Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019
School of Environmental Sciences, University of East Anglia,
Norwich, NR47 TJ, UK
Grant L. Forster
School of Environmental Sciences, University of East Anglia,
Norwich, NR47 TJ, UK
National Centre for Atmospheric Science, University of East
Anglia, Norwich, NR47 TJ, UK
Peer Nowack
School of Environmental Sciences, University of East Anglia,
Norwich, NR47 TJ, UK
Grantham Institute – Climate Change and the Environment, Imperial College London, London SW7 2AZ, UK
Department of Physics, Imperial College London, London SW7 2AZ, UK
Data Science Institute, Imperial College London, London SW7 2AZ, UK
Related authors
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Kevin Debeire, Lisa Bock, Peer Nowack, Jakob Runge, and Veronika Eyring
Earth Syst. Dynam., 16, 607–630, https://doi.org/10.5194/esd-16-607-2025, https://doi.org/10.5194/esd-16-607-2025, 2025
Short summary
Short summary
Projecting future precipitation is essential for preparing for climate change, but current climate models still have large uncertainties, especially over land. This study presents a new method to improve precipitation projections by identifying which models best capture key climate patterns. By giving more weight to models that better represent these patterns, our approach leads to more reliable future precipitation projections over land.
Peer Nowack and Duncan Watson-Parris
Atmos. Chem. Phys., 25, 2365–2384, https://doi.org/10.5194/acp-25-2365-2025, https://doi.org/10.5194/acp-25-2365-2025, 2025
Short summary
Short summary
In our article, we review uncertainties in global climate change projections and current methods using Earth observations as constraints, which is crucial for climate risk assessments and for informing society. We then discuss how machine learning can advance the field, discussing recent work that provides potentially stronger and more robust links between observed data and future climate projections. We further discuss the challenges of applying machine learning to climate science.
Jingyu Wang, Gabriel Chiodo, Timofei Sukhodolov, Blanca Ayarzagüena, William T. Ball, Mohamadou Diallo, Birgit Hassler, James Keeble, Peer Nowack, Clara Orbe, and Sandro Vattioni
EGUsphere, https://doi.org/10.5194/egusphere-2025-340, https://doi.org/10.5194/egusphere-2025-340, 2025
Short summary
Short summary
We analyzed the ozone response under elevated CO2 using the data from CMIP6 DECK experiments. We then looked at the relations between ozone response and temperature and circulation changes to identify drivers of the ozone change. The climate feedback of ozone is investigated by doing offline calculations and comparing models with and without interactive chemistry. We find that ozone-climate interactions are important for Earth System Models, thus should be considered in future model development.
Philipp Breul, Paulo Ceppi, and Peer Nowack
EGUsphere, https://doi.org/10.5194/egusphere-2025-221, https://doi.org/10.5194/egusphere-2025-221, 2025
Short summary
Short summary
We explore how Pacific low-level clouds influence projections of regional climate change by adjusting a climate model to enhance low cloud response to surface temperatures. We find significant changes in projected warming patterns and circulation changes, under increased CO2 conditions. Our findings are supported by similar relationships across state-of-the-art climate models. These results highlight the importance of accurately representing clouds for predicting regional climate change impacts.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025, https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Short summary
We present a protocol to improve confidence in atmospheric radon measurements, enabling site comparisons and integration with greenhouse gas data. As a natural tracer, radon provides an independent check of transport model performance. This standardized method enhances radon’s use as a metric for model evaluation. Beyond UK observatories, it can support broader networks like ICOS and WMO/GAW, advancing global atmospheric research.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Karina E. Adcock, Penelope A. Pickers, Andrew C. Manning, Grant L. Forster, Leigh S. Fleming, Thomas Barningham, Philip A. Wilson, Elena A. Kozlova, Marica Hewitt, Alex J. Etchells, and Andy J. Macdonald
Earth Syst. Sci. Data, 15, 5183–5206, https://doi.org/10.5194/essd-15-5183-2023, https://doi.org/10.5194/essd-15-5183-2023, 2023
Short summary
Short summary
We present a 12-year time series of continuous atmospheric measurements of O2 and CO2 at the Weybourne Atmospheric Observatory in the United Kingdom. These measurements are combined into the term atmospheric potential oxygen (APO), a tracer that is not influenced by land biosphere processes. The datasets show a long-term increasing trend in CO2 and decreasing trends in O2 and APO between 2010 and 2021.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech., 16, 387–401, https://doi.org/10.5194/amt-16-387-2023, https://doi.org/10.5194/amt-16-387-2023, 2023
Short summary
Short summary
Measurements of atmospheric O2 can help constrain the carbon cycle processes and quantify fossil fuel CO2 emissions; however, measurement of atmospheric O2 is very challenging, and existing analysers are complex systems to build and maintain. We have tested a new O2 analyser (Picarro Inc. G2207-i) in the laboratory and at Weybourne Atmospheric Observatory. We have found that the G2207-i does not perform as well as an existing O2 analyser from Sable Systems Inc.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
Peer Nowack, Lev Konstantinovskiy, Hannah Gardiner, and John Cant
Atmos. Meas. Tech., 14, 5637–5655, https://doi.org/10.5194/amt-14-5637-2021, https://doi.org/10.5194/amt-14-5637-2021, 2021
Short summary
Short summary
Machine learning (ML) calibration techniques could be an effective way to improve the performance of low-cost air pollution sensors. Here we provide novel insights from case studies within the urban area of London, UK, where we compared the performance of three ML techniques to calibrate low-cost measurements of NO2 and PM10. In particular, we highlight the key issue of the method-dependent robustness in maintaining calibration skill after transferring sensors to different measurement sites.
Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack
Weather Clim. Dynam., 2, 581–608, https://doi.org/10.5194/wcd-2-581-2021, https://doi.org/10.5194/wcd-2-581-2021, 2021
Short summary
Short summary
Atmospheric blocking events are complex large-scale weather patterns which block the path of the jet stream. They are associated with heat waves in summer and cold snaps in winter. Blocking is poorly understood, and the effect of climate change is not clear. Here, we present a new method to study blocking using unsupervised machine learning. We show that this method performs better than previous methods used. These results show the potential for unsupervised learning in atmospheric science.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Abdul Malik, Peer J. Nowack, Joanna D. Haigh, Long Cao, Luqman Atique, and Yves Plancherel
Atmos. Chem. Phys., 20, 15461–15485, https://doi.org/10.5194/acp-20-15461-2020, https://doi.org/10.5194/acp-20-15461-2020, 2020
Short summary
Short summary
Solar geoengineering has been introduced to mitigate human-caused global warming by reflecting sunlight back into space. This research investigates the impact of solar geoengineering on the tropical Pacific climate. We find that solar geoengineering can compensate some of the greenhouse-induced changes in the tropical Pacific but not all. In particular, solar geoengineering will result in significant changes in rainfall, sea surface temperatures, and increased frequency of extreme ENSO events.
Cited articles
Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G.,
Knote, C., and Shin, M.: On the changes in surface ozone over the
twenty-first century: sensitivity to changes in surface temperature and
chemical mechanisms: 21st century changes in surface ozone, Philos. T.
R. Soc. A, 378, 20190329,
https://doi.org/10.1098/rsta.2019.0329, 2020.
Bishop, C. M.: Pattern recognition and machine learning, Springer
Science+Business Media, Singapore, ISBN 978-0387-31073-2, 2006.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback
amplifies global warming, P. Natl. Acad. Sci. USA, 118, 1–7,
https://doi.org/10.1073/pnas.2026290118, 2021.
Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the
Western Pacific Subtropical High and the related ozone pollution in
Shanghai, China, Sci. Rep.-UK, 9, 1–12,
https://doi.org/10.1038/s41598-019-53103-7, 2019.
Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H.,
Cheng, X., Jones, D. B. A., Worden, H., and Abad, G. G.: Chinese Regulations
Are Working – Why Is Surface Ozone Over Industrialized Areas Still High?
Applying Lessons From Northeast US Air Quality Evolution, Geophys. Res.
Lett., 48, e2021GL092816, https://doi.org/10.1029/2021GL092816, 2021.
Chen, Z., Liu, J., Cheng, X., Yang, M., and Wang, H.: Positive and negative influences of typhoons on tropospheric ozone over southern China, Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, 2021.
Chinese State Council: Action Plan on Air Pollution Prevention and Control (in Chinese), http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (last
access: 24 November 2021), 2013.
Ding, Y. and Chan, J. C. L.: The East Asian summer monsoon: An overview,
Meteorol. Atmos. Phys., 89, 117–142,
https://doi.org/10.1007/s00703-005-0125-z, 2005.
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A.,
Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M.
G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change
on surface ozone and intercontinental ozone pollution: A multi-model study,
J. Geophys. Res.-Atmos., 118, 3744–3763,
https://doi.org/10.1002/jgrd.50266, 2013.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: A review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013.
Finlayson-Pitts, B. and Pitts, J.: Chemistry of the upper and lower atmosphere: theory, experiments, and applications, Academic Press, San Diego, https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 2000.
Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., Jia, B., Wang, P., Beig, G., Hu, J., Ying, Q., Zhang, H., Sherman, P., and McElroy, M. B.: Ozone pollution over China and India: seasonality and sources, Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, 2020.
Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological normalisation models for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18, 6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.
Gu, Y., Li, K., Xu, J., Liao, H., and Zhou, G.: Observed dependence of
surface ozone on increasing temperature in Shanghai, China, Atmos. Environ.,
221, 117108, https://doi.org/10.1016/j.atmosenv.2019.117108, 2020.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: model evaluations
and sensitivity analyses, J. Geophys. Res., 98, 12609–12617,
https://doi.org/10.1029/93jd00527, 1993.
Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China, Atmos. Chem. Phys., 20, 203–222, https://doi.org/10.5194/acp-20-203-2020, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [data set], https://doi.org/10.24381/cds.bd0915c6 (last access: 11 November 2021), 2018a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [data set], https://doi.org/10.24381/cds.adbb2d47 (last access: 11 November 2021), 2018b.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hua, W., Chen, Z. M., Jie, C. Y., Kondo, Y., Hofzumahaus, A., Takegawa, N., Chang, C. C., Lu, K. D., Miyazaki, Y., Kita, K., Wang, H. L., Zhang, Y. H., and Hu, M.: Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols, Atmos. Chem. Phys., 8, 6755–6773, https://doi.org/10.5194/acp-8-6755-2008, 2008.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8,
2000.
Jiang, Y. C., Zhao, T. L., Liu, J., Xu, X. D., Tan, C. H., Cheng, X. H., Bi, X. Y., Gan, J. B., You, J. F., and Zhao, S. Z.: Why does surface ozone peak before a typhoon landing in southeast China?, Atmos. Chem. Phys., 15, 13331–13338, https://doi.org/10.5194/acp-15-13331-2015, 2015.
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.: The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021.
Lefohn, A. S., Malley, C. S., Smith, L., Wells, B., Hazucha, M., Simon, H.,
Naik, V., Mills, G., Schultz, M. G., Paoletti, E., De Marco, A., Xu, X.,
Zhang, L., Wang, T., Neufeld, H. S., Musselman, R. C., Tarasick, D., Brauer,
M., Feng, Z., Tang, H., Kobayashi, K., Sicard, P., Solberg, S., and Gerosa,
G.: Tropospheric ozone assessment report: Global ozone metrics for climate
change, human health, and crop/ecosystem research, Elementa, 6, 27,
https://doi.org/10.1525/elementa.279, 2018.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371,
2015.
Li, K., Chen, L., Ying, F., White, S. J., Jang, C., Wu, X., Gao, X., Hong,
S., Shen, J., Azzi, M., and Cen, K.: Meteorological and chemical impacts on
ozone formation: A case study in Hangzhou, China, Atmos. Res., 196, 40–52,
https://doi.org/10.1016/j.atmosres.2017.06.003, 2017.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427,
https://doi.org/10.1073/pnas.1812168116, 2019a.
Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H.,
Zhang, Q., and Zhai, S.: A two-pollutant strategy for improving ozone and
particulate air quality in China, Nat. Geosci., 12, 906–910,
https://doi.org/10.1038/s41561-019-0464-x, 2019b.
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.:
Increases in surface ozone pollution in China from 2013 to 2019:
Anthropogenic and meteorological influences, Atmos. Chem. Phys., 20,
11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission changes and implications for multi-pollutant control, Atmos. Chem. Phys., 20, 6323–6337, https://doi.org/10.5194/acp-20-6323-2020, 2020.
Lu, X., Zhang, L., and Shen, L.: Meteorology and Climate Influences on
Tropospheric Ozone: a Review of Natural Sources, Chemistry, and Transport
Patterns, Curr. Pollut. Reports, 5, 238–260,
https://doi.org/10.1007/s40726-019-00118-3, 2019a.
Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-M., and Zhang, Q.: Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences, Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, 2019b.
Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., Wang, S., Zhao, B., Chang, X., Su, H., Zhang, T., Sheng, L., Yao, X., and Gao, H.: Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017, Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, 2019.
Mansfield, L. A., Nowack, P. J., Kasoar, M., Everitt, R. G., Collins, W. J.,
and Voulgarakis, A.: Predicting global patterns of long-term climate change
from short-term simulations using machine learning, npj Clim. Atmos. Sci.,
3, 44, https://doi.org/10.1038/s41612-020-00148-5, 2020.
McDonald, G. C.: Ridge regression, WIREs Comput. Stat., 1,
93–100, https://doi.org/10.1002/wics.14, 2009.
