Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the impacts of emission changes on O3 sensitivity, atmospheric oxidation capacity, and pollution transport over the Catalonia region
Sostenipra Research Group, Institute of Environmental Sciences and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Veronica Vidal
Sostenipra Research Group, Institute of Environmental Sciences and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Departament d'Arquitectura de Computadors i Sistemes Operatius (CAOS), Escola d'Enginyeria, Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain
Sergi Ventura
Sostenipra Research Group, Institute of Environmental Sciences and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Roger Curcoll
Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya, Barcelona, Spain
Ricard Segura
Sostenipra Research Group, Institute of Environmental Sciences and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Gara Villalba
Sostenipra Research Group, Institute of Environmental Sciences and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Related authors
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487, https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary
Short summary
A consistent estimation of CO2 emissions is complicated due to the scarcity of CO2 observations. In this study, we showcase the potential to improve the CO2 emissions estimations from the NO2 concentrations based on the NO2-to-CO2 ratio, which should be constant for a source co-emitting NO2 and CO2, by comparing satellite observations with atmospheric chemistry and transport model simulations for NO2 and CO2. Furthermore, we demonstrate the significance of the chemistry in NO2 simulations.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
Rafaela Cruz Alves Alberti, Thomas Lauvaux, Angel Liduvino Vara-Vela, Ricard Segura Barrero, Christoffer Karoff, Maria de Fátima Andrade, Márcia Talita Amorim Marques, Noelia Rojas Benavente, Osvaldo Machado Rodrigues Cabral, Humberto Ribeiro da Rocha, and Rita Yuri Ynoue
Atmos. Chem. Phys., 25, 9803–9829, https://doi.org/10.5194/acp-25-9803-2025, https://doi.org/10.5194/acp-25-9803-2025, 2025
Short summary
Short summary
This study addresses uncertainties in atmospheric models by analyzing CO2 dynamics in a complex urban environment characterized by a dense population and tropical vegetation. High-accuracy sensors were deployed, and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was utilized to simulate CO2 transport, capturing variations and assessing contributions from both anthropogenic and biogenic sources.
Roger Curcoll, Alba Àgueda, Josep-Anton Morguí, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
Atmos. Chem. Phys., 25, 6299–6323, https://doi.org/10.5194/acp-25-6299-2025, https://doi.org/10.5194/acp-25-6299-2025, 2025
Short summary
Short summary
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with the Radon Tracer Method, using back trajectories and radon and methane observations. Estimated fluxes show a strong seasonality with maximums in October, corresponding with the period of harvest and straw incorporation. The estimated annual methane emission was about 262.8 kg CH4 ha‑1. Results were compared with fluxes obtained with static chambers showing strong agreement between both methodologies.
Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3107, https://doi.org/10.5194/egusphere-2024-3107, 2024
Short summary
Short summary
Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487, https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary
Short summary
A consistent estimation of CO2 emissions is complicated due to the scarcity of CO2 observations. In this study, we showcase the potential to improve the CO2 emissions estimations from the NO2 concentrations based on the NO2-to-CO2 ratio, which should be constant for a source co-emitting NO2 and CO2, by comparing satellite observations with atmospheric chemistry and transport model simulations for NO2 and CO2. Furthermore, we demonstrate the significance of the chemistry in NO2 simulations.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
Cited articles
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and
Shankar, U.: Modal aerosol dynamics model for Europe: development and first
applications, Atmos. Environ., 32, 2981–2999,
https://doi.org/10.1016/S1352-2310(98)00006-5, 1998. a, b
Agency, E. E., Guerreiro, C., Colette, A., Leeuw, F., and González Ortiz, A.:
Air quality in Europe: 2018 report, Publications Office,
https://doi.org/10.2800/777411, 2019. a, b
Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An estimate of
the global burden of anthropogenic ozone and fine particulate matter on
premature human mortality using atmospheric modeling, Environ. Health
Persp., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010. a
Badia, A., Iglesias-Suarez, F., Fernandez, R. P., Cuevas, C. A., Kinnison,
D. E., Lamarque, J.-F., Griffiths, P. T., Tarasick, D. W., Liu, J., and
Saiz-Lopez, A.: The role of natural halogens in global tropospheric ozone
chemistry and budget under different 21st century climate scenarios, J.
