Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-8819-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8819-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Formerly at Meteorologisches Institut,
Ludwig-Maximilians-Universität, Munich, Germany
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Related authors
No articles found.
Josef Zink, Simon Unterstrasser, and Ulrike Burkhardt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3704, https://doi.org/10.5194/egusphere-2025-3704, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The climate impact of aviation-induced contrail cirrus clouds is strongly influenced by the number of ice crystals that form in the wake of an aircraft under certain conditions. In this study, we systematically investigate the key processes that influence the number of ice crystals formed for hydrogen combustion. A large simulation data set provides the basis for integrating our results into large-scale models used to estimate the climate impact of contrail cirrus clouds.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021, https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Short summary
Estimating the impact of convection on the upper-tropospheric water budget remains a problem for models employing resolutions of several kilometers or more. A sub-kilometer high-resolution model is used to study summertime convection. The results suggest mostly close agreement with ground- and satellite-based observational data while slightly overestimating total frozen water path and anvil lifetime. The simulations are well suited to supplying information for parameterization development.
Cited articles
Baldauf, M. and Brdar, S.: 3D diffusion in terrain-following coordinates:
testing and stability of horizontally explicit, vertically implicit
discretizations, Q. J. Roy. Meteorol. Soc.,
142, 2087–2101, https://doi.org/10.1002/qj.2805, 2016.
Bickel, M., Ponater, M., Bock, L., Burkhardt, U., and Reineke, S.:
Estimating the Effective Radiative Forcing of Contrail Cirrus, J.
Clim., 33, 1991–2005, https://doi.org/10.1175/jcli-d-19-0467.1, 2020.
Bier, A. and Burkhardt, U.: Variability in Contrail Ice Nucleation and Its
Dependence on Soot Number Emissions, J. Geophys. Res.-Atmos., 124, 3384–3400, https://doi.org/10.1029/2018jd029155, 2019.
Bier, A., Burkhardt, U., and Bock, L.: Synoptic Control of Contrail Cirrus
Life Cycles and Their Modification Due to Reduced Soot Number Emissions,
J. Geophys. Res.-Atmos., 122, 11584–11603,
https://doi.org/10.1002/2017jd027011, 2017.
Bier, A., Unterstrasser, S., and Vancassel, X.: Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme, Atmos. Chem. Phys., 22, 823–845, https://doi.org/10.5194/acp-22-823-2022, 2022.
Bock, L. and Burkhardt, U.: Reassessing properties and radiative forcing of
contrail cirrus using a climate model, J. Geophys. Res.-Atmos., 121, 9717–9736, https://doi.org/10.1002/2016jd025112,
2016a.
Bock, L. and Burkhardt, U.: The temporal evolution of a long-lived contrail
cirrus cluster: Simulations with a global climate model, J.
Geophys. Res.-Atmos., 121, 3548–3565,
https://doi.org/10.1002/2015jd024475, 2016b.
Bock, L. and Burkhardt, U.: Contrail cirrus radiative forcing for future air
traffic, Atmos. Chem. Phys., 19, 8163–8174,
https://doi.org/10.5194/acp-19-8163-2019, 2019.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K.
Sherwood, S., Stevens, B., Zhang, X. Y., Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M.: Clouds and aerosols, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
571–657, https://https://doi.org/10.1017/CBO9781107415324.016, 2013.
Bräuer, T., Voigt, C., Sauer, D., Kaufmann, S., Hahn, V., Scheibe, M.,
Schlager, H., Diskin, G. S., Nowak, J. B., DiGangi, J. P., Huber, F., Moore,
R. H., and Anderson, B. E.: Airborne Measurements of Contrail Ice Properties
– Dependence on Temperature and Humidity, Geophys. Res. Lett., 48, 1–9,
https://doi.org/10.1029/2020gl092166, 2021.
