Articles | Volume 23, issue 18
https://doi.org/10.5194/acp-23-10423-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10423-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a Weather Research and Forecasting (WRF) model: a real case study
Kai-I Lin
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Kao-Shen Chung
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Sheng-Hsiang Wang
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Li-Hsin Chen
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Yu-Chieng Liou
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Pay-Liam Lin
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Wei-Yu Chang
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Hsien-Jung Chiu
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Yi-Hui Chang
Dual-Use Industry Technology Development Center, National Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan
Related authors
No articles found.
Kao-Shen Chung, Chin-Chuan Chang, Bing-Xue Zhuang, Chih-Chien Tsai, Chen-Hau Lan, and Wei-Yu Chang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3857, https://doi.org/10.5194/egusphere-2025-3857, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares two configurations of the dual-polarization observation operator for radar data assimilation. The power-law method efficiently simulates reflectivity but may introduce a negative bias in differential reflectivity. The direct integration approach yields more accurate and realistic simulations of both variables, with lower residuals, making it the more proper operator for dual-pol radar data assimilation.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-1908, https://doi.org/10.5194/egusphere-2025-1908, 2025
Short summary
Short summary
The WISSDOM is a practical scheme to derive 3D winds by using 11 radars in this study. The observations of shot-wavelength radars (i.e., C- and X-band) can be attributed to additional low-level precipitation and wind information in WISSDOM, which allowed for the capture of stronger updrafts in the convection areas of the squall line. Overall, these results highlight the advantages of using radars with multiple wavelengths in WISSDOM, especially C- and X-band radars.
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Ki-Hong Min, Kao-Shen Chung, Ji-Won Lee, Cheng-Rong You, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-18, https://doi.org/10.5194/gmd-2022-18, 2022
Revised manuscript not accepted
Short summary
Short summary
LETKF underestimated the water vapor mixing ratio and temperature compared to 3DVAR due to a lack of a water vapor mixing ratio and temperature observation operator. Snowfall in GWD was less simulated in LETKF. The results signify that water vapor assimilation is important in radar DA and significantly impacts precipitation forecasts, regardless of the DA method used. Therefore, it is necessary to apply observation operators for water vapor mixing ratio and temperature in radar DA.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Maggie Chel-Gee Ooi, Ming-Tung Chuang, Joshua S. Fu, Steven S. Kong, Wei-Syun Huang, Sheng-Hsiang Wang, Sittichai Pimonsree, Andy Chan, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 12521–12541, https://doi.org/10.5194/acp-21-12521-2021, https://doi.org/10.5194/acp-21-12521-2021, 2021
Short summary
Short summary
There is very limited local modeling effort in Southeast Asia, where haze is an annually recurring threat. In this work, the accuracy of haze prediction is improved not only at the burning source but also at the downwind site in northern Southeast Asia to highlight the influence of trans-boundary haze, which is often regional. The burning haze is carried to the populated west of Taiwan via several mechanisms, with the most severe conditions related to the boreal winter pressure system.
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021, https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Short summary
Typhoon (TY) and non-typhoon (NTY) rainy days in northern Taiwan summer seasons showed more large drops on NTY than TY rainy days. Relatively higher convective activity and drier conditions in NTY than TY lead to variations in microphysical characteristics between TY and NTY rainy days. The raindrop size distribution and kinetic energy relations assessed for TY and NTY rainfall can be useful for evaluating the radar rainfall estimation algorithms, cloud modeling, and rainfall erosivity studies.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, Jung-Hoon Kim, YongHee Lee, and GyuWon Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-100, https://doi.org/10.5194/acp-2021-100, 2021
Preprint withdrawn
Short summary
Short summary
This study examines a strong downslope wind event during ICE-POP 2018 using Doppler lidars, and observations. 3D winds can be well retrieved by
WISSDOM. This is first time to document the mechanisms of strong wind in observational aspect under fine weather. The PGF causing by adiabatic warming and channeling effect are key factors to dominate the strong wind. The values of this study are improving our understanding of the strong wind and increase the predictability of the weather forecast.
