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Abstract. Surface ozone concentrations increased in many regions of China from 2015 to 2019. While the
central role of meteorology in modulating ozone pollution is widely acknowledged, its quantitative contribu-
tion remains highly uncertain. Here, we use a data-driven machine learning approach to assess the impacts of
meteorology on surface ozone variations in China for the period 2015–2019, considering the months of highest
ozone pollution from April to October. To quantify the importance of various meteorological driver variables,
we apply nonlinear random forest regression (RFR) and linear ridge regression (RR) to learn about the relation-
ship between meteorological variability and surface ozone in China, and contrast the results to those obtained
with the widely used multiple linear regression (MLR) and stepwise MLR. We show that RFR outperforms
the three linear methods when predicting ozone using local meteorological predictor variables, as evident from
its higher coefficients of determination (R2) with observations (0.5–0.6 across China) when compared to the
linear methods (typically R2

= 0.4–0.5). This refers to the importance of nonlinear relationships between local
meteorological factors and ozone, which are not captured by linear regression algorithms. In addition, we find
that including nonlocal meteorological predictors can further improve the modelling skill of RR, particularly for
southern China where the averaged R2 increases from 0.47 to 0.6. Moreover, this improved RR shows a higher
averaged meteorological contribution to the increased trend of ozone pollution in that region, pointing towards
an elevated importance of large-scale meteorological phenomena for ozone pollution in southern China. Overall,
RFR and RR are in close agreement concerning the leading meteorological drivers behind regional ozone pol-
lution. In line with expectations, our analysis underlines that hot and dry weather conditions with high sunlight
intensity are strongly related to high ozone pollution across China, thus further validating our novel approach.
In contrast to previous studies, we also highlight surface solar radiation as a key meteorological variable to be
considered in future analyses. By comparing our meteorology based predictions with observed ozone values
between 2015 and 2019, we estimate that almost half of the 2015–2019 ozone trends across China might have
been caused by meteorological variability. These insights are of particular importance given possible increases
in the frequency and intensity of weather extremes such as heatwaves under climate change.
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1 Introduction

Over the last decade, Chinese policymakers have been suc-
cessfully implementing air pollution control policies and
strategies, such as The Clean Air Action Plan in 2013 (Chi-
nese State Council, 2013), to reduce harmful air pollutants.
As a result, annual mean concentrations of fine particulate
matter (PM2.5) have been reduced by 30 % to 50 % from
2013 to 2018 in China (Zhai et al., 2019), alongside signifi-
cant decreases in anthropogenic emissions of air pollutants
and ozone precursors such as nitrogen oxides (NOx) and
carbon monoxide (CO) with 21 % and 23 % reductions, re-
spectively, from 2013 to 2017 (Zheng et al., 2018). However,
summertime means of maximum daily 8 h average (MDA8)
surface ozone concentrations were still increasing from 2013
to 2019 at a rate of about 1.9 ppb yr−1 on average across
China, with a faster rate of 3.3 ppb yr−1 in the North China
Plain (NCP) (Li et al., 2020), highlighting the urgent need
for a better understanding of how ozone pollution could be
addressed effectively.

Surface ozone is an air pollutant that can induce severe
harm to both human health and ecosystems (Lefohn et al.,
2018; Lelieveld et al., 2015). In the troposphere, it is pri-
marily produced through photochemically induced reaction
chains involving volatile organic compounds (VOCs), NOx

and CO (Monks et al., 2015; Jacob, 2000). It is well-known
that the effectiveness of ozone production is strongly depen-
dent on the atmospheric chemical regime (e.g. Squire et al.,
2015; Archibald et al., 2020), in which ozone production is
mainly controlled by the abundance of NOx or VOCs. Many
urban and industrial regions in China have been identified
and categorized as being within the VOC-limited regime (Ou
et al., 2016; Wang et al., 2017). Under these circumstances,
surface ozone reductions may require tighter controls on
emissions of VOCs together with continuous reductions in
NOx , while significant reductions in NOx emissions with-
out simultaneous and adequate controls on VOCs could lead
to increased ozone pollution in the short term (Wang et al.,
2019). Notably, the total emissions of non-methane volatile
organic compounds (NMVOCs) have actually increased by
11 % in 2017 compared to 2010 (Zheng et al., 2018). Another
factor might be the role of the large reductions in PM2.5, es-
pecially during the period 2013–2017, because fewer parti-
cles could reduce the aerosol sink of ozone-producing rad-
icals such as hydroperoxyl (HO2) (Li et al., 2019a). How-
ever, the quantitative contribution to the increases of ozone
from HO2 uptake on aerosol remains uncertain (e.g. Tan et
al., 2020), and it is likely that this effect has become less im-
portant as PM2.5 concentrations continue to decline (X. Chen
et al., 2021; Li et al., 2019b).

In conjunction with the effects of changing ozone pre-
cursor emissions, the effect of meteorological conditions on
ozone concentrations should always be considered. It is well-
known that ozone variations are strongly co-determined by
meteorological factors such as incoming solar radiation, tem-

perature, humidity, atmospheric stagnation and precipitation
(e.g. Otero et al., 2018; Zhang et al., 2018; Lu et al., 2019a).
For example, solar radiation is pivotal to the photochemi-
cal production and destruction of ozone (Finlayson-Pitts and
Pitts, 2000). Higher surface temperatures, and in general tro-
pospheric temperatures, change the chemical reaction rate of
many ozone-relevant chemical reactions and will affect bio-
genic emissions of VOCs such as isoprene and monoterpenes
which are also important ozone precursors (Lu et al., 2019a;
Doherty et al., 2013; Guenther et al., 1993; Xie et al., 2008;
Archibald et al., 2020). Work by Lu et al. (2019b) further
indicated that hotter and drier weather conditions were the
main drivers for background ozone increases in 2017 in ma-
jor city clusters of China. Similarly, Ma et al. (2019) sug-
gested that high biogenic emissions of VOCs and meteoro-
logical conditions indicative of heatwaves such as high tem-
perature, low wind speed and no precipitation can elevate
ozone pollution in NCP. Furthermore, studies by Wang et al.
(2021) and Pu et al. (2017) also found enhanced ozone con-
centrations during heatwaves in the Pearl River Delta (PRD)
and Yangtze River Delta (YRD). Such links between mete-
orology and ozone pollution provide clear evidence for the
necessity to quantify the influence of meteorological factors
or even climate change on ozone pollution in China (e.g. Lu
et al., 2019a; Meehl et al., 2018). Characterizing the major
meteorological drivers behind ozone variations in different
regions of China will also be crucial for achieving effective
mitigation of ozone pollution now and under future changes
in climate.