Burkhardt, U. and Kärcher, B.: Global radiative forcing from contrail
cirrus, Nat. Clim. Change, 1, 54–58,
https://doi.org/10.1038/nclimate1068, 2011.
Burkhardt, U., Bock, L., and Bier, A.: Mitigating the contrail cirrus
climate impact by reducing aircraft soot number emissions, Npj Clim.
Atmos. Sci., 1, 37, https://doi.org/10.1038/s41612-018-0046-4,
2018.
Chen, C.-C. and Gettelman, A.: Simulated radiative forcing from contrails
and contrail cirrus, Atmo. Chem. Phys., 13,
12525–12536, https://doi.org/10.5194/acp-13-12525-2013, 2013.
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G.,
Giorgetta, M., and Brdar, S.: Large eddy simulation using the general
circulation model ICON, J. Adv. Model. Earth Sy., 7,
963–986, https://doi.org/10.1002/2015ms000431, 2015.
Fichter, C., Marquart, S., Sausen, R., and Lee, D. S.: The impact of cruise
altitude on contrails and related radiative forcing, Meteorol.
Z., 14, 563–572, https://doi.org/10.1127/0941-2948/2005/0048,
2005.
Gayet, J.-F., Febvre, G., Brogniez, G., Chepfer, H., Renger, W., and
Wendling, P.: Microphysical and Optical Properties of Cirrus and Contrails:
Cloud Field Study on 13 October 1989, J. Atmos. Sci.,
53, 126–138, 1996.
Gerz, T., Dürbeck, T., and Konopka, P.: Transport and effective
diffusion of aircraft emissions, J. Geophys. Res.-Atmos., 103, 25905–25913, https://doi.org/10.1029/98jd02282,
1998.
Gierens, K.: Selected topics on the interaction between cirrus clouds and
embedded contrails, Atmos. Chem. Phys., 12, 11943–11949,
https://doi.org/10.5194/acp-12-11943-2012, 2012.
Gruber, S., Unterstrasser, S., Bechtold, J., Vogel, H., Jung, M., Pak, H.,
and Vogel, B.: Contrails and their impact on shortwave radiation and
photovoltaic power production – a regional model study, Atmos. Chem. Phys., 18, 6393–6411,
https://doi.org/10.5194/acp-18-6393-2018, 2018.
Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Parameterizing cloud
condensation nuclei concentrations during HOPE, Atmos. Chem.
Phys., 16, 12059–12079, https://doi.org/10.5194/acp-16-12059-2016,
2016.
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O.,
Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C.,
Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S.,
Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen,
A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel,
S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B.,
Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F.,
Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf,
F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger,
M., Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: a comprehensive evaluation, Q. J. Roy.
Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947,
2017.
Kapadia, Z. Z., Spracklen, D. V., Arnold, S. R., Borman, D. J., Mann, G. W.,
Pringle, K. J., Monks, S. A., Reddington, C. L., Benduhn, F., Rap, A.,
Scott, C. E., Butt, E. W., and Yoshioka, M.: Impacts of aviation fuel sulfur
content on climate and human health, Atmos. Chem. Phys.,
16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, 2016.
Kärcher, B.: Physicochemistry of aircraft-generated liquid aerosols,
soot, and ice particles: 1. Model description, J. Geophys.
Res.-Atmos., 103, 17111–17128, https://doi.org/10.1029/98jd01044, 1998.
Kärcher, B.: Aviation-Produced Aerosols and Contrails, Surv.
Geophys., 20, 113–167, https://doi.org/10.1023/a:1006600107117, 1999.
Kärcher, B.: Simulating gas-aerosol-cirrus interactions:
Process-oriented microphysical model and applications, Atmos. Chem.
Phys., 3, 1645–1664, https://doi.org/10.5194/acp-3-1645-2003, 2003.
Kärcher, B. and Yu, F.: Role of aircraft soot emissions in contrail
formation, Geophys. Res. Lett., 36, L01804,
https://doi.org/10.1029/2008gl036649, 2009.
