Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism, and light absorption
Bartłomiej Witkowski
CORRESPONDING AUTHOR
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury
101, 02-089 Warsaw, Poland
Priyanka Jain
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury
101, 02-089 Warsaw, Poland
Tomasz Gierczak
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury
101, 02-089 Warsaw, Poland
Related authors
Vinh Nguyen, Bartłomiej Witkowski, and Tomasz Gierczak
Atmos. Chem. Phys., 25, 10965–10986, https://doi.org/10.5194/acp-25-10965-2025, https://doi.org/10.5194/acp-25-10965-2025, 2025
Short summary
Short summary
This article provides new insights into the molecular composition of fine, light-absorbing organic aerosols emitted by biomass burning. Laboratory-generated aerosol was extracted into water and analyzed with liquid chromatography-mass spectrometry, identifying over 350 new water-soluble wood-burning tracers. This study also examines the toxicities and atmospheric lifetimes, revealing that the newly identified molecules are harmful and can undergo chemical processing in atmospheric hydrometeors.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Vinh Nguyen, Bartłomiej Witkowski, and Tomasz Gierczak
Atmos. Chem. Phys., 25, 10965–10986, https://doi.org/10.5194/acp-25-10965-2025, https://doi.org/10.5194/acp-25-10965-2025, 2025
Short summary
Short summary
This article provides new insights into the molecular composition of fine, light-absorbing organic aerosols emitted by biomass burning. Laboratory-generated aerosol was extracted into water and analyzed with liquid chromatography-mass spectrometry, identifying over 350 new water-soluble wood-burning tracers. This study also examines the toxicities and atmospheric lifetimes, revealing that the newly identified molecules are harmful and can undergo chemical processing in atmospheric hydrometeors.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Cited articles
Albinet, A., Minero, C., and Vione, D.: Phototransformation
processes of 2,4-dinitrophenol, relevant to atmospheric water droplets,
Chemosphere, 80, 753–758, https://doi.org/10.1016/j.chemosphere.2010.05.016, 2010.
Balasubramanian, P., Balamurugan, T. S. T., Chen, S.-M., and Chen, T.-W.:
Simplistic synthesis of ultrafine CoMnO3 nanosheets: An excellent
electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in
environmental water samples, J. Hazard. Mater., 361, 123–133, https://doi.org/10.1016/j.jhazmat.2018.08.070, 2019.
Barzaghi, P. and Herrmann, H.: A mechanistic study of the oxidation of
phenol by in aqueous solution, Phys. Chem. Chem.
Phys., 4, 3669–3675, https://doi.org/10.1039/B201652D, 2002.
Biswal, J., Paul, J., Naik, D. B., Sarkar, S. K., and Sabharwal, S.:
Radiolytic degradation of 4-nitrophenol in aqueous solutions: Pulse and
steady state radiolysis study, Radiat. Phys. Chem., 85, 161–166, https://doi.org/10.1016/j.radphyschem.2013.01.003, 2013.
Bluvshtein, N., Lin, P., Flores, J. M., Segev, L., Mazar, Y., Tas, E.,
Snider, G., Weagle, C., Brown, S. S., Laskin, A., and Rudich, Y.: Broadband
optical properties of biomass-burning aerosol and identification of brown
carbon chromophores, J. Geophys. Res.-Atmos., 122, 5441–5456, https://doi.org/10.1002/2016JD026230, 2017.
Braman, T., Dolvin, L., Thrasher, C., Yu, H., Walhout, E. Q., and O'Brien,
R. E.: Fresh versus Photo-recalcitrant Secondary Organic Aerosol: Effects of
Organic Mixtures on Aqueous Photodegradation of 4-Nitrophenol, Environ. Sci.
Tech. Let., 7, 248–253, https://doi.org/10.1021/acs.estlett.0c00177, 2020.
Chen, C., Han, Y., Guo, J., Zhou, L., and Lan, Y.: Assessing the role of
silica gel in the degradation of p-nitrophenol via Zn(0)-activated
persulfate, J. Taiwan Inst. Chem. E., 88, 169–176, https://doi.org/10.1016/j.jtice.2018.03.053, 2018.
