highly consistent within 8 to 25 km.
Riccardo Biondi, Andrea Steiner, Gottfried Kirchengast, Hugues Brenot, and Therese Rieckh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-974, https://doi.org/10.5194/acp-2015-974, 2016
Revised manuscript not accepted
Short summary
Short summary
Cloud structure and cloud top height are key parameters for the monitoring of volcanic cloud movement and for characterizing eruptive processes and understanding the impact on short-term climate variability.
We have studied the eruption of Nabro volcano, which has been recognized as the largest stratospheric sulfur injection since Pinatubo (1991) and we have found a clear warming signature after the eruption of Nabro persisting for a few months.
Y. Li, G. Kirchengast, B. Scherllin-Pirscher, R. Norman, Y. B. Yuan, J. Fritzer, M. Schwaerz, and K. Zhang
Atmos. Meas. Tech., 8, 3447–3465, https://doi.org/10.5194/amt-8-3447-2015, https://doi.org/10.5194/amt-8-3447-2015, 2015
Short summary
Short summary
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System-based radio occultation measurements. The new algorithm is evaluated against the OPSv5.6 algorithm developed by the Wegener Center using both simulated and real observed data. It is found that the algorithm can significantly reduce the random errors of optimized bending angles. The retrieved refractivity and temperature profiles are also benefited.
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
C. L. Liu, G. Kirchengast, K. Zhang, R. Norman, Y. Li, S. C. Zhang, J. Fritzer, M. Schwaerz, S. Q. Wu, and Z. X. Tan
Atmos. Meas. Tech., 8, 2999–3019, https://doi.org/10.5194/amt-8-2999-2015, https://doi.org/10.5194/amt-8-2999-2015, 2015
A. Plach, V. Proschek, and G. Kirchengast
Atmos. Meas. Tech., 8, 2813–2825, https://doi.org/10.5194/amt-8-2813-2015, https://doi.org/10.5194/amt-8-2813-2015, 2015
Short summary
Short summary
This paper discusses simulation results of a newly developed line-of-sight wind retrieval algorithm expanding an existing simulation framework that includes the retrieval of thermodynamic variables and greenhouse gases in the upper troposphere/lower stratosphere region. The underlying mission concept further develops the radio occultation technique (i.e. satellite remote sensing technique scanning the atmosphere with high vertical resolution) employing microwave and infrared-laser signals.
R. Biondi, A. K. Steiner, G. Kirchengast, and T. Rieckh
Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, https://doi.org/10.5194/acp-15-5181-2015, 2015
F. Ladstädter, A. K. Steiner, M. Schwärz, and G. Kirchengast
Atmos. Meas. Tech., 8, 1819–1834, https://doi.org/10.5194/amt-8-1819-2015, https://doi.org/10.5194/amt-8-1819-2015, 2015
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
J. Danzer, U. Foelsche, B. Scherllin-Pirscher, and M. Schwärz
Atmos. Meas. Tech., 7, 2883–2896, https://doi.org/10.5194/amt-7-2883-2014, https://doi.org/10.5194/amt-7-2883-2014, 2014
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Laboratory Studies | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019
Local and remote response of ozone to Arctic stratospheric circulation extremes
On the forcings of the unusual Quasi-Biennial Oscillation structure in February 2016
The climatology of the Brewer–Dobson circulation and the contribution of gravity waves
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys., 22, 3493–3505, https://doi.org/10.5194/acp-22-3493-2022, https://doi.org/10.5194/acp-22-3493-2022, 2022
Short summary
Short summary
The sudden stratospheric warming (SSW) event that occurred in September 2019 in the Southern Hemisphere was analyzed. A large warming and decelerated westerly winds were observed in the southern polar region. Since a reversal from westerly to easterly winds did not take place SSW2019 was classified as a minor SSW. The total wave forcing and the contribution from PW1 were larger in 2019. The strong and long-lasting planetary-scale waves with zonal wavenumber 1 played a role in SSW2019.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Haiyan Li, Robin Pilch Kedzierski, and Katja Matthes
Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, https://doi.org/10.5194/acp-20-6541-2020, 2020
Short summary
Short summary
The QBO westerly phase was reversed by an unexpected easterly jet near 40 hPa and the westerly zonal wind lasted an unusually long time at 20 hPa during winter 2015/16. We find that quasi-stationary Rossby wave W1 and faster Rossby wave W2 propagating from the northern extratropics and a locally generated Rossby wave W3 were important contributors to the easterly jet at 40 hPa. Our results suggest that the unusual zonal wind structure at 20 hPa could be caused by enhanced Kelvin wave activity.
