Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8385-2022
https://doi.org/10.5194/acp-22-8385-2022
Research article
 | 
29 Jun 2022
Research article |  | 29 Jun 2022

A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019

Xiang Weng, Grant L. Forster, and Peer Nowack

Related authors

Tropospheric ozone trends and attributions over East and Southeast Asia in 1995–2019: An integrated assessment using statistical methods, machine learning models, and multiple chemical transport models
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
EGUsphere, https://doi.org/10.5194/egusphere-2024-3702,https://doi.org/10.5194/egusphere-2024-3702, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025,https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025,https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx upwind of and within two Los Angeles Basin cities
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025,https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Causes of growing middle-to-upper tropospheric ozone over the northwest Pacific region
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025,https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: yearly trends and the importance of changes in the urban heat island effect
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
Atmos. Chem. Phys., 25, 1037–1061, https://doi.org/10.5194/acp-25-1037-2025,https://doi.org/10.5194/acp-25-1037-2025, 2025
Short summary

Cited articles

Archibald, A. T., Turnock, S. T., Griffiths, P. T., Cox, T., Derwent, R. G., Knote, C., and Shin, M.: On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms: 21st century changes in surface ozone, Philos. T. R. Soc. A, 378, 20190329, https://doi.org/10.1098/rsta.2019.0329, 2020. 
Bishop, C. M.: Pattern recognition and machine learning, Springer Science+Business Media, Singapore, ISBN 978-0387-31073-2, 2006. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback amplifies global warming, P. Natl. Acad. Sci. USA, 118, 1–7, https://doi.org/10.1073/pnas.2026290118, 2021. 
Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China, Sci. Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-53103-7, 2019. 
Download
Short summary
We use machine learning to quantify the meteorological drivers behind surface ozone variations in China between 2015 and 2019. Our novel approaches show improved performance when compared to previous analysis methods. We highlight that nonlinearity in driver relationships and the impacts of large-scale meteorological phenomena are key to understanding ozone pollution. Moreover, we find that almost half of the observed ozone trend between 2015 and 2019 might have been driven by meteorology.
Altmetrics
Final-revised paper
Preprint