Geophys. Res-Atmos., 126, e2021JD034859,
https://doi.org/10.1029/2021JD034859,
2021a. a
Badia, A., Langemeyer, J., Codina, X., Gilabert, J., Guilera, N., Vidal, V.,
Segura, R., Vives, M., and Villalba, G.: A take-home message from COVID-19
on urban air pollution reduction through mobility limitations and
teleworking, npj Urban Sustainability, 6, 12, https://doi.org/10.1038/s42949-021-00037-7,
2021b. a, b, c, d, e
Badia, A.: WRF-Chem output- concentrations for the two simulations: Business as Usual and COVID for the two periods, March–April and May [data set], Zenodo, https://doi.org/10.5281/zenodo.8319390, 2023. a
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced
Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117, 1872–1890,
https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a
Brancher, M.: Increased ozone pollution alongside reduced nitrogen dioxide
concentrations during Vienna’s first COVID-19 lockdown: Significance for
air quality management, Environ. Pollut, 284, 117153,
https://doi.org/10.1016/j.envpol.2021.117153, 2021. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. a
Cristofanelli, P. and Bonasoni, P.: Background ozone in the southern Europe and
Mediterranean area: Influence of the transport processes, Environ. Pollut.,
157, 1399–1406, https://doi.org/10.1016/j.envpol.2008.09.017, special
Issue Section: Ozone and Mediterranean Ecology: Plants, People, Problems,
2009. a
Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone in
unpolluted tropospheric air, Tellus, 26, 47–57,
https://doi.org/10.1111/j.2153-3490.1974.tb01951.x, 1974. a
Derwent, R., Jenkin, M., and Saunders, S.: Photochemical ozone creation
potentials for a large number of reactive hydrocarbons under European
conditions, Atmos. Environ., 30, 181–199,
https://doi.org/10.1016/1352-2310(95)00303-G, 1996. a
Doumbia, T., Granier, C., Elguindi, N., Bouarar, I., Darras, S., Brasseur, G., Gaubert, B., Liu, Y., Shi, X., Stavrakou, T., Tilmes, S., Lacey, F., Deroubaix, A., and Wang, T.: Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling, Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, 2021. a
Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009. a, b, c, d
Fleming, Z. L., Doherty, R. M., von Schneidemesser, E., Malley, C. S., Cooper,
O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G.,
Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.:
Tropospheric Ozone Assessment Report: Present-day ozone distribution and
trends relevant to human health, Elementa: Science of the Anthropocene, 6, 35,
https://doi.org/10.1525/elementa.273, 12, 2018. a
GBD 2019 Risk Factors Collaborators: Global burden of 87 risk factors in 204
countries and territories, 1990–2019: a systematic analysis for the Global
Burden of Disease Study 2019, Lancet, 396, 1223–1249,
https://doi.org/10.1016/S0140-6736(20)30752-2, 2020. a
Georgiou, G. K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., and Lelieveld, J.: Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison, Atmos. Chem. Phys., 18, 1555–1571, https://doi.org/10.5194/acp-18-1555-2018, 2018. a
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K.,
Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L.,
Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter,
J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B.,
Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole
Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys.