Kaoru Sato and Soichiro Hirano
Atmos. Chem. Phys., 19, 4517–4539, https://doi.org/10.5194/acp-19-4517-2019, https://doi.org/10.5194/acp-19-4517-2019, 2019
Short summary
Short summary
The climatology of the Brewer–Dobson circulation and the potential contribution of gravity waves (GWs) are examined using four modern reanalysis datasets for the annual mean and each season. In this study, unresolved waves are designated as GWs. GWs are essential to determine the high-latitude extension and the turn-around latitude except in summer, although their contribution to the upward mass flux is relatively small. Plausible deficiencies of the current GW parameterizations are discussed.
Cited articles
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M.,
and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite
GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017.
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4,
1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K.F., Ector, D., Healy, S. B., Ho, S. P., Hunt, D. C., Kuo, Y.-H., Liu,H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3 Mission-Early results, B. Am. Meteorol. Soc. 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
Ayarzagüena, B., Langematz, U., Meul, S., Oberländer, S., Abalichin,
J., and Kubin, A.: The role of climate change and ozone recovery for the
future timing of major stratospheric warmings, Geophys. Res. Lett., 40,
2460–2465, https://doi.org/10.1002/grl.50477, 2013.
Baldwin, M. P. and Thompson, D. W. J.: A critical comparison of stratosphere–troposphere coupling indices, Q. J. Roy. Meteorol. Soc., 135, 1661–1672, https://doi.org/10.1002/qj.479, 2009.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, M.: Sudden
stratospheric warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2020.
Biondi, R., Steiner, A. K., Kirchengast, G., and Rieckh, T.: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation, Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, 2015.
Bosilovich, M. G., Kennedy, J., Dee, D., Allan, R., and O'Neill, A.: On the
Reprocessing and Reanalysis of Observations for Climate in Climate Science
for Serving Society, edited by: Asrar, G. and Hurrell, J., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6692-1_3, 2013.
Brunner, L., Steiner, A. K., Scherllin-Pirscher, B., and Jury, M. W.: Exploring atmospheric blocking with GPS radio occultation observations, Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, 2016.
Butler, A. H. and Gerber, E. P.: Optimizing the definition of a sudden
stratospheric warming, J. Climate., 31, 2337–2344, https://doi.org/10.1175/JCLI-D-17-0648.1, 2018.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96,
1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden
stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76,
https://doi.org/10.5194/essd-9-63-2017, 2017.
Cattiaux, J. R., Vautard, R., Cassou, C., Yiou, P., and Codron, F.: Winter 2010 in Europe: a cold extreme in a warming climate, Geophys. Res. Lett., 37, 114–122, https://doi.org/10.1029/2010GL044613, 2010.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings: Part I: Climatology and modeling benchmarks, J. Climate., 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbacha, H., Hólm, E. V., Isaksena, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Dhaka, S. K., Kumar, V., Choudhary, R. K., Ho, S. P., Takahashi, M., and
Yoden, S.: Indications of a strong dynamical coupling between the polar and
tropical regions during the sudden stratospheric warming event January 2009,
based on COSMIC/FORMASAT-3 satellite temperature data, Atmos. Res., 166,
60–69, https://doi.org/10.1016/j.atmosres.2015.06.008, 2015.
ECMWF and C3S: ERA5 reanalysis data, European Centre for Medium-Range Weather Forecasts (ECMWF) and Copernicus Climate Change Service (C3S), Reading, UK, ECMWF and C3S [data set], https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (full resolution; registered ECMWF member state users), https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels (coarse resolution; general C3S users), last access: 15 June 2022.
EOPAC Team: GNSS Radio Occultation Record (OPS 5.6 2001–2020), Wegener Center, University of Graz, Graz, Austria, EOPAC Team [data set], https://doi.org/10.25364/WEGC/OPS5.6:2021.1, 2021.
