Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8385-2022
https://doi.org/10.5194/acp-22-8385-2022
Research article
 | 
29 Jun 2022
Research article |  | 29 Jun 2022

A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019

Xiang Weng, Grant L. Forster, and Peer Nowack

Related authors

Constraining uncertainty in projected precipitation over land with causal discovery
Kevin Debeire, Lisa Bock, Peer Nowack, Jakob Runge, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2024-2656,https://doi.org/10.5194/egusphere-2024-2656, 2024
Short summary
A systematic evaluation of high-cloud controlling factors
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024,https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Direct high-precision radon quantification for interpreting high frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Foster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, and Tim Arnold
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-54,https://doi.org/10.5194/amt-2024-54, 2024
Revised manuscript accepted for AMT
Short summary
Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective
Peer Nowack and Duncan Watson-Parris
EGUsphere, https://doi.org/10.5194/egusphere-2024-1636,https://doi.org/10.5194/egusphere-2024-1636, 2024
Short summary
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024,https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024,https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024,https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024,https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024,https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024,https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary

Cited articles

Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G., Knote, C., and Shin, M.: On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms: 21st century changes in surface ozone, Philos. T. R. Soc. A, 378, 20190329, https://doi.org/10.1098/rsta.2019.0329, 2020. 
Bishop, C. M.: Pattern recognition and machine learning, Springer Science+Business Media, Singapore, ISBN 978-0387-31073-2, 2006. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback amplifies global warming, P. Natl. Acad. Sci. USA, 118, 1–7, https://doi.org/10.1073/pnas.2026290118, 2021. 
Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China, Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-53103-7, 2019. 
Download
Short summary
We use machine learning to quantify the meteorological drivers behind surface ozone variations in China between 2015 and 2019. Our novel approaches show improved performance when compared to previous analysis methods. We highlight that nonlinearity in driver relationships and the impacts of large-scale meteorological phenomena are key to understanding ozone pollution. Moreover, we find that almost half of the observed ozone trend between 2015 and 2019 might have been driven by meteorology.
Altmetrics
Final-revised paper
Preprint