Kärcher, B., Busen, R., Petzold, A., Schröder, F. P., Schumann, U.,
and Jensen, E. J.: Physicochemistry of aircraft-generated liquid aerosols,
soot, and ice particles: 2. Comparison with observations and sensitivity
studies, J. Geophys. Res.-Atmos., 103,
17129–17147, https://doi.org/10.1029/98jd01045, 1998.
Kärcher, B., Hendricks, J., and Lohmann, U.: Physically based
parameterization of cirrus cloud formation for use in global atmospheric
models, J. Geophys. Res., 111, D01205,
https://doi.org/10.1029/2005jd006219, 2006.
Kärcher, B., Burkhardt, U., Bier, A., Bock, L., and Ford, I. J.: The
microphysical pathway to contrail formation, J. Geophys.l
Res.-Atmos., 120, 7893–7927,
https://doi.org/10.1002/2015jd023491, 2015.
Köhler, C. G. and Seifert, A.: Identifying sensitivities for cirrus
modelling using a two-moment two-mode bulk microphysics scheme, Tellus B, 67, 24494,
https://doi.org/10.3402/tellusb.v67.24494, 2015.
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E.,
Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M.,
Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger,
P., Quaas, J., and Sourdeval, O.: A microphysics guide to cirrus – Part 2:
Climatologies of clouds and humidity from observations, Atmos. Chem. Phys., 20,
12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020.
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen,
Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman,
A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B.,
Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The
contribution of global aviation to anthropogenic climate forcing for 2000 to
2018, Atmos. Environ., 244, 117834,
https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.
Lewellen, D. C.: Analytic Solutions for Evolving Size Distributions of
Spherical Crystals or Droplets Undergoing Diffusional Growth in Different
Regimes, J. Atmos. Sci., 69, 417–434, https://doi.org/10.1175/jas-d-11-029.1, 2012.
Lewellen, D. C.: A Large-Eddy Simulation Study of Contrail Ice Number
Formation, J. Atmos. Sci., 77, 2585–2604,
https://doi.org/10.1175/jas-d-19-0322.1, 2020.
Lewellen, D. C., Meza, O., and Huebsch, W. W.: Persistent Contrails and
Contrail Cirrus, Part I: Large-Eddy Simulations from Inception to Demise,
J. Atmos. Sci., 71, 4399–4419,
https://doi.org/10.1175/jas-d-13-0316.1, 2014.
Liou, K. N.: Influence of Cirrus Clouds on Weather and Climate Processes: A
Global Perspective, Mon. Weather Rev., 114, 1167–1199,
https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2, 1986.
Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt,
A., Bohn, B., Brueck, M., Bühl, J., Crewell, S., Damian, T., Deneke, H.,
Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R.,
Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert,
U., Madhavan, B. L., Maurer, V., Muppa, S. K., Schween, J., Serikov, I.,
Siebert, H., Simmer, C., Späth, F., Steinke, S., Träumner, K.,
Trömel, S., Wehner, B., Wieser, A., Wulfmeyer, V., and Xie, X.: The
HD(CP)2 Observational Prototype Experiment (HOPE) – an overview,
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, 2017.
Markowicz, K. M. and Witek, M. L.: Simulations of Contrail Optical
Properties and Radiative Forcing for Various Crystal Shapes, J.
Appl. Meteorol. Climatol., 50, 1740–1755, https://doi.org/10.1175/2011jamc2618.1, 2011.
Matthes, S., Lim, L., Burkhardt, U., Dahlmann, K., Dietmüller, S.,
Grewe, V., Haslerud, A. S., Hendricks, J., Owen, B., Pitari, G., Righi, M.,
and Skowron, A.: Mitigation of Non-CO2 Aviation's Climate Impact by Changing
Cruise Altitudes, Aerospace, 8, 36,
https://doi.org/10.3390/aerospace8020036, 2021.