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and
Kirchengast, G.: Refractivity and temperature climate records from multiple
radio occultation satellites consistent within 0.05 %, Atmos. Meas. Tech.,
4, 2007–2018, https://doi.org/10.5194/amt-4-2007-2011, 2011.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth's energy budget, climate feedbacks, and climate
sensitivity (Chapter 7), in: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Pean, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M. I., Gomis, M., Huang, K., Leitzell, E., Lonnoy, J. B. R., Matthews, T. K., Maycock, C., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 923–1054, https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-7/ (last access: 17 January 2023), 2021.
Garfinkel, C. I., Silverman, V., Harnik, N., Haspel, C., and Riz, Y.:
Stratospheric response to intraseasonal changes in incoming solar radiation,
J. Geophys.Res. Atmos., 120, 7648–7660, https://doi.org/10.1002/2015JD023244, 2015.
Gerber, E. P., Baldwin, M. P., Akiyoshi, H., Austin, J., and Dan, S.:
Stratosphere-troposphere coupling and annular mode variability in
chemistry-climate models, J. Geophys. Res., 115, D00M06, https://doi.org/10.1029/2009JD013770, 2010.
Gobiet, A., Kirchengast, G., Manney, G. L., Borsche, M., Retscher, C., and
Stiller, G.: Retrieval of temperature profiles from CHAMP for climate
monitoring: intercomparison with Envisat MIPAS and GOMOS and different
atmospheric analyses, Atmos. Chem. Phys., 7, 3519–3536,
https://doi.org/10.5194/acp-7-3519-2007, 2007.
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Tracking
the stratosphere-to-surface impact of Sudden Stratospheric Warmings, J. Geophys. Res.-Atmos., 126, e2020JD033881, https://doi.org/10.1029/2020JD033881, 2021.
Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Muñoz-Sabater,
J., Nicolas, J., Radu, R., Schepers., D, Simmons, A., Soci, C., and Dee, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newslett., 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi1, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara1, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan1,R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut. J.-N.:
The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hitchcock, P. and Shepherd, T. G.: Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings, J. Atmos. Sci., 70, 688–707,
https://doi.org/10.1175/JAS-D-12-0111.1, 2013.
Hitchcock, P. and Simpson, I. R.: The downward influence of stratospheric
sudden warmings, J. Atmos. Sci., 71, 3586–3876, https://doi.org/10.1175/JAS-D-14-0012.1, 2014.
Holt, L. A., Randall, C. E., Peck, E. D., Marsh, D. R., Smith, A. K., and
Harvey, V. L.: The influence of major sudden stratospheric warming and
elevated stratopause events on the effects of energetic particle precipitation in WACCM, J. Geophys. Res.-Atmos., 118, 11636–11646,
https://doi.org/10.1002/2013JD020294, 2013.
Hu, J., Ren, R., and Xu, H.: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming, J. Atmos. Sci.,71, 2319–2334, https://doi.org/10.1175/JAS-D-13-0349.1, 2015.
Johnson, K. W., Miller, A. J., and Gelman, M.: Proposed indices characterizing stratospheric circulation and temperature fields, Mon. Weather
Rev., 97, 565–570, https://doi.org/10.1175/1520-0493(1969)097<0565:PICSCA>2.3.CO;2, 1969.
Jonah, O. F., de Paula, E. R., Kherani, E. A., Dutra, S. L. G., and Paes, R.
R.: Atmospheric and ionospheric response to sudden stratospheric warming of
January 2013, J. Geophys. Res.-Space, 119, 4973–4980, https://doi.org/10.1002/2013JA019491, 2014.
Kakoti, G., Kalita, B. R., Bhuyan, P. K., Baruah, S., and Wang, K.: Longitudinal and interhemispheric ionospheric response to 2009 and 2013 SSW
events in the African-European and Indian-East Asian sectors, J. Geophys.
Res.-Space, 125, e2020JA028570, https://doi.org/10.1029/2020JA028570, 2020.
Kirchengast, G.: Occultations for probing atmosphere and climate: Setting
the scene, in: Occultations for Probing Atmosphere and Climate, edited by:
Kirchengast, G., Foelsche, U., and Steiner, A. K., Springer, Berlin, Heidelberg, 1–8, https://doi.org/10.1007/978-3-662-09041-1_1, 2004.
