Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interannual variability of terpenoid emissions in an alpine city
Lisa Kaser
CORRESPONDING AUTHOR
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Arianna Peron
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Martin Graus
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Marcus Striednig
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Georg Wohlfahrt
Department of Ecology, University of Innsbruck, Sternwartestrasse 15,
6020 Innsbruck, Austria
Stanislav Juráň
Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
Department of Atmospheric and Cryospheric Sciences, University of
Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
Related authors
No articles found.
Beatriz P. Cazorla, Ana Meijide, Javier Cabello, Julio Peñas, Rodrigo Vargas, Javier Martínez-López, Leonardo Montagnani, Alexander Knohl, Lukas Siebicke, Benimiano Gioli, Jiří Dušek, Ladislav Šigut, Andreas Ibrom, Georg Wohlfahrt, Eugénie Paul-Limoges, Kathrin Fuchs, Antonio Manco, Marian Pavelka, Lutz Merbold, Lukas Hörtnagl, Pierpaolo Duce, Ignacio Goded, Kim Pilegaard, and Domingo Alcaraz-Segura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2835, https://doi.org/10.5194/egusphere-2025-2835, 2025
Short summary
Short summary
We assess whether satellite-derived Ecosystem Functional Types (EFTs) reflect spatial heterogeneity in carbon fluxes across Europe. Using Eddy Covariance data from 50 sites, we show that EFTs capture distinct Net Ecosystem Exchange dynamics and perform slightly better than PFTs. EFTs offer a scalable, annually updatable approach to monitor ecosystem functioning and its interannual variability.
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
Hydrol. Earth Syst. Sci., 29, 2727–2747, https://doi.org/10.5194/hess-29-2727-2025, https://doi.org/10.5194/hess-29-2727-2025, 2025
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of the onset and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help us to make informed decisions about water usage, and the framework can be applied to other regions as well.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2939, https://doi.org/10.5194/egusphere-2024-2939, 2024
Short summary
Short summary
Air pollution management requires accurate determination of emissions and emission ratios of air pollutants. In this paper, we explore a new way to resolve excess mixing ratios in turbulent plumes, which allows aggregation of unbiased ensemble averages of air pollutant ratios that can be compared with emission models. The approach is tested in an urban environment and used to resolve emission patterns of nitrogen oxides and carbon dioxide.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Joseph Kiem, Albin Hammerle, Leonardo Montagnani, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-881, https://doi.org/10.5194/egusphere-2024-881, 2024
Preprint archived
Short summary
Short summary
Albedo is the fraction of solar radiation that is reflected by some surface. The presence of a seasonal snow cover dramatically increases albedo. We made use of a novel snow depth dataset for Austria to investigate likely future changes in albedo up to 2100. In 5 out of the 6 investigated future scenarios a significant decline of albedo could be observed. The associated warming is equivalent to between 0.25 to 5 times the current annual CO2-equivalent emissions of Austria.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, and Thomas Karl
Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, https://doi.org/10.5194/acp-21-3091-2021, 2021
Short summary
Short summary
The first European SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) wave and associated lockdown provided a unique sensitivity experiment to study air pollution. We find significantly different emission trajectories between classical air pollution and climate gases (e.g., carbon dioxide). The analysis suggests that European policies, shifting residential, public, and commercial energy demand towards cleaner combustion, have helped to improve air quality more than expected.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Acton, W. J. F., Huang, Z., Davison, B., Drysdale, W. S., Fu, P., Hollaway, M., Langford, B., Lee, J., Liu, Y., Metzger, S., Mullinger, N., Nemitz, E., Reeves, C. E., Squires, F. A., Vaughan, A. R., Wang, X., Wang, Z., Wild, O., Zhang, Q., Zhang, Y., and Hewitt, C. N.: Surface–atmosphere fluxes of volatile organic compounds in Beijing, Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, 2020.
