Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8385-2022
https://doi.org/10.5194/acp-22-8385-2022
Research article
 | 
29 Jun 2022
Research article |  | 29 Jun 2022

A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019

Xiang Weng, Grant L. Forster, and Peer Nowack

Related authors

12 years of continuous atmospheric O2, CO2 and APO data from Weybourne Atmospheric Observatory in the United Kingdom
Karina E. Adcock, Penelope A. Pickers, Andrew C. Manning, Grant L. Forster, Leigh S. Fleming, Thomas Barningham, Philip A. Wilson, Elena A. Kozlova, Marica Hewitt, Alex J. Etchells, and Andy J. Macdonald
Earth Syst. Sci. Data, 15, 5183–5206, https://doi.org/10.5194/essd-15-5183-2023,https://doi.org/10.5194/essd-15-5183-2023, 2023
Short summary
Radical chemistry and ozone production at a UK coastal receptor site
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023,https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023,https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
Hannah Chawner, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
EGUsphere, https://doi.org/10.5194/egusphere-2023-385,https://doi.org/10.5194/egusphere-2023-385, 2023
Short summary
Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech., 16, 387–401, https://doi.org/10.5194/amt-16-387-2023,https://doi.org/10.5194/amt-16-387-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023,https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary
Benefits of net-zero policies for future ozone pollution in China
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023,https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Simulating impacts on UK air quality from net-zero forest planting scenarios
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023,https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Understanding offshore high-ozone events during TRACER-AQ 2021 in Houston: insights from WRF–CAMx photochemical modeling
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023,https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Opinion: Establishing a science-into-policy process for tropospheric ozone assessment
Richard G. Derwent, David D. Parrish, and Ian C. Faloona
Atmos. Chem. Phys., 23, 13613–13623, https://doi.org/10.5194/acp-23-13613-2023,https://doi.org/10.5194/acp-23-13613-2023, 2023
Short summary

Cited articles

Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G., Knote, C., and Shin, M.: On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms: 21st century changes in surface ozone, Philos. T. R. Soc. A, 378, 20190329, https://doi.org/10.1098/rsta.2019.0329, 2020. 
Bishop, C. M.: Pattern recognition and machine learning, Springer Science+Business Media, Singapore, ISBN 978-0387-31073-2, 2006. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback amplifies global warming, P. Natl. Acad. Sci. USA, 118, 1–7, https://doi.org/10.1073/pnas.2026290118, 2021. 
Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China, Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-53103-7, 2019. 
Download
Short summary
We use machine learning to quantify the meteorological drivers behind surface ozone variations in China between 2015 and 2019. Our novel approaches show improved performance when compared to previous analysis methods. We highlight that nonlinearity in driver relationships and the impacts of large-scale meteorological phenomena are key to understanding ozone pollution. Moreover, we find that almost half of the observed ozone trend between 2015 and 2019 might have been driven by meteorology.
Altmetrics
Final-revised paper
Preprint