To quantify the importance of meteorological drivers, pre-
vious studies such as Li et al. (2019a) and Han et al. (2020)
adopted stepwise multiple linear regression (MLR) to de-
rive linear relationships between meteorological factors and
measured surface ozone concentrations across China. Both
of these studies demonstrated the significant skill of step-
wise MLR in modelling ozone and in quantifying the driver–
response relationships. Nevertheless, a key limitation of step-
wise MLR or conventional MLR is that these methods are
not able to accurately capture nonlinearity, which is a severe
constraint given that nonlinear relationships between mete-
orological factors and ozone, e.g. between temperature and
ozone, are to be expected (e.g. Pu et al., 2017; Gu et al.,
2020; Archibald et al., 2020). In addition, MLR can suffer
from a severe loss in predictive skill and reliability in settings
where a large number of (collinear) meteorological factors
are considered as predictors (cf. the curse of dimensional-
ity in high-dimensional regression problems; Nowack et al.,
2021; Bishop, 2006). Although the stepwise MLR approach
adopted by Li et al. (2019a) can overcome collinearity and
overfitting to some extent (i.e. because only a few predic-
tors that are particularly strongly influencing ozone concen-
trations are kept), it is inevitable that many relevant meteoro-
logical factors will be excluded from the final MLR predic-
tions using such an approach.
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In order to capture any nonlinear relationships between
many meteorological factors and ozone and to overcome
the potential limitations of considering collinearity and high-
dimensional settings in MLR, we will use a machine learn-
ing approach as the next logical step to advance such con-
trolling factor analyses of ozone pollution. Specifically, we
will adopt random forest regression (RFR) (e.g. Grange et
al., 2018; Stirnberg et al., 2021) as a nonlinear approach and
contrast the results to a linear statistical learning approach
that is also robust in high-dimensional settings in the form of
ridge regression (RR) (e.g. Nowack et al., 2018). Both RFR
and RR will also be compared with more conventional statis-
tical methods such as MLR and stepwise MLR.

Our paper is structured as follows: in Sect. 2, we describe
the data used in this study and the modelling framework of
the two machine learning algorithms, namely RFR and RR.
In Sect. 3, the performances of RFR and RR will be discussed
first and then compared to those achieved with MLR and
stepwise MLR. We then summarize the most important me-
teorological drivers for surface ozone as identified by RFR
and RR. Finally, we conduct a trend analysis of recent sur-
face ozone changes in China, and use our method to estimate
the contribution of meteorological effects.

2 Methods

2.1 Surface ozone and meteorological data

The surface air quality measurement data used in this
study were obtained from https://quotsoft.net/air/ (last ac-
cess: 13 July 2021; Wang, 2021) which is a mirror of the
data from the Ministry of Ecology and Environment (MEE)
in China. For the purposes of quantifying ozone pollution
severity, we use the maximum daily 8 h rolling mean (i.e.
MDA8) of ozone calculated following the guidelines by the
Ministry of Environmental Protection of the People’s Repub-
lic of China (MEP, 2013). The calculation selects the max-
imum value from the 8 h rolling mean of ozone for each
station between local time (UTC+8 h) 08:00 and 24:00 on
each day. To be considered, each station must have a valid
14 h data record of 8 h rolling mean of ozone within 08:00 to
24:00 on a respective day, otherwise, the MDA8 ozone is not
calculated for that day. Previous studies (e.g. Li et al., 2020,
2019a; Han et al., 2020) have focused on ozone pollution
during the boreal summer months, i.e. June, July and Au-
gust (JJA), as the season with the most frequent occurrence
of extreme ozone episodes in China. In this work, we ex-
tend the analysis period to include the months from April to
October to account for the fact that the seasonality of ozone
does not follow a uniform pattern across China. For exam-
ple, peak ozone concentrations are often found during au-
tumn in the PRD region (Gao et al., 2020; see Fig. S1 in the
Supplement). In addition, we further constrain our analysis
to the period 2015–2019 to maintain greater consistency of
the ozone data throughout our analysis period as the MEE

Figure 1. Elevation height (m) and locations of all ground-based
stations and the four megacity cluster regions, BTH (blue box; 114–
120◦ E, 36–40.62◦ N), YRD (orange box; 117–123◦ E, 29.458–
33.238◦ N), PRD (green box; 112–116◦ E, 21–24.111◦ N), Sichuan
(black box; 102.8–107.061◦ E, 28.2–31.976◦ N). Red (blue) dots in-
dicate the locations of stations within (outside) the four regions.

included far fewer measurement stations prior to 2015. In or-
der to maintain consistency and reliability of all ozone data
from stations within the study period, only those stations
with more than 80 % temporal coverage of MDA8 ozone data
record in each year are selected. For quality assurance of the
data, we further examined each station’s MDA8 ozone vari-
ation individually and noticed that measurements from some
stations appeared to show a less reliable data record than oth-
ers. This was for example evident from extended periods of
non-fluctuating ozone levels (see Fig. S2), or from sudden
unusual MDA8 spikes, usually followed by periods of sup-
pressed ozone variability (see Fig. S3). According to our best
judgement, such abrupt changes or unrealistically low vari-
ability are unlikely to reflect actual ozone pollution profiles.
Data from stations that showed such unusual time evolutions
were excluded from our analysis to avoid the inclusion of un-
realistic artefacts. The list of stations not used in this study is
summarized in Table S1 in the Supplement.

To study regional meteorological drivers of ozone, we dis-
tinguish four regions of particularly high population den-
sity known as Beijing–Tianjin–Hebei (BTH), Yangtze River
Delta (YRD), Pearl River Delta (PRD) and Sichuan Basin
(Sichuan), with definitions frequently used in previous stud-
ies (e.g. Li et al., 2019a; Han et al., 2020). The boundaries of
these four regions are adjusted to ensure that stations in each
region have similar topography and equivalent elevation. The
four regions are also known as the target areas for air pol-
lution reduction in Chinese government plans (MEE; http:
//www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/, last access: 1 De-
cember 2021; Li et al., 2019a). The locations of stations
within the four regions are indicated by red dots in Fig. 1.
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For the meteorological data, we use the gridded ERA5 re-
analysis product (Hersbach et al., 2020) available at https://
cds.climate.copernicus.eu/ (last access: 11 November 2021).
Specifically, we use hourly data for a total of 11 meteorolog-
ical variables at 0.25◦× 0.25◦ spatial resolution, namely the
temperature at 2 m (T2), boundary layer height (BLH), mean
sea level pressure (SLP), surface solar radiation downward
(SSRD), relative humidity (RH) at 1000 hPa, total precipi-
tation (TP), zonal wind at 10 m (U10), meridional wind at
10 m (V10), zonal wind at 850 hPa (U850hPa), meridional
wind at 850 hPa (V850hPa) and vertical velocity at 850 hPa
(W850hPa) for the same time period as for the ozone sta-
tion data. Then the MDA8 ozone data are spatially averaged
within the dimensions of each ERA5 grid cell to obtain the
best possible spatial match between the station-based ozone
data and the large-scale meteorological factor data.

The variables of T2, BLH, SLP, RH, TP, U10 and V10 can
also be found as predictors in the controlling factor analyses
from the studies of Han et al. (2020) and Li et al. (2019a).
The SSRD is included in this study instead of adding a
cloud coverage term as done by Han et al. (2020) and Li et
al. (2019a). Essentially, we consider SSRD to more directly
characterize the local photochemical environment for ozone
production and loss than cloud coverage. Zonal and merid-
ional wind at 10 m may be important for the dispersion of
ozone’s precursors on a local scale. Both zonal and merid-
ional winds at 850 hPa are adopted in this study in order to
encompass the effect of transport of more polluted or cleaner
air from remote regions. Wind at 850 hPa is less likely to be
affected by orography than wind at 10 m altitude, and it is
thus better suited for considering the effect of larger-scale
transport and dispersion. Additionally, we represent the role
of vertical transport of air masses by including vertical ve-
locity at 850 hPa as another factor.