Res-Atmos., 124, 12380–12403,
https://doi.org/10.1029/2019JD030943, 2019. a, b
Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R.,
Badia, A., Balzarini, A., Baró, R., Chemel, C., Curci, G., Forkel, R.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote,
C., Kuenen, J., Makar, P., Manders-Groot, A., Neal, L., Pérez, J., Pirovano,
G., Pouliot, G., San José, R., Savage, N., Schröder, W., Sokhi, R.,
Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K.,
Žabkar, R., Zhang, Y., and Galmarini, S.: Assessment of the MACC reanalysis
and its influence as chemical boundary conditions for regional air quality
modeling in AQMEII-2, Atmos. Environ., 115, 371–388,
https://doi.org/10.1016/j.atmosenv.2015.02.034, 2015. a
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and Carslaw, D. C.: COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas, Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, 2021. a
Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., Elguindi, N.,
Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse, C.,
Quack, B., Simpson, D., and Sindelarova, K.: The Copernicus Atmosphere
Monitoring Service global and regional emissions (April 2019 version), Tech. Rep., https://doi.org/10.24380/D0BN-KX16, 2019. a, b
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys. Res.
Lett., 29, 38-1–38-4, https://doi.org/10.1029/2002GL015311, 2002. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. a, b
Guerreiro, C. B., Foltescu, V., and de Leeuw, F.: Air quality status and
trends in Europe, Atmos. Environ., 98, 376–384,
https://doi.org/10.1016/j.atmosenv.2014.09.017, 2014. a
Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional module, Geosci. Model Dev., 12, 1885–1907, https://doi.org/10.5194/gmd-12-1885-2019, 2019. a
Guevara, M., Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Serradell, K., Tena, C., Denier van der Gon, H., Kuenen, J., Peuch, V.-H., and Pérez García-Pando, C.: Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns, Atmos. Chem. Phys., 21, 773–797, https://doi.org/10.5194/acp-21-773-2021, 2021. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a, b
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A.,
Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Denier van der
Gon, H., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P.,
Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Makar, P. A.,
Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San
Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A.,
Tuccella, P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang,
J., Hogrefe, C., and Galmarini, S.: Evaluation of operational online-coupled
regional air quality models over Europe and North America in the context of
AQMEII phase 2. Part II: Particulate matter, Atmos. Environ., 115, 421–441,
https://doi.org/10.1016/j.atmosenv.2014.08.072, 2015. a, b
Jaén, C., Udina, M., and Bech, J.: Analysis of two heat wave driven ozone
episodes in Barcelona and surrounding region: Meteorological and
photochemical modeling, Atmos. Environ., 246, 118037,
https://doi.org/10.1016/j.atmosenv.2020.118037, 2021. a
Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt, G.,
Held, A., von der Heyden, L., Deventer, M. J., Krismer, A., Haun, C.,
Feichter, R., and Lee, J.: Urban eddy covariance measurements reveal
significant missing NOx emissions in Central Europe, Sci. Rep., 7, 2536, https://doi.org/10.1038/s41598-017-02699-9,
2017. a
Kleanthous, S., Vrekoussis, M., Mihalopoulos, N., Kalabokas, P., and Lelieveld,
J.: On the temporal and spatial variation of ozone in Cyprus, Sci. Total
Environ., 476–477, 677–687, https://doi.org/10.1016/j.scitotenv.2013.12.101, 2014. a
Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal,
L. N., Li, C., Krotkov, N. A., Eskes, H., van der A, R., Veefkind, P.,
Levelt, P. F., Hauser, O. P., and Joiner, J.: Abrupt decline in tropospheric
nitrogen dioxide over China after the outbreak of COVID-19, Sci. Adv.,
6, eabc2992, https://doi.org/10.1126/sciadv.abc2992, 2020. a
Mar, K. A., Ojha, N., Pozzer, A., and Butler, T. M.: Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison, Geosci. Model Dev., 9, 3699–3728, https://doi.org/10.5194/gmd-9-3699-2016, 2016. a
Martín-Vide, J., Brunet, M., Prohom, M., and Rius, A.: Segon informe sobre el
canvi climàtic a Catalunya. Capítol 2. Els climes de Catalunya. Present i
tendències recents, Tech. Rep., Generalitat de Catalunya, ISBN 978-84-9965-027-2, 2010. a
Massagué, J., Carnerero, C., Escudero, M., Baldasano, J. M., Alastuey, A., and Querol, X.: 2005–2017 ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area, Atmos. Chem. Phys., 19, 7445–7465, https://doi.org/10.5194/acp-19-7445-2019, 2019. a, b, c, d, e, f
Miyazaki, K., Bowman, K., Sekiya, T., Takigawa, M., Neu, J. L., Sudo, K.,
Osterman, G., and Eskes, H.: Global tropospheric ozone responses to reduced
NOx emissions linked to the COVID-19 worldwide lockdowns, Sci.