Ming-Tung Chuang, Maggie Chel Gee Ooi, Neng-Huei Lin, Joshua S. Fu, Chung-Te Lee, Sheng-Hsiang Wang, Ming-Cheng Yen, Steven Soon-Kai Kong, and Wei-Syun Huang
Atmos. Chem. Phys., 20, 14947–14967, https://doi.org/10.5194/acp-20-14947-2020, https://doi.org/10.5194/acp-20-14947-2020, 2020
Short summary
Short summary
This study evaluated the impact of Asian haze from the three biggest industrial regions on Taiwan and analyzed the process during transport. The production and removal process revealed the mechanisms of long-range transport. This is the first time that the brute force method and process analysis technique has been applied in a Community Multiscale Air Quality Modeling System. Also, this study simulated the interesting transboundary transport of pollutants from southern mainland China to Taiwan.
Cited articles
Bo-Tao, Z. and Jin, Q.: Changes of weather and climate extremes in the IPCC AR6, Advances in Climate Change Research, 17, 713–718, 2021.
Bruintjes, R. T., Jia, L., Busek, P., Salazar, V., Breed, D., Jensen, T., Ross, K., and Piketh, S.: Similarities between the effects of hygroscopic seeding and anthropogenic pollution on clouds, WMO/TD, No. 1146, 117–120, 2003.
Caro, D., Wobrock, W., and Flossmann, A. I.: A numerical study on the impact
of hygroscopic seeding on the development of cloud particle spectra, J. Appl. Meteorol., 41, 333–350, 2002.
Chen, G. T.-J., Liu, C.-M., Jou, B. J.-D., and Chen, J.-P.: An assessment
study and planning on precipitation enhancement program in Taiwan, Technical Report 84-2M-10, Central Weather Bureau, Ministry of Transportation and Communications, R.O.C. (Taiwan), 1995 (in Chinese).
Chen, S., Xue, L., and Yau, M.-K.: Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach, Atmos. Chem. Phys., 20, 10111–10124, https://doi.org/10.5194/acp-20-10111-2020, 2020.
Cooper, W. A., Bruintjes, R. T., and Mather, G. K.: Calculations pertaining
to hygroscopic seeding with flares, J. Appl. Meteorol., 36, 1449–1469, 1997.
Dadashazar, H., Wang, Z., Crosbie, E., Brunke, M., Zeng, X., Jonsson, H.,
Woods, R. K., Flagan, R. C., Seinfeld, J. H., and Sorooshian, A.:
Relationships between giant sea salt particles and clouds inferred from
aircraft physicochemical data, J. Geophys. Res.-Atmos., 122, 3421–3434, 2017.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107, 1989.
Feingold, G., Cotton, W. R., Kreidenweis, S. M., and Davis, J. T.: The
impact of giant cloud condensation nuclei on drizzle formation in
stratocumulus: Implications for cloud radiative properties, J.
Atmos. Sci., 56, 4100–4117, 1999.
Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M.,
Prabhakaran, T., and Yao, Z.: Review of advances in precipitation
enhancement research, B. Am. Meteorol. Soc., 100, 1465–1480, 2019.
Gagin, A. and Neumann, J.: The second Israeli randomized cloud seeding
experiment: Evaluation of the results, J. Appl. Meteorol. Clim., 20, 1301–1311, 1981.
Geresdi, I., Xue, L., and Rasmussen, R.: Evaluation of Orographic Cloud
Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach, J. Appl. Meteorol. Clim., 56, 1443–1462, https://doi.org/10.1175/jamc-d-16-0045.1, 2017.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys, Res, Lett,, 29, 38-31–38-34, 2002.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta. Part I: Observational analyses, J.
Geophys. Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015jd023257, 2016.