2.2 Data pre-processing

Prior to modelling ozone, we pre-processed the meteorologi-
cal data by averaging the raw hourly data over different peri-
ods each day and this process is summarized in Table 1. The
averaging periods were not the same for all meteorological
variables. For example, T2, SSRD, SLP, RH and W850hPa
are averaged between local time (UTC+8 h) 06:00 to 18:00
each day. The average of these hours is sufficient to cover
all daytime hours when ozone is photochemically produced
from April to October. Total precipitation is calculated by
summing up all hourly accumulated precipitation (m) from
06:00 to 18:00. For zonal and meridional wind at 10 m and
850 hPa, data are averaged over 06:00 to 12:00, which cov-
ers the main hours that may have potential fresh emission of
precursors and transport or dispersion of precursors or ozone.
The BLH is averaged over 00:00 to 12:00 for the consider-
ation of both potential night-time emission of industrial ac-
tivities when the boundary layer is still low and transporta-
tion emission during morning rush hours. Through this pro-

cess, raw hourly meteorological data can be converted to a
daily format, temporally matching MDA8 ozone data. Fi-
nally, both ozone data and meteorological data are desea-
sonalized. Specifically, for MDA8 ozone and the converted
daily meteorological variables, we first calculate 15 d mov-
ing window averages centred on the particular calendar date
from 2015 to 2019. We then take the difference between
each day’s MDA8 ozone or daily meteorological variables
and these 15 d averages to obtain daily anomalies, creating
smooth time series of deseasonalized MDA8 ozone and de-
seasonalized meteorological variables.

2.3 Machine learning methods for modelling MDA8
ozone

To model the relationships between meteorological variables
and MDA8 ozone concentrations in China, we use two re-
gression algorithms, a nonlinear approach, RFR and a lin-
ear approach, RR. Within our framework, the predictors are
the deseasonalized meteorological variables from ERA5 and
the dependent variable is the deseasonalized ground-based
MDA8 ozone. For RR, both the deseasonalized meteorolog-
ical variables and the deseasonalized ozone time series are
standard-scaled (normalized to zero mean and unit standard
deviation) to avoid an imbalance of factors in the regulariza-
tion part of the RR cost function (Nowack et al., 2018).

Both RFR and RR have been extensively described else-
where (e.g. Nowack et al., 2018; Grange et al., 2018; Mans-
field et al., 2020; Nowack et al., 2021) and it is beyond the
scope of this study to provide an in-depth description. Briefly,
RFR is based on learning an ensemble of decision trees,
where each individual tree splits data into groups until reach-
ing certain pre-set definitions for data “purity” (Breiman,
2001; Grange et al., 2018). The RR is a least-squares linear
regression method augmented by L2-regularization aiming
to avoid overfitting in high-dimensional regression settings,
especially in regression problems with strong collinearity
(McDonald, 2009). Both RFR and RR are known to handle
collinearity comparatively well (e.g. Dormann et al., 2013),
which is key given that many meteorological variables such
as temperature and solar radiation are correlated with each
other. To assess whether these two machine learning algo-
rithms can improve the accuracy of ozone modelling com-
pared to conventional statistical methods, we will contrast
our results to MLR, which may not be highly capable of
handling collinearity and overfitting, and stepwise MLR. For
MLR, we simply adopt the same modelling framework of
RFR and RR; all 11 meteorological variables are ingested
into MLR as predictors. For stepwise MLR, we adopted a
similar approach as Li et al. (2019a): we start with 11 desea-
sonalized meteorological variables as predictors in MLR and
remove one predictor at a time, based on the smallest signifi-
cance of the regression coefficient in each new subset of pre-
dictors, until there are only three meteorological predictors
left. These three predictors are considered to be important

Atmos. Chem. Phys., 22, 8385–8402, 2022 https://doi.org/10.5194/acp-22-8385-2022

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/


X. Weng et al.: A machine learning approach to quantify meteorological drivers of ozone pollution 8389

Table 1. Summary of the meteorological controlling factor variables and the respective times of day considered in their averages. The
motivation behind each selected time period is provided in the main text. Note: a positive zonal wind means westerly; positive meridional
wind means southerly; positive vertical velocity means downward motion.

Abbreviations Names and units of variables Average period

T2 Temperature at 2 m (K) 06:00 to 18:00
SSRD Surface solar radiation downward (J m−2) 06:00 to 18:00
SLP Mean sea level pressure (Pa) 06:00 to 18:00
RH Relative humidity (%) 06:00 to 18:00
BLH Boundary layer height (m) 00:00 to 12:00
U10 Zonal wind at 10 m (m s−1) 06:00 to 12:00
V10 Meridional wind at 10 m (m s−1) 06:00 to 12:00
TP Total precipitation (m) 06:00 to 18:00 (sum)
U850hPa Zonal wind at 850 hPa (m s−1) 06:00 to 12:00
V850hPa Meridional wind at 850 hPa (m s−1) 06:00 to 12:00
W850hPa Vertical velocity at 850 hPa (Pa s−1) 06:00 to 18:00

predictors and are used in the final model of stepwise MLR
for modelling deseasonalized MDA8 ozone.

2.4 Training, testing and cross-validation in machine
learning

Supervised machine learning approaches such as the two
algorithms we use here require distinct training, validation
and testing phases to tune the relevant hyperparameters (ex-
plained in detail below) and to validate the skill of the result-
ing predictive functions on new, unseen data not used in the
training and tuning process (e.g. Bishop, 2006). During the
training phase, both predictors (i.e. deseasonalized meteoro-
logical variables) and dependent variables (i.e. deseasonal-
ized MDA8 ozone) are available and each machine learning
regression algorithm is fit to this dataset, assuming different
combinations of values for the hyperparameters of each al-
gorithm. The best objective estimate for the combination of
hyperparameters is then found in the validation step by pre-
dicting ozone values for a validation dataset not used at the
training stage (e.g. for a different year in the data record).
During the testing phase, the trained and validated algorithm
is used operationally to make new predictions for ozone val-
ues given a new dataset for the meteorological variables as
input to the machine learning function. These test set pre-
dictions can then be used to measure the out-of-sample skill
of the algorithm in predicting ozone pollution given certain
meteorological conditions. In this study, we split the 5 years
of data (2015–2019) systematically into training/validation
and testing datasets, one at a time and in a rotating fashion.
Specifically, 4 of these 5 years are classified as training/vali-
dation data, leaving 1 year for testing. To ensure that we are
measuring the true predictive performance and relationships,
our predictive results and model evaluations are only con-
ducted for the test data, which has not been used at the train-
ing and validation stages. This process rotates until ozone

data for each year have been assigned once as test data so
that all 5 years of data can be predicted by RFR and RR.

Machine learning regressions such as RFR and RR opti-
mize their predictive performance by tuning certain sets of
hyperparameters. To determine the most suitable set of hy-
perparameters, we use a statistical cross-validation method.
Specifically, the 4-year training/validation set is further split
into four folds (1 year per fold). We then run a grid search
over pre-defined combinations of hyperparameters by train-
ing on three folds and predicting on the fourth fold in a clas-
sic four-fold cross-validation procedure. We finally select the
best-estimated set of hyperparameters on the basis of the av-
erage validation data prediction performance as measured
by the coefficient of determination, i.e. the R2 regression
score function, which is one of the metrics used in Scikit-
learn (see https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.r2_score.html, last access: 13 April 2022;
Scikit-learn, 2022), and refit model coefficients using this
set of hyperparameters for the entire 4 years of training/val-
idation data. We note that we avoid a “leave-one-out” cross-
validation method (in which only one daily sample is the test
dataset at a time) as we expect autocorrelation in our data
(i.e. MDA8 ozone may share similarity in adjacent dates),
which, intuitively, could lead to an overestimate of our pre-
dictive skill if testing data immediately follow training data
points.