Klingler, R.: Observing Sudden Stratospheric Warmings with Radio Occultation
Data, with Focus on the Event 2009, MSc Thesis, University of Graz,
Graz, Austria, 85 pp., https://resolver.obvsg.at/urn:nbn:at:at-ubg:1-68069 (last access: 15 June 2022), 2014.
Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., and Cohen,
J.: More-persistent weak stratospheric polar vortex states linked to cold
extremes, B. Am. Meteorol. Soc., 99, 49–60, https://doi.org/10.1175/BAMS-D-16-0259.1, 2018a.
Kretschmer, M., Cohen, J., Matthias, V., Runge, J., and Coumou, D.: The
different stratospheric influence on cold-extremes in Eurasia and North
America, Clim. Atmos. Sci., 1, 44, https://doi.org/10.1038/s41612-018-0054-4, 2018b.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements
using the Global Positioning System, J. Geophys. Res., 102, 23429–23465,
https://doi.org/10.1029/97JD01569, 1997.
Kuttippurath, J. and Nikulin, G.: A comparative study of the major sudden
stratospheric warmings in the Arctic winters 2003/2004–2009/2010, Atmos.
Chem. Phys., 12, 8115–8129, https://doi.org/10.5194/acp-12-8115-2012, 2012.
Labitzke, K.: Stratospheric-mesospheric midwinter disturbances: A summary of
observed characteristics, J. Geophys. Res., 86, 9665–9678,
https://doi.org/10.1029/JC086iC10p09665, 1981.
Labitzke, K. and Kunze, M.: On the remarkable Arctic winter in 2008/2009, J.
Geophys. Res.-Atmos., 114, D00I02, https://doi.org/10.1029/2009JD012273, 2009.
Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G.:
Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and
GRUAN from 2002 to 2013, Atmos. Meas. Tech., 8, 4, 1819–1834,
https://doi.org/10.5194/amt-8-1819-2015, 2015.
Lehtonen, I. and Karpechko, A. Y.: Observed and modeled tropospheric cold
anomalies associated with sudden stratospheric warmings, J. Geophys. Res.-Atmos., 121, 1591–1610, https://doi.org/10.1002/2015JD023860, 2016.
Li, Y., Kirchengast, G., Schwaerz, M., Ladstädter, F., and Yuan, Y.-B.:
Monitoring Sudden Stratospheric Warmings using radio occultation: a new
approach demonstrated based on the 2009 event, Atmos. Meas. Tech., 14,
2327–2343, https://doi.org/10.5194/amt-14-2327-2021, 2021.
Lin, J. T., Lin, C. H., Chang, L.C., Huang, H. H., Liu, J. Y., Chen, A. B.,
Chen, C. H., and Liu, C. H.: Observational evidence of ionospheric migrating
tide modification during the 2009 stratospheric sudden warming, Geophys. Res. Lett., 39, L02101, https://doi.org/10.1029/2011GL050248, 2012.
Loeb, N. G., Mayer, M., Kato, S., Fasullo, J. T., Zuo, H., Senan, R., Lyman, J. M., Johnson, G. C., and Balmaseda, M.: Evaluating Twenty-Year Trends in Earth’s Energy Flows From observations and reanalyses, J. Geophys. Res.-Atmos., 127, e2022JD036686, https://doi.org/10.1029/2022JD036686, 2022.
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A.,
Healy, S., von Engeln, A., O'Clerigh, E., and Marquardt, C.: Prospects of
the EPS GRAS mission for operational atmospheric applications, B. Am. Meteorol. Soc., 89, 1863–1875, https://doi.org/10.1175/2008BAMS2399.1, 2008.
Manney, G. L., Lawrence, Z. D., Santee, M. L., Read, W. G., Livesey, N. J.,
Lambert, A., Froidevaux, L., Pumphrey, H. C., and Schwartz M. J.: A minor
sudden stratospheric warming with a major impact: Transport and polar
processing in the 2014/2015 Arctic winter, Geophys. Res. Lett., 42,
7808–7816, https://doi.org/10.1002/2015GL065864, 2015.