Meehl, G. A., Tebaldi, C., Tilmes, S., Lamarque, J. F., Bates, S.,
Pendergrass, A., and Lombardozzi, D.: Future heat waves and surface ozone,
Environ. Res. Lett., 13, 064004, https://doi.org/10.1088/1748-9326/aabcdc, 2018.
Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P.,
Petrich, W., and Hamprecht, F. A.: A comparison of random forest and its
Gini importance with standard chemometric methods for the feature selection
and classification of spectral data, BMC Bioinformatics, 10, 1–16,
https://doi.org/10.1186/1471-2105-10-213, 2009.
MEP: Technical regulation for ambient air quality assessment (on trial) (HJ 663-2013) (in Chinese), https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201309/t20130925_260809.shtml (last access: 24 November 2021), 2013.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., Von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos.
Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.: Modulations of
synoptic and climatic changes on ozone pollution and its health risks in
mountain-basin areas, Atmos. Environ., 240, 117808,
https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Nowack, P., Braesicke, P., Haigh, J., Abraham, N. L., Pyle, J., and
Voulgarakis, A.: Using machine learning to build temperature-based ozone
parameterizations for climate sensitivity simulations, Environ. Res. Lett.,
13, 104016, https://doi.org/10.1088/1748-9326/aae2be, 2018.
Nowack, P., Konstantinovskiy, L., Gardiner, H., and Cant, J.: Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability, Atmos. Meas. Tech., 14, 5637–5655, https://doi.org/10.5194/amt-14-5637-2021, 2021.
Otero, N., Sillmann, J., Mar, K. A., Rust, H. W., Solberg, S., Andersson, C., Engardt, M., Bergström, R., Bessagnet, B., Colette, A., Couvidat, F., Cuvelier, C., Tsyro, S., Fagerli, H., Schaap, M., Manders, A., Mircea, M., Briganti, G., Cappelletti, A., Adani, M., D'Isidoro, M., Pay, M.-T., Theobald, M., Vivanco, M. G., Wind, P., Ojha, N., Raffort, V., and Butler, T.: A multi-model comparison of meteorological drivers of surface ozone over Europe, Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, 2018.
Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo,
H., and Louie, P. K. K.: Ambient Ozone Control in a Photochemically Active
Region: Short-Term Despiking or Long-Term Attainment?, Environ. Sci.
Technol., 50, 5720–5728, https://doi.org/10.1021/acs.est.6b00345, 2016.
Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K.,
and Poupkou, A.: Enhanced surface ozone during the heat wave of 2013 in
Yangtze River Delta region, China, Sci. Total Environ., 603–604, 807–816,
https://doi.org/10.1016/j.scitotenv.2017.03.056, 2017.
Qi, J., Zheng, B., Li, M., Yu, F., Chen, C., Liu, F., Zhou, X., Yuan, J.,
Zhang, Q., and He, K.: A high-resolution air pollutants emission inventory
in 2013 for the Beijing-Tianjin-Hebei region, China, Atmos. Environ., 170,
156–168, https://doi.org/10.1016/j.atmosenv.2017.09.039, 2017.
Qu, K., Wang, X., Yan, Y., Shen, J., Xiao, T., Dong, H., Zeng, L., and Zhang, Y.: A comparative study to reveal the influence of typhoons on the transport, production and accumulation of O3 in the Pearl River Delta, China, Atmos. Chem. Phys., 21, 11593–11612, https://doi.org/10.5194/acp-21-11593-2021, 2021.
Scikit-learn: sklearn.metrics.r2_score, https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html, last access: 13 April 2022.
Shu, L., Xie, M., Wang, T., Gao, D., Chen, P., Han, Y., Li, S., Zhuang, B., and Li, M.: Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China, Atmos. Chem. Phys., 16, 15801–15819, https://doi.org/10.5194/acp-16-15801-2016, 2016.
Shu, L., Wang, T., Han, H., Xie, M., Chen, P., Li, M., and Wu, H.:
Summertime ozone pollution in the Yangtze River Delta of eastern China
during 2013–2017: Synoptic impacts and source apportionment, Environ.
Pollut., 257, 113631, https://doi.org/10.1016/j.envpol.2019.113631, 2020.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ.,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Song, C., Liu, B., Dai, Q., Li, H., and Mao, H.: Temperature dependence and
source apportionment of volatile organic compounds (VOCs) at an urban site
on the north China plain, Atmos. Environ., 207, 167–181,
https://doi.org/10.1016/j.atmosenv.2019.03.030, 2019.
Squire, O. J., Archibald, A. T., Griffiths, P. T., Jenkin, M. E., Smith, D., and Pyle, J. A.: Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century, Atmos. Chem. Phys., 15, 5123–5143, https://doi.org/10.5194/acp-15-5123-2015, 2015.
Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M., Andersen, H., Fuchs, J., Kim, M., Petit, J.-E., and Favez, O.: Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning, Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, 2021.
Tan, Z., Hofzumahaus, A., Lu, K., Brown, S. S., Holland, F., Huey, L. G.,
Kiendler-Scharr, A., Li, X., Liu, X., Ma, N., Min, K. E., Rohrer, F., Shao,
M., Wahner, A., Wang, Y., Wiedensohler, A., Wu, Y., Wu, Z., Zeng, L., Zhang,
Y., and Fuchs, H.: No Evidence for a Significant Impact of Heterogeneous
Chemistry on Radical Concentrations in the North China Plain in Summer 2014,
Environ. Sci. Technol., 54, 5973–5979,
https://doi.org/10.1021/acs.est.0c00525, 2020.
Wang, H., Wu, K., Liu, Y., Sheng, B., Lu, X., He, Y., Xie, J., Wang, H., and
Fan, S.: Role of Heat Wave-Induced Biogenic VOC Enhancements in Persistent
Ozone Episodes Formation in Pearl River Delta, J. Geophys. Res.-Atmos., 126,
e2020JD034317, https://doi.org/10.1029/2020JD034317, 2021.
Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating
O3 pollution due to NOx emission control in eastern China, Sci.
Total Environ., 677, 732–744,
https://doi.org/10.1016/j.scitotenv.2019.04.388, 2019.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total Environ., 575,
1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, X. L.: Historical air quality data in China, https://quotsoft.net/air/, last access: 13 July 2021.
Wang, Y., Shen, L., Wu, S., Mickley, L., He, J., and Hao, J.: Sensitivity of
surface ozone over China to 2000–2050 global changes of climate and
emissions, Atmos. Environ., 75, 374–382,
https://doi.org/10.1016/j.atmosenv.2013.04.045, 2013.
Wei, X., Lam, K. S., Cao, C., Li, H., and He, J.: Dynamics of the Typhoon
Haitang Related High Ozone Episode over Hong Kong, Adv. Meteorol., 2016, 6089154,
https://doi.org/10.1155/2016/6089154, 2016.
Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C. C., and Chen, Z. M.: Estimate
of initial isoprene contribution to ozone formation potential in Beijing,
China, Atmos. Environ., 42, 6000–6010,
https://doi.org/10.1016/j.atmosenv.2008.03.035, 2008.
Yang, L., Xie, D., Yuan, Z., Huang, Z., Wu, H., Han, J., Liu, L., and Jia,
W.: Quantification of regional ozone pollution characteristics and its
temporal evolution: Insights from identification of the impacts of
meteorological conditions and emissions, Atmosphere, 12, 279,
https://doi.org/10.3390/atmos12020279, 2021.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhang, J., Gao, Y., Luo, K., Leung, L. R., Zhang, Y., Wang, K., and Fan, J.: Impacts of compound extreme weather events on ozone in the present and future, Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, 2018.
Zhang, W., Zou, Y., Zheng, X. D., Wang, N., Yan, H., Chen, Y. P., Zhao, X.
J., Ji, Z. P., Li, F., Mai, B. R., Yin, C. Q., Deng, T., Fan, L. Y., and
Deng, X. J.: Characteristics of the vertical distribution of tropospheric
ozone in late autumn at Yangjiang station in Pearl River Delta (PRD), China.
Part I: Observed event, Atmos. Environ., 244, 117898,
https://doi.org/10.1016/j.atmosenv.2020.117898, 2021.
Zhang, X., Fung, J. C. H., Lau, A. K. H., Hossain, M. S., Louie, P. K. K.,
and Huang, W.: Air quality and synergistic health effects of ozone and
nitrogen oxides in response to China's integrated air quality control
policies during 2015–2019, Chemosphere, 268, 129385,
https://doi.org/10.1016/j.chemosphere.2020.129385, 2021.
Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., and Wu, J.:
Estimation of poverty using random forest regression with multi-source data:
A case study in Bangladesh, Remote Sens., 11, 1–18,
https://doi.org/10.3390/rs11040375, 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
We use machine learning to quantify the meteorological drivers behind surface ozone variations in China between 2015 and 2019. Our novel approaches show improved performance when compared to previous analysis methods. We highlight that nonlinearity in driver relationships and the impacts of large-scale meteorological phenomena are key to understanding ozone pollution. Moreover, we find that almost half of the observed ozone trend between 2015 and 2019 might have been driven by meteorology.
We use machine learning to quantify the meteorological drivers behind surface ozone variations...
Altmetrics
Final-revised paper
Preprint