The ranges of hyperparameters we search over for both
RFR and RR are set as follows: for RFR, the maximum depth
for trees growing is iterated in a step of 1 from 8 to 15.
The maximum percentage of features and maximum samples
(with the bootstrap method) is set from 20 % to 90 % and
30 % to 80 % with 10 % incremental steps, respectively. The
total tree number for the forest is set at 200 as a compromise
between model complexity and runtime. Optimizations fur-
ther showed that the minimum samples per leaf are best set
to three in our RFRs so that we finally kept this value con-
stant in our grid searches. In terms of RR, the regularization
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strength is iterated over a range of 1 to 199 with an incremen-
tal step of 2, which appeared to encapsulate the best solution
in each case. A detailed explanation of these hyperparame-
ters for RFR and RR is provided in Nowack et al. (2021).

2.5 Identifying and quantifying importance of
meteorological drivers

Both RFR and RR can enable the identification of the most
important meteorological drivers for MDA8 ozone and can
help to quantitatively evaluate their relative importance. For
RFR, we measure the importance of each meteorological pre-
dictor through a metric called Gini importance. A greater
Gini importance implies a greater influence of a particular
predictor (i.e. the deseasonalized meteorological variable) on
the dependent variable (i.e. deseasonalized MDA8 ozone)
(e.g. Menze et al., 2009; Zhao et al., 2019; Kuhn-Régnier
et al., 2021). Since we train the RFR five times given each
possible set of 4-year training/validation data, we average
the Gini importance scores for each meteorological predictor
across all five runs for our final discussion below. For RR,
similar to MLR, the importance of each predictor is eval-
uated by the magnitude of each predictor’s averaged slope
(linear regression coefficient) across all 4-year training/vali-
dation datasets, which represents the linear effect of each pre-
dictor on ozone, given that all predictors are standard-scaled
(see Sect. 2.3).

3 Results and discussion

3.1 Machine learning performances for modelling ozone
using local meteorological predictors

It is important to first assess how well the selected machine
learning algorithms can model ozone by using only mete-
orological variables as predictors. Therefore, we adopt the
coefficient of determination (R2) as a standard metric for
the evaluation of prediction performance, which assesses the
goodness of fit for the linear regression between the desea-
sonalized MDA8 ozone data and the predicted values (e.g.
Han et al., 2020). As mentioned above, to measure the true
predictive skill of the machine learning functions, we only
compare our predictions for out-of-sample test data that are
not used during training/validation stages against the desea-
sonalized measured MDA8 ozone data.

To begin with, the predictors used by RFR and RR are
only the local meteorological variables; i.e. each ERA5 grid
point’s meteorological variables are used as predictors to
model the averaged deseasonalized MDA8 ozone for that
particular grid location. The average prediction performance
of RFR and RR, by comparing predictions across all test
years against the deseasonalized measured MDA8 ozone data
across China, is illustrated in Fig. 2.

Overall, the model performance of RFR generally sur-
passes the one of RR over most regions of China, with higher

R2 values in grid locations within Sichuan, YRD, PRD and
other regions of southeast China. The R2 values for RFR gen-
erally range from 0.5 to 0.6 across China while RR reaches
R2 values from 0.4 to 0.5. Both RFR and RR perform sim-
ilarly over the central region of BTH, while in the north-
ern region of BTH (e.g. Beijing), R2 values are still found
to be higher in RFR than RR. The averaged R2 across all
ERA5 grid locations within BTH, YRD, PRD and Sichuan
is 0.46, 0.56, 0.53 and 0.57, respectively for RFR, which are
all higher than the equivalent R2 for RR (BTH: 0.41, YRD:
0.48, PRD: 0.47, Sichuan: 0.53).

In order to examine whether RR can improve the model
performance by addressing overfitting, we also applied MLR
with all 11 meteorological predictors and the stepwise MLR
approach with the three most important meteorological fac-
tors in the final MLR for comparison. Although most R2 val-
ues across China for these three linear regressions (i.e. RR,
MLR and stepwise MLR) are within the same range of 0.4 to
0.5, stepwise MLR shows the worst performance with con-
sistently lower R2 values across China, and more of these
values fall in a lower range of 0.3 to 0.4. Moreover, the aver-
aged R2 values for stepwise MLR in BTH, YRD, PRD and
Sichuan are found to be lower at 0.39, 0.45, 0.43 and 0.52,
respectively (see Fig. S4b for the spatial distribution of R2

values). This suggests that the stepwise MLR approach may
carry a risk of not including all important meteorological pre-
dictors in the regression model. However, RR does not show
noticeable improvements over MLR, as evident from similar
regionally averaged R2 values (see Table 2 and Fig. S4a),
suggesting that the problem of collinearity is still limited
given the use of 11 meteorological predictors. The enhanced
performance of RFR compared to RR may therefore be at-
tributed to the ability of RFR to model nonlinear relation-
ships between local meteorological variables and ozone, in-
dicating that a flexible machine learning approach, such as
RFR that can capture nonlinearity, is more suitable to re-
flect relationships between local meteorological factors and
ozone.

3.2 Predictive skill using additional nonlocal
meteorological predictors

Weather systems that affect ozone (e.g. high-pressure sys-
tems) usually consider large spatial domains, driving re-
gional temperature anomalies and suppressing or accelerat-
ing airflow in certain directions. Consequently, it seems intu-
itive that a meteorological controlling factor framework for
ozone might benefit from including additional nonlocal in-
formation in the regressions, i.e. if we were to consider sur-
rounding meteorological context information that is not just
limited to the predicted ozone grid point in question (Ceppi
and Nowack, 2021).

We thus ran a second version of our controlling factor anal-
ysis to investigate the spatially wider effect that meteorology
may have on a two-dimensional (2D) domain of meteorolog-

Atmos. Chem. Phys., 22, 8385–8402, 2022 https://doi.org/10.5194/acp-22-8385-2022



X. Weng et al.: A machine learning approach to quantify meteorological drivers of ozone pollution 8391

Figure 2. Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values in
random forest regression (RFR) (a) and ridge regression (RR) (b). The skill is only measured for the respective test datasets. Each dot
represents the centre of the ERA5 grid location, within which station values for MDA8 ozone are averaged.

Figure 3. Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values of
MDA8 ozone in ridge regression (RR) with 2D expansion (a) and MLR with 2D expansion (b).

ical variables. This is possible since both RR and RFR bet-
ter address collinearity and overfitting in high-dimensional
regression settings than simple non-regularized MLR ap-
proaches, meaning that the additional information included
in the regressions might well outweigh the cost of adding
more predictors.