Adv., 7, eabf7460, https://doi.org/10.1126/sciadv.abf7460, 2021. a, b
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a, b
National Research Council, N.: Rethinking the Ozone Problem in Urban and
Regional Air Pollution, The National Academies Press, Washington, DC,
https://doi.org/10.17226/1889, 1991. a, b, c
Neiburger, M.: the role of meteorology in the study and control of air
pollution, B. Am. Meteorol. Soc., 50, 957–966,
https://doi.org/10.1175/1520-0477-50.12.957, 1969. a
Pyrgou, A., Hadjinicolaou, P., and Santamouris, M.: Enhanced near-surface ozone
under heatwave conditions in a Mediterranean island, Sci. Rep., 8, 9191,
https://doi.org/10.1038/s41598-018-27590-z, 2018. a
Querol, X., Gangoiti, G., Mantilla, E., Alastuey, A., Minguillón, M. C., Amato, F., Reche, C., Viana, M., Moreno, T., Karanasiou, A., Rivas, I., Pérez, N., Ripoll, A., Brines, M., Ealo, M., Pandolfi, M., Lee, H.-K., Eun, H.-R., Park, Y.-H., Escudero, M., Beddows, D., Harrison, R. M., Bertrand, A., Marchand, N., Lyasota, A., Codina, B., Olid, M., Udina, M., Jiménez-Esteve, B., Soler, M. R., Alonso, L., Millán, M., and Ahn, K.-H.: Phenomenology of high-ozone episodes in NE Spain, Atmos. Chem. Phys., 17, 2817–2838, https://doi.org/10.5194/acp-17-2817-2017, 2017. a, b, c
Querol, X., Massagué, J., Alastuey, A., Moreno, T., Gangoiti, G., Mantilla,
E., Duéguez, J. J., Escudero, M., Monfort, E., Pérez García-Pando, C.,
Petetin, H., Jorba, O., Vázquez, V., de la Rosa, J., Campos, A., Muñóz,
M., Monge, S., Hervás, M., Javato, R., and Cornide, M. J.: Lessons from the
COVID-19 air pollution decrease in Spain: Now what?, Sci. Total Environ.,
779, 146380, https://doi.org/10.1016/j.scitotenv.2021.146380, 2021. a
Ribeiro, I., Martilli, A., Falls, M., Zonato, A., and Villalba, G.: Highly
resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ, Atmos.