Claeys, M., Vermeylen, R., Yasmeen, F., Gómez-González, Y., Chi, X.,
Maenhaut, W., Mészáros, T., and Salma, I.: Chemical characterisation
of humic-like substances from urban, rural and tropical biomass burning
environments using liquid chromatography with UV/vis photodiode array
detection and electrospray ionisation mass spectrometry, Environ. Chem., 9,
273–284, https://doi.org/10.1071/EN11163, 2012.
Cordell, R. L., Mazet, M., Dechoux, C., Hama, S. M. L., Staelens, J.,
Hofman, J., Stroobants, C., Roekens, E., Kos, G. P. A., Weijers, E. P.,
Frumau, K. F. A., Panteliadis, P., Delaunay, T., Wyche, K. P., and Monks, P.
S.: Evaluation of biomass burning across North West Europe and its impact on
air quality, Atmos. Environ., 141, 276–286, https://doi.org/10.1016/j.atmosenv.2016.06.065, 2016.
Daneshvar, N., Behnajady, M. A., and Zorriyeh Asghar, Y.: Photooxidative
degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence
of operational parameters and reaction mechanism, J. Hazard. Mater., 139,
275–279, https://doi.org/10.1016/j.jhazmat.2006.06.045, 2007.
Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett
Jr., J. L.: Speciation of “brown” carbon in cloud water impacted by
agricultural biomass burning in eastern China, J. Geophys. Res.-Atmos., 118,
7389–7399, https://doi.org/10.1002/jgrd.50561, 2013.
Ding, R., Mao, Z.-Y., and Wang, J.-L.: Synergistic effects of 4-nitrophenol
degradation using gamma irradiation combined with a advanced oxidation
process, Nucl. Sci. Tech., 27, 4, https://doi.org/10.1007/s41365-016-0004-y, 2016.
Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., and Savinov, E.:
Heterogeneous photocatalytic degradation of nitrophenols, J. Photochem.
Photobio. A, 155, 207–214, https://doi.org/10.1016/S1010-6030(02)00390-8, 2003.
Du, J., Che, D., Li, X., Guo, W., and Ren, N.: Factors affecting
p-nitrophenol removal by microscale zero-valent iron coupling with weak
magnetic field (WMF), RSC Adv., 7, 18231–18237, https://doi.org/10.1039/C7RA02002C, 2017.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokelson, R., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol, Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, 2020.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L.,
Anderson, B., Diskin, G., Perring, A. E., Schwarz, J. P., Campuzano-Jost,
P., Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.:
Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42,
4623–4630, https://doi.org/10.1002/2015GL063897, 2015.
Frka, S., Šala, M., Kroflič, A., Huš, M., Čusak, A., and
Grgić, I.: Quantum Chemical Calculations Resolved Identification of
Methylnitrocatechols in Atmospheric Aerosols, Environ. Sci. Technol., 50,
5526–5535, https://doi.org/10.1021/acs.est.6b00823, 2016.
García Einschlag, F. S., Carlos, L., and Capparelli, A. L.: Competition
kinetics using the UV/H2O2 process: a structure reactivity
correlation for the rate constants of hydroxyl radicals toward nitroaromatic
compounds, Chemosphere, 53, 1–7, https://doi.org/10.1016/S0045-6535(03)00388-6, 2003.
Gierczak, T., Bernard, F., Papanastasiou, D. K., and Burkholder, J. B.:
Atmospheric Chemistry of c-C5HF7 and c-C5F8:
Temperature-Dependent OH Reaction Rate Coefficients, Degradation Products,
Infrared Spectra, and Global Warming Potentials, J. Phys. Chem., 125,
1050–1061, https://doi.org/10.1021/acs.jpca.0c10561, 2021.
Gonzalez, M. G., Oliveros, E., Wörner, M., and Braun, A. M.:
Vacuum-ultraviolet photolysis of aqueous reaction systems, J. Photochem.
Photobio. C, 5, 225–246, https://doi.org/10.1016/j.jphotochemrev.2004.10.002, 2004.