In detail, for each ozone target grid point, we include a me-
teorological context by adding each meteorological variable
within a 7.5◦× 7.5◦ rectangular domain around the centre of
this target grid point to the set of model predictors, i.e. all
the meteorological variables from the ERA5 0.25◦× 0.25◦

grids within this 7.5◦× 7.5◦ rectangular domain are used as
individual predictors in the regression models. This adds po-
tentially important information about the larger-scale mete-

orological situation to our predictions, but also significantly
increases the dimensionality (number of predictors) of our
regression problem and increases the number of collinear
predictors. Indeed, we find that through the additional L2-
regularization in RR with 2D expansion (denoted as RR–
2D), its predictions by far outperform its MLR–2D equiva-
lent, which now suffers from severe overfitting (compare R2

values in Fig. 3a and b). Noteworthy, with the increase of
dimensionality in RR–2D, the regularization strength now
is adjusted to larger values starting from 103 to 109 with
a factor of 1.42 incremental increase at each step, which is
much higher than the regularization strength set in RR with
only local predictors. Such a large increase in range is due to
the consideration of adding a large number of meteorologi-
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Table 2. Averaged R2 in the four regions by different machine
learning algorithms, namely RFR, RR, MLR and stepwise MLR
with only local meteorological predictors, RR–2D, MLR–2D with
additional two-dimensional (2D) nonlocal meteorological variables
and RFR–2D which is only conducted for the PRD region. In gen-
eral, with only local meteorological variables, RFR performs the
best with the highest averaged R2 in four regions. RR–2D and
RFR–2D show improvement over the PRD region compared to
RFR.

Method BTH YRD PRD Sichuan

RFR 0.46 0.56 0.53 0.57
RR 0.41 0.48 0.47 0.53
MLR 0.41 0.48 0.47 0.53
Stepwise MLR 0.39 0.45 0.43 0.52
RR–2D 0.47 0.54 0.60 0.58
MLR–2D 0.31 0.35 0.42 0.43
RFR–2D – – 0.57 –

cal predictors within the 2D domain, and it ensures that the
best solution with the most suitable regularization strength
for each run can be well covered within this range. The over-
all R2 values for RR–2D range from 0.5 to 0.6 while R2 in
MLR–2D ranges from 0.3 to 0.4; MLR–2D is overall worse
than MLR with only local meteorological predictors in terms
of R2. It is well-known that RFR may not be as effective
at handling multi-collinearity in very high-dimensional set-
tings as RR (e.g. Dormann et al., 2013) and its training time
also increases exponentially with the number of predictors.
We thus only ran RFR with 2D expansion (denoted as RFR–
2D) for the southern Chinese PRD region, where we found a
particularly large R2-value improvement after including non-
local predictors in RR–2D (R2

= 0.60) as compared to local
RR (R2

= 0.47), and even nonlinear local RFR (R2
= 0.53).

These results highlight the apparent importance of large-
scale meteorological phenomena in this region. However, we
find that RFR–2D improves the average R2 value (0.57) rel-
ative to RR and RFR with only local predictors, but does not
perform better than RR–2D.

For clarity, Table 2 summarizes the averaged R2 in each
region by all machine learning methods including RFR, RR,
MLR, stepwise MLR, RR–2D, MLR–2D and RFR–2D. In
summary, RFR and RR–2D are overall the two machine
learning algorithms with the highest R2 in these four regions,
while MLR and RR are equivalent.

3.3 Regionally averaged prediction skill

In order to assess the performance of the algorithms in mod-
elling the regional average ozone, we further compared our
regionally averaged machine learning predictions by RFR,
RR and RR–2D against observations for each of the four
selected regions in China (Fig. 4), whereas previously we
compared regional averages based on predictions for indi-

vidual grid points whose R2 values were subsequently av-
eraged within each region. For this purpose, we averaged
all 0.25◦× 0.25◦ grid point observations and model results
within each region first and then compared the resulting time
series for each test dataset directly. The results for each re-
gion are shown in Fig. 4, where the goal for the predictions
is to fall as close as possible to the 1 : 1 line, in combina-
tion with a high R2 value (coefficient of determination). With
only local meteorological predictors, RFR still outperforms
RR regarding both R2 and slope (closer to 1) in all four re-
gions. This can likely be attributed to the ability of RFR to
capture nonlinearity as well.

Using this calculation method, the regional R2 values are
much higher. For RFR, regional R2 in BTH, YRD, PRD and
Sichuan are 0.71, 0.75, 0.7 and 0.83, respectively. The higher
values can be partially explained by the fact that individual
grid points are more prone to the effect of local emissions and
related local uncertainties, whereas larger regional averages
can smooth out some of these local effects. For instance, sta-
tions that are located relatively close to an emission source
may be more influenced by the NOx-titration effect which
may lower ozone levels (Sillman, 1999). This effect can be
more significant in some urban areas (Li et al., 2017) or sta-
tions affected by fresh emissions of NOx from power plants
(X. Zhang et al., 2021). Nearby emission of precursors may
also be the dominant factor in driving ozone changes in reg-
ular weather conditions. Ozone production in these stations
may be less sensitive to meteorological drivers but more in-
fluenced by local emissions.

In summary, all machine learning methods show high skill
in modelling meteorologically driven ozone variability. How-
ever, similar to results by Han et al. (2020), all linear fits
of predicted versus observed ozone values in all regions for
both RFR and RR have slopes lower than 1, suggesting a
systemic underprediction of ozone for the highest observed
ozone levels (higher than the deseasonalized zero mean) and
overpredictions of ozone for low ozone pollution regimes
(lower than the deseasonalized zero mean). As previously
mentioned, such a mismatch may – at least to a degree –
arise from non-meteorological factors such as the effect of
precursor emissions, which are not taken into account here
given the assumption that certain but not all emissions are
related to the meteorological factors. Although regionally av-
eraged prediction skill is less affected by local emissions, it
will not be completely free from such effects. The increase of
the magnitude of the slopes in RR–2D (closer to 1) also sug-
gests that considering nonlocal meteorological variables may
help improve the performance of ozone pollution controlling
factor analyses, even if nonlinearity is not intrinsically taken
into account.
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Figure 4. (a–d) Comparison of regional averages of deseasonalized MDA8 ozone between model predictions and observations for RFR,
(e–h) RR and (i–l) RR–2D. Linear fits between predicted and observed data are indicated by blue lines; red lines are the ideal 1 : 1 lines. The
values for both models and observations are averaged over all ERA5 grid points in each region. Each graph contains information of the linear
regression with slope and R2 value (coefficient of determination).

3.4 Quantifying the importance of meteorological
predictors

We next aim to quantify how important each local meteo-
rological predictor is for ozone pollution across China. For
RR, we use the regression slope as a standard metric to mea-
sure how important each of the meteorological predictors are
on ozone pollution. A large positive value for the slope (re-
gression coefficient) of a meteorological predictor indicates
that the predictor has a strong positive effect on ozone lev-
els and vice versa. Since each set of 4-year training data are
learned from independently, we will show averaged results.
For RFR, we measure each predictor’s importance through
Gini importance (see Sect. 2.5). The highest absolute value
for both the RR slope or RFR Gini importance is interpreted
as the most important meteorological driver variable iden-
tified through our data-driven learning procedure. Note that
Gini importance only allows measuring relative influences
of predictor variables on ozone variability, but not the sign
of the influence, i.e. a high value of Gini importance score is
not able to determine whether the predictor has a positive or
negative effect on ozone.

The Gini importance scores estimated by RFR and the
slopes learned by RR for each region are shown in Fig. 5.
Both Gini importance scores and slopes are initially esti-
mated for every ERA5 grid location within each region and
then averaged across the entire region and across all five
learned regression functions.