Guo, X., Fu, D., Li, X., Hu, Z., Lei, H., Xiao, H., and Hong, Y.: Advances
in cloud physics and weather modification in China, Adv. Atmos. Sci., 32, 230–249, 2015.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Jensen, J. B. and Lee, S.: Giant Sea-Salt Aerosols and Warm Rain Formation
in Marine Stratocumulus, J. Atmos. Sci., 65, 3678–3694, https://doi.org/10.1175/2008jas2617.1, 2008.
Jensen, J. B. and Nugent, A. D.: Condensational growth of drops formed on
giant sea-salt aerosol particles, J. Atmos. Sci., 74, 679–697, 2017.
Jung, E., Albrecht, B. A., Jonsson, H. H., Chen, Y.-C., Seinfeld, J. H., Sorooshian, A., Metcalf, A. R., Song, S., Fang, M., and Russell, L. M.: Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds, Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, 2015.
Kerr, R. A.: Cloud seeding: One success in 35 years, Science, 217, 519–521,
1982.
Kogan, Y. L.: The simulation of a convective cloud in a 3-D model with
explicit microphysics. Part I: Model description and sensitivity
experiments, J. Atmos. Sci., 48, 1160–1189, 1991.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161, https://doi.org/10.1039/TF9363201152, 1936.
Kueh, M.-T. and Lin, P.-L.: Springtime cloud properties in the Taiwan
Strait: synoptic controls and local processes, Theor. Appl.
Climatol., 116, 463–480, https://doi.org/10.1007/s00704-013-0969-y, 2013.
Lee, H. and Baik, J.-J.: A Comparative Study of Bin and Bulk Cloud
Microphysics Schemes in Simulating a Heavy Precipitation Case, Atmosphere,
9, 475, https://doi.org/10.3390/atmos9120475, 2018.
Lee, S. S., Guo, J., and Li, Z.: Delaying precipitation by air pollution
over the Pearl River Delta: 2. Model simulations, J. Geophys.
Res.-Atmos., 121, 11739–11760, 2016.
Lehahn, Y., Koren, I., Altaratz, O., and Kostinski, A. B.: Effect of coarse
marine aerosols on stratocumulus clouds, Geophys. Res. Lett., 38, L20804, https://doi.org/10.1029/2011GL048504, 2011.
Lelieveld, J.: Multi-phase processes in the atmospheric sulfur cycle, in:
Interactions of C, N, P and S biogeochemical cycles and global change,
edited by: Wollast, R., Mackenzie, F. T., and Chou, L., Springer, 305–331, https://doi.org/10.1007/978-3-642-76064-8_13, 1993.
Lim, K.-S. S. and Hong, S.-Y.: Development of an effective double-moment
cloud microphysics scheme with prognostic cloud condensation nuclei (CCN)
for weather and climate models, Mon. Weather Rev., 138, 1587–1612,
2010.
Lin, K.-I., Chung, K.-S., Wang, S.-H., Chen, L.-H., Liou, Y.-C., Lin, P.-L., Chang, W.-Y., Chiu, H.-J., and Chang, Y.-H.: Raw Data of RCWF and RCSL, DBAR [data set], https://doi.org/10.29840/DBAR.DB_RD_WFSL/Dataset, 2023.
Mather, G., Terblanche, D., Steffens, F., and Fletcher, L.: Results of the
South African cloud-seeding experiments using hygroscopic flares, J.
Appl. Meteorol., 36, 1433–1447, 1997.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, 1997.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR,
151, 163–187, 1954.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought:how do aerosols affect precipitation?, Science, 321, 1309–1313, 2008.
Rosenfeld, D., Axisa, D., Woodley, W. L., and Lahav, R.: A Quest for
Effective Hygroscopic Cloud Seeding, J. Appl. Meteorol. Clim., 49, 1548–1562, https://doi.org/10.1175/2010jamc2307.1, 2010.
Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate effects of
aerosol-cloud interactions, Science, 343, 379–380, 2014.
Segal, Y., Khain, A., Pinsky, M., and Rosenfeld, D.: Effects of hygroscopic
seeding on raindrop formation as seen from simulations using a 2000-bin
spectral cloud parcel model, Atmos. Res., 71, 3–34, 2004.