Harrison, M. A. J., Heal, M. R., and Cape, J. N.: Evaluation of the pathways of tropospheric nitrophenol formation from benzene and phenol using a multiphase model, Atmos. Chem. Phys., 5, 1679–1695, https://doi.org/10.5194/acp-5-1679-2005, 2005a.
Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and
Iulian Olariu, R.: Nitrated phenols in the atmosphere: a review, Atmos.
Environ., 39, 231–248, https://doi.org/10.1016/j.atmosenv.2004.09.044, 2005b.
Heal, M. R., Harrison, M. A. J., and Neil Cape, J.: Aqueous-phase nitration
of phenol by N2O5 and ClNO2, Atmos. Environ., 41, 3515–3520,
https://doi.org/10.1016/j.atmosenv.2007.02.003, 2007.
Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown
Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light
Absorption, ACS Earth Space Chem., 2, 225–234,
https://doi.org/10.1021/acsearthspacechem.7b00123, 2018.
Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J.
P. D.: Aging of Atmospheric Brown Carbon Aerosol, ACS Earth Space Chem., 5,
722–748, https://doi.org/10.1021/acsearthspacechem.0c00346, 2021.
Hems, R. F., Schnitzler, E. G., Bastawrous, M., Soong, R., Simpson, A. J.,
and Abbatt, J. P. D.: Aqueous Photoreactions of Wood Smoke Brown Carbon, ACS
Earth Space Chem., 4, 1149–1160, https://doi.org/10.1021/acsearthspacechem.0c00117, 2020.
Herrmann, H., Hoffmann, D., Schaefer, T., Bräuer, P., and Tilgner, A.:
Tropospheric Aqueous-Phase Free-Radical Chemistry: Radical Sources, Spectra,
Reaction Kinetics and Prediction Tools, Chem. Phys. Chem., 11, 3796–3822,
https://doi.org/10.1002/cphc.201000533, 2010.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric Aqueous-Phase Chemistry: Kinetics,
Mechanisms, and Its Coupling to a Changing Gas Phase, Chem. Rev., 115,
4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hettiyadura, A. P. S., Garcia, V., Li, C., West, C. P., Tomlin, J., He, Q.,
Rudich, Y., and Laskin, A.: Chemical Composition and Molecular-Specific
Optical Properties of Atmospheric Brown Carbon Associated with Biomass
Burning, Environ. Sci. Technol., 55, 2511–2521, https://doi.org/10.1021/acs.est.0c05883,
2021.
Inomata, S., Fushimi, A., Sato, K., Fujitani, Y., and Yamada, H.:
4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust
particles from diesel vehicles with different exhaust gas treatments, Atmos.
Environ., 110, 93–102, https://doi.org/10.1016/j.atmosenv.2015.03.043, 2015.
Jaber, F., Schummer, C., Al Chami, J., Mirabel, P., and Millet, M.:
Solid-phase microextraction and gas chromatography–mass spectrometry for
analysis of phenols and nitrophenols in rainwater, as their
t-butyldimethylsilyl derivatives, Anal. Bioanal. Chem., 387, 2527–2535,
https://doi.org/10.1007/s00216-006-1115-9, 2007.
Jacobson, M. Z.: Isolating nitrated and aromatic aerosols and nitrated
aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res.-Atmos., 104, 3527–3542, https://doi.org/10.1029/1998JD100054,
1999.
Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R., and
Lin, Y.-H.: Brown Carbon Formation from Nighttime Chemistry of Unsaturated
Heterocyclic Volatile Organic Compounds, Environ. Sci. Tech. Let., 6,
184–190, https://doi.org/10.1021/acs.estlett.9b00017, 2019.
Jiang, W., Misovich, M. V., Hettiyadura, A. P. S., Laskin, A., McFall, A.
S., Anastasio, C., and Zhang, Q.: Photosensitized Reactions of a Phenolic
Carbonyl from Wood Combustion in the Aqueous Phase – Chemical Evolution and
Light Absorption Properties of AqSOA, Environ. Sci. Technol., 55, 5199–5211,
https://doi.org/10.1021/acs.est.0c07581, 2021.
Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren,
J., Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of
nitro-organic compounds and their relation to wood burning in PM10 aerosol
from a rural site in Belgium, Atmos. Environ., 81, 561–568, https://doi.org/10.1016/j.atmosenv.2013.09.041, 2013.
Kavitha, V. and Palanivelu, K.: Degradation of nitrophenols by Fenton and
photo-Fenton processes, J. Photochem. Photobio. A, 170, 83–95,
https://doi.org/10.1016/j.jphotochem.2004.08.003, 2005.
Kitanovski, Z., Grgić, I., Vermeylen, R., Claeys, M., and Maenhaut, W.:
Liquid chromatography tandem mass spectrometry method for characterization
of monoaromatic nitro-compounds in atmospheric particulate matter, J.
Chromatogr. A, 1268, 35–43, https://doi.org/10.1016/j.chroma.2012.10.021, 2012.
Kitanovski, Z., Shahpoury, P., Samara, C., Voliotis, A., and Lammel, G.: Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin, Atmos. Chem. Phys., 20, 2471–2487, https://doi.org/10.5194/acp-20-2471-2020, 2020.
Kotronarou, A., Mills, G., and Hoffmann, M. R.: Ultrasonic irradiation of
p-nitrophenol in aqueous solution, J. Phys. Chem., 95, 3630–3638,
https://doi.org/10.1021/j100162a037, 1991.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lemaire, J., Guth, J. A., Klais, O., Leahey, J., Merz, W., Philp, J.,
Wilmes, R., and Wolff, C. J. M.: Ring test of a method for assessing the
phototransformation of chemicals in water, Chemosphere, 14, 53–77,
https://doi.org/10.1016/0045-6535(85)90041-4, 1985.
Li, C., He, Q., Hettiyadura, A. P. S., Käfer, U., Shmul, G., Meidan, D.,
Zimmermann, R., Brown, S. S., George, C., Laskin, A., and Rudich, Y.:
Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies
through NO3 Radical Reactions, Environ. Sci. Technol., 54, 1395–1405,
https://doi.org/10.1021/acs.est.9b05641, 2020.
Liang, Y., Wang, X., Dong, S., Liu, Z., Mu, J., Lu, C., Zhang, J., Li, M.,
Xue, L., and Wang, W.: Size distributions of nitrated phenols in winter at a
coastal site in north China and the impacts from primary sources and
secondary formation, Chemosphere, 250, 126256, https://doi.org/10.1016/j.chemosphere.2020.126256, 2020.
Lipczynska-Kochany, E.: Novel method for a photocatalytic degradation of
4-nitrophenol in homogeneous aqeuous solution, Environ. Technol., 12, 87–92,
https://doi.org/10.1080/09593339109384985, 1991.
Liu, Y., Wang, D., Sun, B., and Zhu, X.: Aqueous 4-nitrophenol decomposition
and hydrogen peroxide formation induced by contact glow discharge
electrolysis, J. Hazard. Mater., 181, 1010–1015, https://doi.org/10.1016/j.jhazmat.2010.05.115, 2010.
Lu, Z., Streets, D. G., Winijkul, E., Yan, F., Chen, Y., Bond, T. C., Feng,
Y., Dubey, M. K., Liu, S., Pinto, J. P., and Carmichael, G. R.: Light
Absorption Properties and Radiative Effects of Primary Organic Aerosol
Emissions, Environ. Sci. Technol., 49, 4868–4877, https://doi.org/10.1021/acs.est.5b00211,
2015.
Majewska, M., Khan, F., Pieta, I. S., Wróblewska, A., Szmigielski, R.,
and Pieta, P.: Toxicity of selected airborne nitrophenols on eukaryotic cell
membrane models, Chemosphere, 266, 128996, https://doi.org/10.1016/j.chemosphere.2020.128996, 2021.
Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prévôt, A. S. H., Xu,
L., Ng, N. L., Herndon, S. C., Williams, L. R., Franklin, J. P., Zahniser,
M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J.,
Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of Nitrated
Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United
Kingdom during Winter Time, Environ. Sci. Technol., 47, 6316–6324,
https://doi.org/10.1021/es400683v, 2013.
Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary
Organic Aerosols and Their Changes by Chemical Processes, Chem. Rev., 115,
4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Natangelo, M., Mangiapan, S., Bagnati, R., Benfenati, E., and Fanelli, R.:
Increased concentrations of nitrophenols in leaves from a damaged forestal
site, Chemosphere, 38, 1495–1503, https://doi.org/10.1016/S0045-6535(98)00370-1, 1999.
Niessen, R., Lenoir, D., and Boule, P.: Phototransformation of phenol
induced by excitation of nitrate ions, Chemosphere, 17, 1977–1984,
https://doi.org/10.1016/0045-6535(88)90009-4, 1988.
O'Neill, P., Steenken, S., van der Linde, H., and Schulte-Frohlinde, D.:
Reaction of OH radicals with nitrophenols in aqueous solution, Radiat. Phys.
Chem., 12, 13–17, https://doi.org/10.1016/0146-5724(78)90070-5,
1978.
Oturan, M. A., Peiroten, J., Chartrin, P., and Acher, A. J.: Complete
Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method,
Environ. Sci. Technol., 34, 3474–3479, https://doi.org/10.1021/es990901b, 2000.
Randolph, C., Lahive, C. W., Sami, S., Havenith, R. W. A., Heeres, H. J.,
and Deuss, P. J.: Biobased Chemicals: 1,2,4-Benzenetriol, Selective
Deuteration and Dimerization to Bifunctional Aromatic Compounds, Org. Process
Res. Dev., 22, 1663–1671, https://doi.org/10.1021/acs.oprd.8b00303, 2018.
Rapf, R. J., Dooley, M. R., Kappes, K., Perkins, R. J., and Vaida, V.: pH
Dependence of the Aqueous Photochemistry of α-Keto Acids, J. Phys.
Chem., 121, 8368–8379, https://doi.org/10.1021/acs.jpca.7b08192, 2017.
Regueiro, J., Becerril, E., Garcia-Jares, C., and Llompart, M.: Trace
analysis of parabens, triclosan and related chlorophenols in water by
headspace solid-phase microextraction with in situ derivatization and gas
chromatography–tandem mass spectrometry, J. Chromatogr. A, 1216, 4693–4702,
https://doi.org/10.1016/j.chroma.2009.04.025, 2009.
Rived, F., Rosés, M., and Bosch, E.: Dissociation constants of neutral
and charged acids in methyl alcohol. The acid strength resolution, Anal.
Chim. Acta, 374, 309–324, https://doi.org/10.1016/S0003-2670(98)00418-8, 1998.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sobczyński, A., Duczmal, Ł., and Zmudziński, W.: Phenol
destruction by photocatalysis on TiO2: an attempt to solve the reaction
mechanism, J. Mol. Catal. A-Chem., 213, 225–230, https://doi.org/10.1016/j.molcata.2003.12.006, 2004.
Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Effects of
Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical
Oxidation and Implications for Secondary Organic Aerosol, Environ. Sci.
Technol., 43, 8105–8112, https://doi.org/10.1021/es901742f, 2009.
Tauber, A., Schuchmann, H.-P., and von Sonntag, C.: Sonolysis of aqueous
4-nitrophenol at low and high pH, Ultrason. Sonochem., 7, 45–52, https://doi.org/10.1016/S1350-4177(99)00018-8, 2000.
TenBrook, P. L., Kendall, S. M., Viant, M. R., and Tjeerdema, R. S.:
Toxicokinetics and biotransformation of p-nitrophenol in red abalone
(Haliotis rufescens), Aquat. Toxicol., 62, 329–336, https://doi.org/10.1016/S0166-445X(02)00103-0, 2003.
Tilgner, A., Schaefer, T., Alexander, B., Barth, M., Collett Jr., J. L., Fahey, K. M., Nenes, A., Pye, H. O. T., Herrmann, H., and McNeill, V. F.: Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds, Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, 2021.
Vidović, K., Kroflič, A., Šala, M., and Grgić, I.:
Aqueous-Phase Brown Carbon Formation from Aromatic Precursors under Sunlight
Conditions, Atmosphere, 11, 131, https://doi.org/10.3390/atmos11020131, 2020.