In general, both RFR and RR show good agreement in
terms of identifying the dominant meteorological drivers
for each region. The temperature at 2 m is found to be the
most important meteorological driver for ozone in BTH, fol-
lowed by SSRD, albeit the relative difference between these
two variables differs more clearly for RFR, which might be
caused by nonlinearity in the ozone–temperature relationship
(Fig. S5). Temperature was also identified as the most im-
portant meteorological variable in BTH by Li et al. (2019a)
using MLR. Moreover, a more pronounced positive correla-
tion between daily maximum temperature and MDA8 ozone
is found in northern regions of China (Fig. 6a), which is con-
sistent with the findings of these two machine learning al-
gorithms. Since temperature is identified as the key meteo-
rological factor in BTH, more severe ozone pollution with
increasing temperature is expected and may be caused by
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Figure 5. (a–d) Average Gini feature importance scores of each meteorological variable for RFR in each region. (e–h) Average slopes
of each meteorological variable for RR in each region. The red bars indicate the range of importance scores/slopes found across the five
regression models learned to predict the left-out test years.

increased rates of chemical kinetics for ozone’s production
(e.g. Lu et al., 2019a), the contribution of biogenic emissions
(e.g. Ma et al., 2019) and anthropogenic emissions such as
solvent evaporation which may be intensified in hot weather
(e.g. Song et al., 2019; Qi et al., 2017).

For both YRD and Sichuan, surface solar radiation is the
most important determinant of ozone variations, with RR
slopes again indicating the expected positive relationship be-
tween sunny, clear-sky days and high ozone pollution. Fur-
thermore, surface solar radiation is found to be central in
BTH and PRD by RFR and RR. Given that Li et al. (2019a,
2020) and Han et al. (2020) did not consider this meteo-
rological variable in their analyses, we recommend that it
could be used more generally in the future. High solar radi-
ation stimulates the photochemical environment, which has
been suggested as one of the key mechanisms in YRD by
Pu et al. (2017). From a large-scale meteorological point of
view, such clear-sky conditions in YRD that may enhance se-
vere ozone pollution in this region may be modulated by the
western Pacific subtropical high (WPSH) (Shu et al., 2016;
Chang et al., 2019; Shu et al., 2020). In the Sichuan, with
complex terrain that can complicate atmospheric circulation,
ozone pollution is often associated with the occurrence of
high-pressure systems associated with clear-sky conditions
and high temperatures (Ning et al., 2020), which is also iden-
tified by both RFR and RR.

A distinct difference in the weather–ozone coupling rela-
tionships is found for PRD, where RH is the dominant me-
teorological driver. Specifically, a negative slope of RH in

RR suggests that drier conditions are strongly favourable for
peak ozone concentrations in PRD. As one of many possible
effects of humidity, ozone may be more destroyed through
the photolysis reaction of O3+ hv→ O(1D)+O2 as O(1D)
can subsequently react with H2O, forming OH through re-
action of O(1D)+H2O→ 2OH, which will be enhanced in
environments with high humidity (Wang et al., 2013; Young
et al., 2013). In addition, despite more OH being available
given high humidity, OH can react with NO2, forming HNO3
in highly NOx-polluted regions, which ultimately leads to
less efficient O3 formation by competing with the oxida-
tion of VOC and CO with OH (Lu et al., 2019a). The neg-
ative correlation between humidity and ozone in the PRD re-
gion has been identified by previous studies (W. Zhang et al.,
2021; Yang et al., 2021; Hua et al., 2008), and the high hu-
midity environment in southern China may be the result of
moisture marine air masses transported from tropical region,
the South China Sea and western Pacific (W. Zhang et al.,
2021; Ding and Chan, 2005). For a nonlinear learning frame-
work using RFR, the second most important meteorological
driver in PRD is again the level of surface solar radiation.
Interestingly, meridional wind at 850 hPa is key to ozone oc-
currence in PRD, and it is negatively correlated with aver-
age MDA8 ozone. More specifically, the regional average of
MDA8 ozone in PRD is negatively correlated with the merid-
ional wind at 850 hPa from the South China Sea (Fig. 6b),
indicating strong marine air inflow may have a significant
cleaning and dispersion effect on ozone and its precursors in
PRD. Furthermore, the negative correlation also expands to
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Figure 6. (a) Spearman correlation between daytime (06:00 to 18:00) averaged temperature at 2 m and MDA8 ozone from 2015 to 2019
from April to October. (b) Correlation coefficients between the regional average of MDA8 ozone in PRD and the daytime (06:00 to 12:00)
meridional wind at 850 hPa at each ERA5 grid point from April to October of 2015 to 2019. A positive value of meridional wind indicates
southerly wind.

Figure 7. (a) Average PRD Gini feature importance score of each
meteorological variable if the RFR regressions include non-local
predictors within a 7.5◦ longitude× 7.5◦ latitude domain around
the predicted grid point; the bar representations are consistent with
Fig. 5. (b) Linear fit between RFR–2D predictions and observations
in PRD (blue line). The red line equals the ideal 1 : 1 relationship.

the northeast areas of PRD, suggesting lower ozone in PRD
given strong southerly wind in these areas, which may hin-
der the transport of ozone and its precursors to PRD. This
finding is consistent with the backward trajectories and nu-
merical modelling analysis by Qu et al. (2021).

Additionally, previous studies (Jiang et al., 2015; Z. Chen
et al., 2021; Qu et al., 2021; Wei et al., 2016) also indicate the
importance of vertical downward transport of ozone in the
southern regions of China due to the impact of typhoons. The
effect of such a downward transport may not be well captured
by regressions with only local meteorological predictors as it
is a larger-scale meteorological phenomenon. Therefore, we
refer back to our two-dimensional (2D) approach for RFR in

the PRD region first introduced and described in Sect. 3.2.
We show the Gini feature importance scores for this 2D do-
main approach in Fig. 7a. Since we have multiple values of
the feature importance for each meteorological variable in
this setup (i.e. one for each grid point in the 2D predictor do-
main), we sum up Gini importance scores for all grid points
within the expanded domain for each meteorological vari-
able; and this summed value is denoted as the importance
for that particular meteorological variable. As illustrated in
Fig. 7a, the relative feature importance of vertical velocity at
850 hPa (W850hPa) increases compared to RFR using only
local predictors (see Fig. 5b), likely reflecting the larger-scale
influences of downward transport of air masses in the PRD
region. Other key meteorological drivers (RH, surface solar
radiation and meridional wind at 850 hPa) remain in a similar
order to what was identified by purely local regressions. The
model performance is slightly improved by adding the 2D in-
formation with an increase of R2 to 0.73 (from 0.70) in com-
parison to the original RFR without 2D expansion. However,
we note that the R2 in RFR–2D for PRD region (Fig. 7b) is
0.73 which is slightly less than the R2 using RR–2D (0.76),
and the slope of the linear fit between the predictions from
RR–2D and the observations is closer to 1 (Fig. 4j) when
compared to RFR–2D (Fig. 7b). The higher R2 from RR–2D
may be attributed to RR’s ability to extrapolate the extreme
high/low anomalies of observed ozone, while the prediction
range of RFR–2D is more constrained by the range of anoma-
lies from the training data. For example, RR–2D can better
predict the extreme low anomaly of observed ozone on 4 Oc-
tober 2015 (Fig. S6). Nevertheless, there could be a trade-off
in the feature of extrapolation of RR. For instance, in terms of
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Figure 8. (a–c) Most important meteorological driver at each grid location from April–October of 2015–2019 as identified by Gini im-
portance using RFR. (d–f) The same, but using absolute magnitudes for the slopes of RR. Variables as labelled. Relative humidity (RH)
dominates in the south and southeast, surface solar radiation downward (SSRD) primarily in central China and eastern China, and tempera-
ture at 2 m (T2) in north and northeast China.

slope, the seemingly better slope (i.e. closer to 1) from RR–
2D (Fig. 4j) may be partly due to its limitation of over- and
underpredicting some extreme high/low anomalies, which
can be illustrated by outliers from linear fit in Fig. 4j. This
can be exemplified by the overprediction of ozone anomaly
on 14 April 2015 by RR–2D (also see Fig. S6). Such effects
of over- or underpredictions under extrapolation can to a de-
gree compensate for the bias in the predicted versus observed
slope, bringing it closer to the 1 : 1 line.