Seto, J., Tomine, K., Wakimizu, K., and Nishiyama, K.: Artificial cloud
seeding using liquid carbon dioxide: Comparisons of experimental data and
numerical analyses, J. Appl. Meteorol. Clim., 50, 1417–1431, 2011.
Silverman, B. A.: A critical assessment of hygroscopic seeding of convective
clouds for rainfall enhancement, B. Am. Meteorol. Soc., 84, 1219–1230, 2003.
Silverman, B. A. and Sukarnjanaset, W.: Thailand warm-cloud hygroscopic
particle seeding experiment, J. Appl. Meteorol. Clim., 39, 1160–1175, 2000.
Tessendorf, S. A., French, J. R., Friedrich, K., Geerts, B., Rauber, R. M.,
Rasmussen, R. M., Xue, L., Ikeda, K., Blestrud, D. R., Kunkel, M. L.,
Parkinson, S., Snider, J. R., Aikins, J., Faber, S., Majewski, A., Grasmick,
C., Bergmaier, P. T., Janiszeski, A., Springer, A., Weeks, C., Serke, D. J.,
and Bruintjes, R.: A Transformational Approach to Winter Orographic Weather
Modification Research: The SNOWIE Project, B. Am. Meteorol. Soc., 100, 71–92, https://doi.org/10.1175/bams-d-17-0152.1, 2019.
Tessendorf, S. A., Chen, S., Weeks, C., Bruintjes, R., Rasmussen, R. M., and
Xue, L.: The Influence of Hygroscopic Flare Seeding on Drop Size
Distribution Over Southeast Queensland, J. Geophys. Res.-Atmos., 126, e2020JD033771, https://doi.org/10.1029/2020jd033771, 2021.
Tonttila, J., Afzalifar, A., Kokkola, H., Raatikainen, T., Korhonen, H., and Romakkaniemi, S.: Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA, Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021, 2021.
Wang, F., Li, Z., Jiang, Q., Wang, G., Jia, S., Duan, J., and Zhou, Y.: Evaluation of hygroscopic cloud seeding in liquid-water clouds: a feasibility study, Atmos. Chem. Phys., 19, 14967–14977, https://doi.org/10.5194/acp-19-14967-2019, 2019.
Wang, J., Yue, Z., Rosenfeld, D., Zhang, L., Zhu, Y., Dai, J., Yu, X., and
Li, J.: The Evolution of an AgI Cloud-Seeding Track in Central China as Seen
by a Combination of Radar, Satellite, and Disdrometer Observations, J. Geophys. Res.-Atmos., 126, e2020JD033914, https://doi.org/10.1029/2020JD033914, 2021.
Weigel, A. P., Chow, F. K., and Rotach, M. W.: On the nature of turbulent
kinetic energy in a steep and narrow Alpine valley, Bound.-Lay. Meteorol., 123, 177–199, 2007.
Xue, L., Chu, X., Rasmussen, R., Breed, D., Boe, B., and Geerts, B.: The
Dispersion of Silver Iodide Particles from Ground-Based Generators over
Complex Terrain. Part II: WRF Large-Eddy Simulations versus Observations,
J. Appl. Meteorol. Clim., 53, 1342–1361, https://doi.org/10.1175/jamc-d-13-0241.1, 2014.
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S.: Seeding convective clouds
with hygroscopic flares: Numerical simulations using a cloud model with
detailed microphysics, J. Appl. Meteorol., 39, 1460–1472, 2000.
Short summary
This study develops a hybrid microphysics scheme to enable the complex model simulation of cloud seeding based on observational cloud condensation nuclei size distribution. Our results show that more precipitation can be developed in the scenarios seeding in the in-cloud region, and seeding over an area of tens km2 is the most efficient strategy due to the strengthening of the accretion process. Moreover, particles bigger than 0.4 μm are the main factor contributing to cloud-seeding effects.
This study develops a hybrid microphysics scheme to enable the complex model simulation of cloud...
Altmetrics
Final-revised paper
Preprint