Environ., 248, 105220, https://doi.org/10.1016/j.atmosres.2020.105220,
2021. a, b
Rico, M., Font, L., Arimon, J., Gómez, A., and E., R.: Informe qualitat de
l’aire de Barcelona, Tech. rep., Agència de Salut Pública de Barcelona, 69 pp.,
https://www.aspb.cat/documents/qualitat-aire-2020 (last access: 20 September 2023), 2020. a
Rivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., Bouso,
L., Àlvarez Pedrerol, M., Alastuey, A., Sunyer, J., and Querol, X.: Child
exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain,
Environ. Int., 69, 200–212,
https://doi.org/10.1016/j.envint.2014.04.009, 2014. a, b
Romero-Alvarez, J., Lupaşcu, A., Lowe, D., Badia, A., Archer-Nicholls, S., Dorling, S., Reeves, C. E., and Butler, T.: Sources of surface O3 in the UK: tagging O3 within WRF-Chem, Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, 2022. a
Roozitalab, B., Carmichael, G. R., Guttikunda, S. K., and Abdi-Oskouei, M.:
Elucidating the impacts of COVID-19 lockdown on air quality and ozone
chemical characteristics in India, Environ. Sci.-Atmos., 2, 1183–1207,
https://doi.org/10.1039/D2EA00023G, 2022. a
Saiz-Lopez, A., Borge, R., Notario, A., Adame, J. A., de la Paz, D., Querol,
X., Artíñano, B., Gómez-Moreno, F. J., and Cuevas, C. A.:
Unexpected increase in the oxidation capacity of the urban atmosphere of
Madrid, Spain, Sci. Rep., 7,
45956, https://doi.org/10.1038/srep45956, 2017. a, b, c
Salamanca, F., Martilli, A., Tewari, M., and Chen, F.: A Study of the Urban
Boundary Layer Using Different Urban Parameterizations and High-Resolution
Urban Canopy Parameters with WRF, J. Appl. Meteorol. Clim., 50, 1107–1128,
https://doi.org/10.1175/2010jamc2538.1, 2011. a, b
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res-Atmos, 106, 28275–28293,
https://doi.org/10.1029/2001JD000384, 2001. a, b
Segura, R., Badia, A., Ventura, S., Gilabert, J., Martilli, A., and Villalba,
G.: Sensitivity study of PBL schemes and soil initialization using the
WRF-BEP-BEM model over a Mediterranean coastal city, Urban Climate, 39,
100982, https://doi.org/10.1016/j.uclim.2021.100982, 2021. a, b, c
Servei Meteorològic de Catalunya: Butlletí climàtic mensual (maig del
2020), Tech. rep., Departament de Territori i Sostenibilitat., https://static-m.meteo.cat/wordpressweb/wp-content/uploads/2021/03/01155108/Butllet -Maig2020_v2.pdf (last access: 20 September 2023), 2020. a
Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., and Kota, S. H.: Effect of
restricted emissions during COVID-19 on air quality in India, Sci. Total
Environ., 728, 138878, https://doi.org/10.1016/j.scitotenv.2020.138878, 2020. a
Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N., and Paoletti,
E.: Decrease in surface ozone concentrations at Mediterranean remote sites
and increase in the cities, Atmos. Environ., 79, 705–715,
https://doi.org/10.1016/j.atmosenv.2013.07.042, 2013. a
Sicard, P., Marco, A. D., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E.,
Rodriguez, J. J. D., and Calatayud, V.: Amplified ozone pollution in cities
during the COVID-19 lockdown, Sci. Total Environ., 735, 139542,
https://doi.org/10.1016/j.scitotenv.2020.139542, 2020. a, b
Sicard, P., Agathokleous, E., Marco, A. D., Paoletti, E., and Calatayud, V.:
Urban population exposure to air pollution in Europe over the last decades,
Environmental Sciences Europe, 33, 28, https://doi.org/10.1186/s12302-020-00450-2, 2021. a
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999. a
Sillman, S.: 9.11 – Tropospheric Ozone and Photochemical Smog, in: Treatise
on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., 407–431, Pergamon, Oxford, https://doi.org/10.1016/B0-08-043751-6/09053-8,
2003. a, b
Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to
nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys.