Across China, we found that there is a consistency in
the identification of the three most important meteorologi-
cal drivers by RFR and RR: temperature, surface solar radi-
ation and RH (Fig. 8). Overall, there is a distinctive distri-
bution pattern of the three major meteorological drivers in
China. The temperature at 2 m is dominant over northeast
China, covering BTH and expanding to the northern region
of China. Most areas in the mid-latitude regions of China,
including east China (e.g. YRD) and Sichuan, show surface
solar radiation as the main meteorological driver for ozone,
suggesting the necessity of including this variable for analy-
ses. The dominance of surface solar radiation gradually ex-
pands northward and southward from this region while being
overtaken by temperature in the north and RH in the south.
Ozone in southern China is primarily driven by RH. Such a
distinctive spatial distribution of meteorological drivers may
be related to the characteristics of regional climatology. For
instance, as described above, regions in southern China such
as PRD are particularly influenced by variations in incom-

ing moist air masses, leading to the importance of humidity
surpassing temperature and surface solar radiation. The rel-
atively drier northern regions do not have such changeable
humidity conditions, making temperature and surface solar
radiation the key meteorological factors driving ozone.

3.5 Anthropogenic and meteorological contributions to
surface ozone trends from 2015 to 2019

Finally, we explore how our new approach could be used to
study the quantitative influence of meteorology on historical
ozone variability and trends in China. To facilitate a com-
parison to previous work, we use a similar method as Li et
al. (2020) to establish estimates for observed surface ozone
trends in China. We note that our exercise is somewhat lim-
ited by the slightly shorter period considered here, i.e. from
2015 to 2019, instead of starting from earlier years. Given
this very short period, we are aware that any long-term trend
analysis is explorative and has to be interpreted carefully, as
will also become evident from low statistical significance in
many detected trends. We nevertheless attempt such an anal-
ysis to demonstrate how our method can be used in such con-
texts and to also evaluate if any statistically significant trends
are robust after accounting for meteorological influences.

For trend analyses, we first convert MDA8 ozone concen-
trations from mass concentrations (µg m−3) to volume mix-
ing ratios (ppbv). We then average MDA8 ozone over April
to October or summertime for each year for both observa-
tional data and model results predicted by our three ma-
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Figure 9. Trends of MDA8 ozone during April–October from 2015–2019. Panel (a) shows the observed trends. Panel (b) shows the me-
teorologically driven trends of MDA8 ozone according to RR–2D. Panel (c) shows the trends of residuals (approximating anthropogenic
effects). The trends are estimated by the slopes of ordinary linear regressions fitting each year’s April–October MDA8 average ozone values
from 2015 to 2019.

Table 3. Observational, meteorological and residual trends of regional averaged MDA8 ozone (ppbv a−1) from 2015–2019 for both April–
October and Northern Hemisphere summertime (June, July, August). Values within the brackets are the p values for each trend. Trends and
p values are in bold given p values smaller than 0.1.

2015–2019 April to October 2015–2019 Summer

Method Regions Observed Meteorological Residual Observed Meteorological Residual

RFR BTH 2.53 (0.02) 0.45 (0.14) 2.08 (0.04) 3.2 (0.05) 0.74 (0.08) 2.46 (0.06)
PRD 1.18 (0.02) 0.1 (0.88) 1.08 (0.08) −0.12 (0.93) −0.75 (0.14) 0.64 (0.58)
Sichuan −0.34 (0.57) −0.75(0.04) 0.42 (0.32) 0.01 (0.99) −0.91 (0.34) 0.92 (0.11)
YRD 0.87 (0.36) 1.38 (0.04) −0.51 (0.48) 1.53 (0.15) 1.35 (0.07) 0.17 (0.81)

RR BTH 2.53 (0.02) 0.37 (0.17) 2.17 (0.03) 3.2 (0.05) 0.54 (0.18) 2.66 (0.05)
PRD 1.18 (0.02) 0.003 (0.997) 1.18 (0.09) −0.12 (0.93) −1.13 (0.11) 1.01 (0.39)
Sichuan −0.34 (0.57) −0.84(0.05) 0.51 (0.18) 0.01 (0.99) −0.84 (0.4) 0.85 (0.06)
YRD 0.87 (0.36) 1.41 (0.04) −0.54 (0.43) 1.53 (0.15) 1.38 (0.09) 0.14 (0.86)

RR–2D BTH 2.53 (0.02) 0.47 (0.35) 2.06 (0.09) 3.2 (0.05) 0.7 (0.33) 2.5 (0.11)
PRD 1.18 (0.02) 0.84 (0.31) 0.34 (0.58) −0.12 (0.93) −0.33 (0.62) 0.21 (0.81)
Sichuan −0.34 (0.57) −0.86(0.02) 0.52 (0.25) 0.01 (0.99) −0.68(0.46) 0.69 (0.21)
YRD 0.87 (0.36) 1.45 (0.08) −0.58 (0.47) 1.53 (0.15) 1.63 (0.02) −0.10 (0.91)

MLR BTH 2.53 (0.02) 0.37 (0.19) 2.16 (0.02) 3.2 (0.05) 0.55 (0.19) 2.65 (0.05)
PRD 1.18 (0.02) 0.04 (0.96) 1.14 (0.12) −0.12 (0.93) −1.1 (0.14) 0.98 (0.4)
Sichuan −0.34 (0.57) −0.86(0.05) 0.53 (0.16) 0.01 (0.99) −0.86 (0.4) 0.87 (0.05)
YRD 0.87 (0.36) 1.42 (0.05) −0.55 (0.43) 1.53 (0.15) 1.42 (0.08) 0.1 (0.9)

chine learning-based regressions (RFR, RR and RR–2D) and
MLR. Both stepwise MLR and MLR–2D are not included in
the trend analyses here since these two algorithms show over-
all weak performances in modelling ozone (see Table 2). The
predictions can be considered as quantitative estimates for
the influence of meteorology on the ozone record during the
study period. The residual (true ozone signal minus meteoro-
logical predictions) will for example be mainly reflective of
anthropogenic contributions but will also inevitably contain
some uncertainties related to the accuracy of the controlling
factor regressions.

Table 3 summarizes the regionally averaged observed
trends from 2015 to 2019, which is estimated by ordinary
linear regression in the four regions. We additionally list our
meteorologically estimated trends and the residual trends.
Overall, the three machine learning methods and MLR pro-
vide relatively similar estimates of meteorologically driven
trends in BTH, YRD and Sichuan, while we find indications
that the meteorologically driven trend in PRD may be un-
derestimated by only using local meteorological factors; us-
ing RR–2D we estimate a meteorologically driven trend of
0.84 ppbv a−1 during April to October from 2015 to 2019,
while RFR, RR and MLR with only local meteorological
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predictors provide estimates of 0.1, 0.003 and 0.04 ppbv a−1,
respectively. Given the better prediction skill in RR–2D for
this region (see Table 2 and Fig. 4), this further suggests the
importance of spatial meteorological phenomena for ozone
trend attribution exercises in the PRD region.