Atkinson, R. and Shu, Y.: Rate constants for the gas-phase reactions of O3
with a series of Terpenes and OH radical formation from the O3 reactions
with Sesquiterpenes at 296±2 K, Chem. Kinetics, 26, 1193–1205, https://doi.org/10.1002/kin.550261207, 1994.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of bio- genic
volatile organic compounds: a review, Atmos. Environ., 37,
197–219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Baghi, R., Helmig, D., Guenther, A., Duhl, T., and Daly, R.: Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions, Biogeosciences, 9, 3777–3785, https://doi.org/10.5194/bg-9-3777-2012, 2012.
Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical
Reaction of α-Pinene: Mechanistic Insight and the Influence of
Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069–11077,
https://doi.org/10.1021/acs.est.8b02210, 2018.
Bertin, N. and Staudt, M.: Effect of water stress on monoterpene emissions
from young potted holm oak (Quercus ilex L.) trees, Oecologia, 107,
456–462, 1996.
Bonn, B., von Schneidemesser,E., Butler, T., Churkina, G., Ehlers, C.,
Grote, R., Klemp, D., Nothard, R., Schäfer, K., von Stülpnagel, A.,
Kerschbaumer, A., Yousefpour, R., Fountoukis, C., and Lawrence, M. G.: Impact
of vegetative emissions on urban ozone and biogenic secondary organic
aerosol: Box model study for Berlin, Germany, J. Clean. Prod., 176, 827–841,
https://doi.org/10.1016/j.jclepro.2017.12.164, 2018.
Borbon, A., Locoge, N., Veillerot, M., Galloo, J. C., and Guillermo, R.:
Characterisation of NMHCs in a French urban atmosphere: overview of the main
sources, Sci. Total Environ., 292, 177–191,
https://doi.org/10.1016/S0048-9697(01)01106-8, 2002.
Calfapietra, C., Pallozzi, E., Lusini, I., and Velikova, V: Modification of
BVOC emissions by changes in atmospheric CO2 and air pollution, Biology,
Controls and Models of Tree Volatile Organic Compound Emissions, Springer, Dotrecht, 253–284, https://doi.org/10.1007/978-94-007-6606-8_10, 2013.
Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S.: The role of
biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study,
Science, 241, 1473–1475, https://doi.org/10.1126/science.3420404, 1988.
Chang, C.-C., Wang, J.-L., Lung, S.-C. C., Chang, C.-Y., Lee, P.-J., Chew,
C., Liao, W.-C., Chen, W.-N., and Ou-Yang, C.-F.: Seasonal characteristics of
biogenic and anthropogenic isoprene in tropical–subtropical urban
environments, Atmos. Environ., 99, 298–308,
https://doi.org/10.1016/j.atmosenv.2014.09.019, 2014.
Churkina, G., Grote, R., Butler, T. M., and Lawrence, M.: Natural selection?
Picking the right trees for urban greening, Environ. Sci. Policy, 47, 12–17,
https://doi.org/10.1016/j.envsci.2014.10.014, 2015
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., and
Butler, T.: Effect of VOC emissions from vegetation on air quality in Berlin
during a heatwave, Environ. Sci. Technol., 51, 6120–6130,
https://doi.org/10.1021/acs.est.6b06514, 2017.
Connop, S., Vandergert, P., Eisenberg, B., Collier, M. J., Nash, C., Clough,
J., and Newport, D.: Renaturing cities using a regionally-focused
biodiversity-led multifunctional benefits approach to urban green
infrastructure, Environ. Sci. Policy, 62, 99–111,
https://doi.org/10.1016/j.envsci.2016.01.013, 2016.
Corchnoy, S. B., Arey, J., and Atkinson, R.: Hydrocarbon emission from twelve
urban shade trees of the Los Angeles, California, Air Basin, Atmos.
Environ., 26B, 339e348, https://doi.org/10.1016/0957-1272(92)90009-H, 1992.
Derwent, R. G., Jenkin, M. E., and Saunders, S. M.: Photochemical ozone
creation potentials for a large number of reactive hydrocarbons under
European conditions, Atmos. Environ, 30, 181–199,
https://doi.org/10.1016/1352-2310(95)00303-G, 1996.