Vione, D., Maurino, V., Minero, C., Borghesi, D., Lucchiari, M., and
Pelizzetti, E.: New Processes in the Environmental Chemistry of Nitrite. 2.
The Role of Hydrogen Peroxide, Environ. Sci. Technol., 37, 4635–4641,
https://doi.org/10.1021/es0300259, 2003.
Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Aqueous Atmospheric
Chemistry: Formation of 2,4-Dinitrophenol upon Nitration of 2-Nitrophenol
and 4-Nitrophenol in Solution, Environ. Sci. Technol., 39, 7921–7931,
https://doi.org/10.1021/es050824m, 2005.
Vione, D., Maurino, V., Minero, C., Duncianu, M., Olariu, R.-I., Arsene, C.,
Sarakha, M., and Mailhot, G.: Assessing the transformation kinetics of 2-
and 4-nitrophenol in the atmospheric aqueous phase. Implications for the
distribution of both nitroisomers in the atmosphere, Atmos. Environ., 43,
2321–2327, https://doi.org/10.1016/j.atmosenv.2009.01.025,
2009.
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, 2014.
Witkowski, B., Al-sharafi, M., and Gierczak, T.: Kinetics and products of
the aqueous-phase oxidation of β-caryophyllonic acid by hydroxyl
radicals, Atmos. Environ., 213, 231–238, https://doi.org/10.1016/j.atmosenv.2019.06.016, 2019.
Wojnárovits, L. and Takács, E.: Irradiation treatment of azo dye
containing wastewater: An overview, Radiat. Phys. Chem., 77, 225–244,
https://doi.org/10.1016/j.radphyschem.2007.05.003, 2008.
Xie, M., Chen, X., Hays, M. D., and Holder, A. L.: Composition and light absorption of N-containing aromatic compounds in organic aerosols from laboratory biomass burning, Atmos. Chem. Phys., 19, 2899–2915, https://doi.org/10.5194/acp-19-2899-2019, 2019.
Xiong, X., Sun, Y., Sun, B., Song, W., Sun, J., Gao, N., Qiao, J., and Guan,
X.: Enhancement of the advanced Fenton process by weak magnetic field for
the degradation of 4-nitrophenol, RSC Adv., 5, 13357–13365,
https://doi.org/10.1039/C4RA16318D, 2015.
Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon
aerosols: Recent progress and perspectives, Sci. Total Environ., 634,
1475–1485, https://doi.org/10.1016/j.scitotenv.2018.04.083,
2018.
Zhang, W., Xiao, X., An, T., Song, Z., Fu, J., Sheng, G., and Cui, M.:
Kinetics, degradation pathway and reaction mechanism of advanced oxidation
of 4-nitrophenol in water by a UV/H2O2 process, J. Chem. Technol.
Biotechnol, 78, 788–794, https://doi.org/10.1002/jctb.864,
2003.
Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P.,
Perring, A. E., Jimenez, J. L., Campuzano-Jost, P., Wang, Y., Nenes, A., and
Weber, R. J.: Top-of-atmosphere radiative forcing affected by brown carbon
in the upper troposphere, Nat. Geosci., 10, 486–489, https://doi.org/10.1038/ngeo2960, 2017.
Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-6087-2015, 2015.
Zhao, S., Ma, H., Wang, M., Cao, C., and Yao, S.: Study on the role of
hydroperoxyl radical in degradation of p-nitrophenol attacked by hydroxyl
radical using photolytical technique, J. Photochem. Photobio. A,
259, 17–24, https://doi.org/10.1016/j.jphotochem.2013.02.012,
2013.
Short summary
This article describes a comprehensive investigation of the aqueous oxidation of 4-nitrophenol (4NP) by hydroxyl radicals (OH). The reaction was carried out in a laboratory photoreactor. We report the formation of key intermediates under different pH conditions and the evolution of the light absorption of the reaction solution. The results provide new insights into the formation and removal (chemical bleaching) of light-absorbing organic aerosols (atmospheric brown carbon).
This article describes a comprehensive investigation of the aqueous oxidation of 4-nitrophenol...
Altmetrics
Final-revised paper
Preprint