Meerkötter, R., Schumann, U., Doelling, D. R., Minnis, P., Nakajima, T.,
and Tsushima, Y.: Radiative forcing by contrails, Ann. Geophys.,
17, 1080–1094, https://doi.org/10.1007/s00585-999-1080-7,
1999.
Naiman, A. D., Lele, S. K., and Jacobson, M. Z.: Large eddy simulations of
contrail development: Sensitivity to initial and ambient conditions over
first twenty minutes, J. Geophys. Res.-Atmos.,
116, D21208, https://doi.org/10.1029/2011jd015806, 2011.
Paoli, R. and Shariff, K.: Contrail Modeling and Simulation, Ann. Rev.
Fluid Mech., 48, 393–427,
https://doi.org/10.1146/annurev-fluid-010814-013619, 2016.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, Atmospheric and Oceanographic Sciences Library, 2nd Edn., Kluwer Academic Publishers, Dordrecht, the Netherlands, ISBN 978-0792344094, 1997.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R.,
Ahmad, E., and Hartmann, D.: Cloud-Radiative Forcing and Climate: Results
from the Earth Radiation Budget Experiment, Science, 243, 57–63,
https://doi.org/10.1126/science.243.4887.57, 1989.
Righi, M., Hendricks, J., and Sausen, R.: The global impact of the transport
sectors on atmospheric aerosol: simulations for year 2000 emissions,
Atmos. Chem. Phys., 13, 9939–9970,
https://doi.org/10.5194/acp-13-9939-2013, 2013.
Ruppert T.: Vector field reconstruction by radial basis functions, Master's
thesis, Department of Mathematics, Technical University Darmstadt,
Darmstadt, 2007.
Schröder, F., Kärcher, B., Duroure, C., Ström, J., Petzold, A.,
Gayet, J.-F., Strauss, B., Wendling, P., and Borrmann, S.: On the Transition
of Contrails into Cirrus Clouds, J. Atmos. Sci., 57,
464–480, 2000.
Schumann, U.: On conditions for contrail formation from aircraft exhausts,
Meteorol. Z., 5, 4–23,
https://doi.org/10.1127/metz/5/1996/4, 1996.
Schumann, U. and Heymsfield, A. J.: On the Life Cycle of Individual
Contrails and Contrail Cirrus, Meteorol. Monogr., 58, 3.1–3.24,
2017.
Schumann, U., Penner, J. E., Chen, Y., Zhou, C., and Graf, K.: Dehydration
effects from contrails in a coupled contrail–climate model, Atmos.
Chem. Phys., 15, 11179–11199,
https://doi.org/10.5194/acp-15-11179-2015, 2015.
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds, Part 1: Model description,
Meteorol. Atmos. Phys., 92, 45–66,
https://doi.org/10.1007/s00703-005-0112-4, 2006.
Stevens, B. and Bony, S.: What Are Climate Models Missing?, Science,
340, 1053–1054, https://doi.org/10.1126/science.1237554, 2013.
Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke,
D., Rybka, H., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I.,
Barlakas, V., Biercamp, J., Brueck, M., Brune, S., Buehler, S. A.,
Burkhardt, U., Cioni, G., Costa-Surós, M., Crewell, S., Crüger, T.,
Deneke, H., Friederichs, P., Henken, C. C., Hohenegger, C., Jacob, M.,
Jakub, F., Kalthoff, N., Köhler, M., van Laar, T. W., Li, P.,
Löhnert, U., Macke, A., Madenach, N., Mayer, B., Nam, C., Naumann,
A. K., Peters, K., Poll, S., Quaas, J., Röber, N., Rochetin, N., Scheck,
L., Schemann, V., Schnitt, S., Seifert, A., Senf, F., Shapkalijevski, M.,
Simmer, C., Singh, S., Sourdeval, O., Spickermann, D., Strandgren, J.,
Tessiot, O., Vercauteren, N., Vial, J., Voigt, A., and Zängl, G.: The
Added Value of Large-Eddy and Storm-Resolving Models for Simulating Clouds
and Precipitation, J. Meteorol. Soc. Jpn., 98, 395–435,
https://doi.org/10.2151/jmsj.2020-021, 2020.