In terms of the raw observed trends, both BTH and PRD
show significant increases in ozone pollution (p < 0.05)
from April to October for 2015 to 2019. We note that the
observed trend in PRD is only significant if the months from
April to October are considered, whereas there is no signifi-
cant trend (p = 0.93) if only examining months in summer-
time (JJA). This may be attributed to the ozone’s seasonal-
ity in PRD where the highest ozone pollution occurs dur-
ing autumn and the particularly high ozone anomaly dur-
ing September and October in 2019 (Fig. S7b). We under-
line that anthropogenic contribution (i.e. the residual) may
be overestimated in PRD if only local meteorological fac-
tors are considered, given that residuals of RFR, RR and
MLR increase compared to RR–2D. For BTH, the positive
ozone trend is found to be higher during summertime at
3.20 ppbv a−1 (p = 0.05) than if the whole April–October
period (2.53 ppbv a−1, p < 0.05) is considered. Moreover,
estimated by RFR, the meteorologically driven trend in
BTH is also higher at 0.74 ppbv a−1 (p < 0.1) during sum-
mertime than if the whole April–October period is consid-
ered (0.45 ppbv a−1; p = 0.14). The April–October residual
trends in BTH estimated by all four algorithms are all greater
than 2 ppbv a−1 (p < 0.1), indicating an elevated importance
of anthropogenic drivers in BTH. There are no significant
observed trends in YRD and Sichuan. However, meteorolog-
ical factors in both of these regions appear to have a stronger
influence on the trends of ozone according to these four al-
gorithms. Additionally, all four methods also agree on mete-
orologically driven negative trends in Sichuan while positive
trends are found for YRD.

Finally, we aim to calculate trends on a ERA5 grid-by-grid
point basis. Although both RFR and RR–2D show overall
better skill in modelling ozone across China, RR–2D exhib-
ited particularly increased predictive skill in southern China.
Therefore, for assessing meteorologically driven trends of
MDA8 ozone across all ERA5 grid locations in China, we
will only be examining the results for RR–2D. Figure 9
shows trends during April–October from 2015 to 2019 across
China. Overall, the observed average trend across China
is 1.1 ppbv a−1. The meteorologically driven trend of RR–
2D gives the average at 0.5 ppbv a−1 across China, which
is around 45 % of the total trend. From Fig. 9a, most re-
gions in eastern China show a positive trend and the mag-
nitudes of increase are more apparent in areas within and
nearby BTH, where the ozone pollution increased at an av-
erage rate of 2.6 ppbv a−1 across all grids within BTH. We
find that the positive trend in those particular regions may
be less driven by meteorological factors but indeed might be
the result of anthropogenic influences on air pollution (e.g.
Liu and Wang, 2020). In YRD, meteorologically driven pos-

itive trends are in general the highest in eastern China (aver-
age at 1.47 ppbv a−1 across all grids in YRD), which is close
to the regionally averaged result by RR–2D (1.45 ppbv a−1,
p = 0.08) in Table 3. Observed trends in Sichuan are a mix-
ture of both increases and decreases, but meteorologically
driven trends are all negative within this region. In PRD, me-
teorological factors likely played a more central role in driv-
ing the recent positive trends in ozone pollution according to
our analysis.

4 Conclusion

Ozone pollution in China can be strongly influenced by me-
teorological conditions. This study examines the major me-
teorological drivers for ozone pollution across China during
months with particularly high ozone pollution (i.e. April to
October, from 2015 to 2019) using a controlling factor frame-
work and two machine learning algorithms, namely RFR and
RR.

The results obtained with RFR and RR are also com-
pared with conventional approaches i.e. MLR and stepwise
MLR, using consistent out-of-sample cross-validation meth-
ods. When considering local meteorological factors only,
RFR outperforms the linear approaches RR and MLR, which
in turn perform better than stepwise MLR that uses only the
three local, most significant meteorological factors. The bet-
ter performance of RFR is for example evident from the over-
all increase in predicted versus observed coefficients of de-
termination (R2) ranging from 0.5 to 0.6, as compared to 0.4
to 0.5 for the three linear regressions. Stepwise MLR attains
the lowest averaged R2 of all these methods across China.
Within the context of using only local meteorological predic-
tors in the regressions, a major advantage of RFR is its abil-
ity to model nonlinear relationships between meteorological
variables and ozone (e.g. often observed between tempera-
ture and ozone). In addition, we tested how the consideration
of larger-scale meteorological controlling factors improves
our predictive performance. MLR noticeably suffers from the
“curse of dimensionality” due to the large increase in the
number of predictors when we included additional meteo-
rological information spanning a 7.5◦× 7.5◦ domain around
the target grid point for ozone pollution (the majority of R2

values fall to a lower range of 0.3 to 0.4). In contrast, RR
can deal well with this increase in the number of predictors
subject to an objective cross-validation approach for its hy-
perparameter tuning. In particular, despite not directly con-
sidering nonlinearity, we find an improvement of model per-
formance in RR with additional two-dimensional predictors,
which even outperforms RFR, especially in southern China,
indicating the importance of considering a wider meteoro-
logical context in future controlling factor analyses of this
kind.
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A key advantage of our approach is that both RFR and
RR allow for a straightforward interpretation of the predic-
tive models (explainable machine learning). Reassuringly,
we find a good agreement regarding the identification of
the dominant local meteorological drivers for each region.
In general, ozone pollution in northern China such as in the
BTH region is predominantly driven by temperature fluctua-
tions while ozone in southern China like in the PRD region
is particularly strongly controlled by humidity, possibly due
to the important role of humid weather in preventing signifi-
cant ozone pollution episodes in this region. Besides, we ob-
serve a strong influence in PRD of air exchange with pristine
marine regions, leading to a greater influence of large-scale
wind directions, e.g. through the transport of clean marine
air into the region, or through air stagnation and ozone accu-
mulation under large-scale sinking atmospheric motion. Sur-
face solar radiation plays a major role in general due to its
importance in setting the conditions for ozone photochem-
istry, which is particularly dominant in YRD and Sichuan.
Our work thus highlights that surface solar radiation might
be a key predictor to consider in future controlling factor
analyses. In summary, hot, dry and sunny weather tends to
provide more favourable conditions for ozone pollution in
China, which is not entirely unexpected but carries important
implications for future changes in air pollution under climate
change, while simultaneously considering the pivotal role of
targeted emission control strategies on ozone precursors.

In terms of ozone trends, we find a linear MDA8 ozone in-
crease of about 1.1 ppbv a−1 on average during April to Octo-
ber from 2015 to 2019 across China. Regionally, these trends
can be more than twice as large as in BTH. The largest posi-
tive trends may be mostly attributed to non-meteorological
factors such as changes in precursor emissions. However,
meteorologically driven trends on average shows increases
at 0.5 ppbv a−1 across China, equalling almost 50 % over the
period considered here, and it is thus estimated to be a more
important factor, especially in southern China and the YRD
region. The importance of large-scale meteorological phe-
nomena is highlighted in southern China as a higher aver-
aged meteorological contribution to the increased trend of
ozone in PRD and is estimated by RR with nonlocal meteo-
rological predictors. Meteorology appears to have amplified
negative ozone trends in the Sichuan region during 2015–
2019. However, it is recommended to maintain continuous
emission control strategies in this region in order to counter
the occurrence of more unfavourable weather conditions for
ozone mitigation.
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