McInturff, R. M.: Stratospheric warmings: Synoptic, dynamic and
general-circulation aspects, NASA Reference Publ., NASA-RP-1017, NASA, USA, 174 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780010687.pdf
(last access: 15 June 2022), 1978.
Mitchell, D. M., Gray, L. J.,Anstey, J., Baldwin, M. P., and Charlton-Perez
A. J.: The influence of stratospheric vortex displacements and splits on
surface climate, J. Climate, 26, 2668–2682, https://doi.org/10.1175/JCLI-D-12-00030.1, 2013.
Nayak, C. and Yigit, E.: Variation of small-scale gravity wave activity in
the ionosphere during the major sudden stratospheric warming event of 2009,
J. Geophys. Res.-Space, 124, 470–488, https://doi.org/10.1029/2018JA026048, 2019.
Noguchi, S., Kuroda, Y., Mukougawa, H., Mizuta, R., and Kobayashi, C.:
Impact of satellite observations on forecasting sudden stratospheric warmings, Geophys. Res. Lett., 47, e2019GL086233, https://doi.org/10.1029/2019GL086233, 2020.
Parker, W. S.: Reanalyses and observations: What's the difference, B. Am. Meteorol. Soc., 97, 1565–1572, https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.
Santer, B. D., Wigley, T., Boyle, J. S., Gaffen, D. J., Hnilo, J. J., and
Nychka, D.: Statistical significance of trends and trend differences in
layer-average atmospheric temperature time series, J. Geophys. Res., 105,
7337–7356, https://doi.org/10.1029/1999jd901105, 2000.
Scherhag, R.: Die explosionsartige Stratosphärenerwärmung des
Spätwinters 1951/52, Ber. Deut. Wetterdienst, 38, 51–63, 1952.
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and
Foelsche, U.: Quantifying uncertainty in climatological fields from GPS
radio occultation: an empirical-analytical error model, Atmos. Meas. Tech.,
4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011a.
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Kuo, Y.-H., and
Foelsche, U.: Empirical analysis and modelling of errors of atmospheric
profiles from GPS radio occultation, Atmos. Meas. Tech., 4, 1875–1890,
https://doi.org/10.5194/amt-4-1875-2011, 2011b.
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Schwaerz, M., and
Leroy, S. S.: The power of vertical geolocation of atmospheric profiles from
GNSS radio occultation, J. Geophys. Res.-Atmos., 122, 1595–1616,
https://doi.org/10.1002/2016JD025902, 2017.
Schoeberl, M. R.: Stratospheric warmings: Observations and theory, Rev.
Geophys., 16, 521–538, https://doi.org/10.1029/RG016i004p00521, 1978.
Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., and Hunt, D.:
Estimates of the precision of GPS radio occultations from the
COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808,
https://doi.org/10.1029/2006GL027557, 2007.
Schwärz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J.,
Ladstädter, F., and Angerer, B.: Multi-mission validation by satellite
radio occultation extension project–Final report, Tech. Rep. for ESA/ESRIN
No. 01/2016, Wegener Center, University of Graz, Graz, Austria, https://wegcwww.uni-graz.at/publ/wegcpubl/arsclisys/2016/Schwaerz-etal_MMValRO-FinRep_Dec2016.pdf (last access: 12 December 2021), 2016
Seviour, W. J. M., Mitchell, D. M., and Gray, L. J.: A practical method to
identify displaced and split stratospheric polar vortex events, Geophys.
Res. Lett., 40, 5268–5273, https://doi.org/10.1002/grl.50927, 2013.
Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R.,
Flemming, J., Haimberger1, L., Healy, S., Hersbach, H., Horányi, A.,
Inness, A., Muñoz-Sabater, J., Radu, R., and Schepers, D.: Global
stratospheric temperature bias and other stratospheric aspects of ERA5 and
ERA5.1, ECMWF Tech. Memo. No. 859, ECMWF, https://doi.org/10.21957/rcxqfmg0, 2020.
Singh, R. P. and Pallamraju, D.: On the latitudinal distribution of mesospheric temperatures during sudden stratospheric warming events, J.
Geophys. Res.-Space, 120, 2926–2939, https://doi.org/10.1002/2014JA020355, 2015.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W.,
and Baker, N. L.: Case studies of the mesospheric response to recent minor,
major, and extended stratospheric warmings, J. Geophys. Res., 115, D00N03,
https://doi.org/10.1029/2010JD014114, 2010.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B.,
Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate
monitoring and change detection, Radio Sci., 46, RS0D24,
https://doi.org/10.1029/2010RS004614, 2011.