Tesche, M., Achtert, P., Glantz, P., and Noone, K. J.: Aviation effects on
already-existing cirrus clouds, Nat. Commun., 7, 12016,
https://doi.org/10.1038/ncomms12016, 2016.
Unterstrasser, S.: Large-eddy simulation study of contrail microphysics and
geometry during the vortex phase and consequences on contrail-to-cirrus
transition, J. Geophys. Res.-Atmos., 119,
7537–7555, https://doi.org/10.1002/2013jd021418, 2014.
Unterstrasser, S.: Properties of young contrails – a parametrisation based
on large-eddy simulations, Atmos. Chem. Phys., 16,
2059–2082, https://doi.org/10.5194/acp-16-2059-2016, 2016.
Verma, P.: figures_and_data_for_manuscript_contrail_formation_
within_cirrus_Verma_and_Burkhardt_07032022, Zenodo [data set], https://doi.org/10.5281/zenodo.6337981, 2022.
Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann,
S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J.,
Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix,
A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß,
J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen,
E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T.,
Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S.,
Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter,
P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter,
M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A.,
Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M.,
Zahn, A., Ziereis, H., and Zöger, M.: ML-CIRRUS – The airborne
experiment on natural cirrus and contrail cirrus with the high-altitude
long-range research aircraft HALO, B. Am. Meteorol. Soc., 98, 271–288,
https://doi.org/10.1175/BAMS-D-15-00213.1, 2017.
Wan, H., Giorgetta, M. A., Zängl, G., Restelli, M., Majewski, D.,
Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh,
L., and Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical
core on triangular grids – Part 1: Formulation and performance of the
baseline version, Geosci. Model Dev., 6, 735–763,
https://doi.org/10.5194/gmd-6-735-2013, 2013.
Wilkerson, J. T., Jacobson, M. Z., Malwitz, A., Balasubramanian, S., Wayson,
R., Fleming, G., Naiman, A. D., and Lele, S. K.: Analysis of emission data
from global commercial aviation: 2004 and 2006, Atmos. Chem.
Phys., 10, 6391–6408, https://doi.org/10.5194/acp-10-6391-2010, 2010.
Wolke, R., Knoth, O., Hellmuth, O., Schröder, W., and Renner, E.: The
parallel model system LM-MUSCAT for chemistry-transport simulations:
Coupling scheme, parallelization and applications, Adv. Parall.
Comput., 13, 363–369, https://doi.org/10.1016/s0927-5452(04)80048-0, 2004.
Wolke, R., Schröder, W., Schrödner, R., and Renner, E.: Influence of
grid resolution and meteorological forcing on simulated European air
quality: A sensitivity study with the modeling system COSMO–MUSCAT,
Atmos. Environ., 53, 110–130,
https://doi.org/10.1016/j.atmosenv.2012.02.085, 2012.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J.
Roy. Meteorol. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2014.
Zhang, Y., Macke, A., and Albers, F.: Effect of crystal size spectrum and
crystal shape on stratiform cirrus radiative forcing, Atmos. Res.,
52, 59–75, https://doi.org/10.1016/s0169-8095(99)00026-5, 1999.
Short summary
This paper investigates contrail ice formation within cirrus and the impact of natural cirrus on the contrail ice formation in the high-resolution ICON-LEM simulations over Germany. Contrail formation often leads to increases in cirrus ice crystal number concentration by a few orders of magnitude. Contrail formation is affected by pre-existing cirrus, leading to changes in contrail formation conditions and ice nucleation rates that can be significant in optically thick cirrus.
This paper investigates contrail ice formation within cirrus and the impact of natural cirrus on...
Altmetrics
Final-revised paper
Preprint