Res.-Atmos., 95, 1837–1851, https://doi.org/10.1029/JD095iD02p01837,
1990. a
Sillmann, J., Aunan, K., Emberson, L., Büker, P., Oort, B. V., O’Neill, C.,
Otero, N., Pandey, D., and Brisebois, A.: Combined impacts of climate and air
pollution on human health and agricultural productivity, Environ. Res. Lett.,
16, 093004, https://doi.org/10.1088/1748-9326/ac1df8, 2021. a
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature
Studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/bams-d-11-00019.1, 2012. a
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional air
quality modeling, J. Geophys. Res-Atmos., 95, 16343–16367,
https://doi.org/10.1029/JD095iD10p16343, 1990. a, b
Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., and Park,
R. J.: Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and
sensitivity study, J. Geophys. Res-Atmos, 117, D3,
https://doi.org/10.1029/2011JD016302, 2011. a
Venter, Z. S., Aunan, K., Chowdhury, S., and Lelieveld, J.: COVID-19 lockdowns
cause global air pollution declines, P. Natl. Acad. Sci. USA, 117, 18984–18990,
https://doi.org/10.1073/pnas.2006853117, 2020. a, b
von Schneidemesser, E., Sibiya, B., Caseiro, A., Butler, T., Lawrence, M. G.,
Leitao, J., Lupascu, A., and Salvador, P.: Learning from the COVID-19
lockdown in berlin: Observations and modelling to support understanding
policies to reduce NO2, Atmos. Environ. X, 12, 100122,
https://doi.org/10.1016/j.aeaoa.2021.100122, 2021. a, b, c, d
Wang, H., Huang, C., Tao, W., Gao, Y., Wang, S., Jing, S., Wang, W., Yan, R.,
Wang, Q., An, J., Tian, J., Hu, Q., Lou, S., Pöschl, U., Cheng, Y., and
Su, H.: Seasonality and reduced nitric oxide titration dominated ozone
increase during COVID-19 lockdown in eastern China, npj Climate and
Atmospheric Science, 5, 24, https://doi.org/10.1038/s41612-022-00249-3, 2022. a, b, c
Wang, Y., Zhu, S., Ma, J., Shen, J., Wang, P., Wang, P., and Zhang, H.:
Enhanced atmospheric oxidation capacity and associated ozone increases during
COVID-19 lockdown in the Yangtze River Delta, Sci. Total Environ., 768,
144796, https://doi.org/10.1016/j.scitotenv.2020.144796, 2021. a, b
Wesely, M.: Parameterization of surface resistances to gaseous dry deposition
in regional-scale numerical models, Atmos. Environ., 41, 52–63,
https://doi.org/10.1016/j.atmosenv.2007.10.058, 2007. a
Wild, O.: Modelling the global tropospheric ozone budget: exploring the variability in current models, Atmos. Chem. Phys., 7, 2643–2660, https://doi.org/10.5194/acp-7-2643-2007, 2007. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models, J. Atmos. Chem., 37, 245–282,
https://doi.org/10.1023/a:1006415919030, 2000. a
WRF: WRF Source Codes and Graphics Software Download Page, WRF [code], http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html (last access: 2 June 2022), 2023. a
Yegorova, E. A., Allen, D. J., Loughner, C. P., Pickering, K. E., and
Dickerson, R. R.: Characterization of an eastern U.S. severe air pollution
episode using WRF/Chem, J. Geophys. Res.-Atmos., 116, D17,
https://doi.org/10.1029/2010JD015054, 2011. a
Zhu, S., Poetzscher, J., Shen, J., Wang, S., Wang, P., and Zhang, H.:
Comprehensive Insights Into Osub3/sub
Changes During the COVID-19 From
Osub3/sub Formation Regime and Atmospheric
Oxidation Capacity, Geophys. Res. Lett., 48, 10, https://doi.org/10.1029/2021gl093668,
2021.
a, b
Zittis, G., Hadjinicolaou, P., Fnais, M., and Lelieveld, J.: Projected changes
in heat wave characteristics in the eastern Mediterranean and the Middle
East, Reg. Environ. Change, 16, 1863–1876, https://doi.org/10.1007/s10113-014-0753-2,
2015. a
Short summary
Improving air quality is a top priority in urban areas. In this study, we used an air quality model to analyse the air quality changes occurring over the metropolitan area of Barcelona and other rural areas affected by transport of the atmospheric plume from the city during mobility restrictions. Our results show that mitigation strategies intended to reduce O3 should be designed according to the local meteorology, air transport, and particular ozone chemistry of the urban area.
Improving air quality is a top priority in urban areas. In this study, we used an air quality...
Altmetrics
Final-revised paper
Preprint