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P.,
Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen,
K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M.,
Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020a.
Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q.,
Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc,
T., Mears, C., Polvani, L. M., Santer, B. D., Schmidt, T., Sofieva, V.,
Wing, R., and Zou, C.-Z.: Observed temperature changes in the troposphere
and stratosphere from 1979 to 2018, J. Climate., 33, 8165–8194,
https://doi.org/10.1175/JCLI-D-19-0998.1, 2020b.
Stocker, M., Ladstädter, F., and Steiner, A. K.: Observing the climate
impact of large wildfires on stratospheric temperature, Sci. Rep., 11, 22994,
https://doi.org/10.1038/s41598-021-02335-7, 2021.
Sun, Y., Bai, W., Liu, C., Liu, Y., Du, Q., Wang, X., Yang, G., Liao, M.,
Yang, Z., Zhang, X., Meng, X., Zhao, D., Xia, J., Cai, Y., and Kirchengast,
G.: The FengYun-3C radio occultation sounder GNOS: a review of the mission
and its early results and science applications, Atmos. Meas. Tech., 11,
5797–5811, https://doi.org/10.5194/amt-11-5797-2018, 2018.
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric
connection to northern hemisphere wintertime weather: implications for
prediction, J. Climate, 15, 1421–1428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2, 2002.
Tyrlis, E., Manzini, E., Bader, J., Ukita, J., Nakamura, H., and Matei, D.:
Ural blocking driving extreme Arctic sea ice loss, cold Eurasia, and
stratospheric vortex weakening in autumn and early winter 2016–2017, J.
Geophys. Res.-Atmos., 124, 11313–11329, https://doi.org/10.1029/2019JD031085, 2019.
Van Loon, H., Jenne, R. L., and Labitzke, K.: Zonal harmonic standing waves,
J. Geophys. Res., 78, 4463–4471, https://doi.org/10.1029/JC078i021p04463, 1973.
Vignon, E. and Mitchell, D. M.: The stratopause evolution during different
types of sudden stratospheric warming event, Clim. Dynam., 44, 3323–3337,
https://doi.org/10.1007/s00382-014-2292-4, 2015.
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grundwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke, K.: Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28, 3263–3266, https://doi.org/10.1029/2001GL013117, 2001.
Wickert, J., Beyerle, G., König, R., Heise, S., Grunwaldt, L., Michalak,
G., Reigber, C., and Schmidt, T.: GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding, Ann. Geophys., 23, 653–658, https://doi.org/10.5194/angeo-23-653-2005, 2005.
WMO/IQSY.: International Years of the Quiet Sun (IQSY), 1964–1965: Alert
messages with special references to stratwarms, Secretariat of the WMO
WMO/IQSY Rep. 6, 19 pp., 1964.
Yoshida, K. and Yamazaki, K.: Tropical cooling in the case of stratospheric
sudden warming in January 2009: focus on the tropical tropopause layer,
Atmos. Chem. Phys., 11, 6325–6336, https://doi.org/10.5194/acp-11-6325-2011, 2011.
Yu, Y., Ren, R., and Cai, M.: Dynamic linkage between cold air outbreaks and
intensity variations of the meridional mass circulation, J. Atmos. Sci., 72, 3214–3232, https://doi.org/10.1175/JAS-D-14-0390.1, 2015.
Yue, X., Schreiner, W. S., Lei, J., Rocken, C., Hunt, D. C., Kuo, Y.-H., and
Wan, W.: Global ionospheric response observed by COSMIC satellites during
the January 2009 stratospheric sudden warming event, J. Geophys. Res., 115,
A00G09, https://doi.org/10.1029/2010JA015466, 2010.
Zhou, S., Miller, A. J., Wang, J., and Angell, J. K.: Downward-propagating
temperature anomalies in the preconditioned polar stratosphere, J. Climate, 15, 781–792, https://doi.org/10.1175/1520-0442(2002)015<0781:DPTAIT>2.0.CO;2, 2002.
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and...
Altmetrics
Final-revised paper
Preprint