Duane, M., Poma, B., Rembges, D., Astorga, C., and Larsen, B.R.: Isoprene and
its degradation products as strong ozone precursors in Insubria, Northern
Italy, Atmos. Environ., 36, 3867–3879,
https://doi.org/10.1016/S1352-2310(02)00359-X, 2002.
Escobedo, F. J., Kroeger, T., and Wagner, J. E.: Urban forests and pollution
mitigation: analyzing ecosystem services and disservices, Environ. Pollut.,
159, 2078–2087, https://doi.org/10.1016/j.envpol.2011.01.010, 2011.
Fehsenfeld, F., Calvert, J., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb,
B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of
volatile organic compounds from vegetation and the implications for
atmospheric chemistry, Global Biogeochem. Cy. 6, 389e430,
https://doi.org/10.1029/92GB02125, 1992.
Fitzky, A. C., Sandén, H., Karl, T., Fares, S., Calfapietra, C., Grote,
R., Saunier, A., and Rewald B.: The Interplay Between Ozone and Urban
Vegetation–BVOC Emissions, Ozone Deposition, and Tree Ecophysiology, Front. For. Glob. Change, 2, 50
https://doi.org/10.3389/ffgc.2019.00050, 2019.
Foken, T.: Micrometeorology, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-540-74666-9, 2008.
Fortunati, A., Barta, C., Brilli, F., Centritto, M., Zimmer, I., Schnitzler,
J.-P., and Loreto, F.: Isoprene emission is not temperature-dependent during
and after severe drought-stress: a physiological and biochemical analysis,
Plant J., 55, 687–697, https://doi.org/10.1111/j.1365-313X.2008.03538.x, 2008.
Fuentes, J., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.,
Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T., and W,
S.: Biogenic hydrocarbons in the atmospheric bound- ary layer: a review, B.
Am. Meteorol. Soc., 81, 1537–1575, https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2, 2000.
Fuentes, J. D., Lerdau, M., Atkinson, R., Baldocchi, D., Botteneheim, J. W.,
Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T. D., and
Stockwell, W.: Biogenic hydrocarbons in the atmosphere boundary layer: a
review, B. Am. Meteorol. Soc., 81, 1537e1575,
https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2, 2000.
Genard-Zielinski, A.-C., Ormeño, E., Boissard, C., and Fernandez, C.:
Isoprene emissions from Downy oak under water limitation during an entire
growing season: What cost for growth?, PLoS ONE, 9, e112418,
https://doi.org/10.1371/journal.pone.0112418, 2014.
Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Gilman, J.
B., Aikin, K. C., Robinson, B. A., Canonaco, F., Prevot, A. S. H., Trainer,
M., and Warneke, C.: Observations Confirm that Volitile Chemical Products
Are a Major Source of Petrochemical Emissions in U.S. Cities, Environ. Sci.
Technol., 55, 4332–4343, https://doi.org/10.1021/acs.est.0c05471, 2021.
Goldstein, A. H., Koven, C. D., Heald, C. L., and Fung, I. Y.: Biogenic carbon
and anthropogenic pollutants combine to form a cooling haze over the
southeastern United States, PNAS, 106, 1–6,
https://doi.org/10.1073/pnas.0904128106, 2009.
Guenther, A., Zimmerman, P., Harley, P., Monson, R., and Fall, R.: Isoprene
and monoterpene emission rate variability: Model evaluations and sensitivity
analysis, J. Geophys. Res., 98, 12609–12617,
https://doi.org/10.1029/93JD00527, 1993.
Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural
VolatileOrganic-Compound Emission Rate Estimates for United-States Woodland
Landscapes, Atmos. Environ., 28, 1197–1210,
https://doi.org/10.1016/1352-2310(94)90297-6, 1994.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Gulden, L. E., Yang, Z. L., and Niu, G. Y.: Interannual variation in biogenic
emissions on a regional scale, J. Geophys. Res.-Atmos., 112, D14103,
https://doi.org/10.1029/2006JD008231, 2007.
Hellen, H., Tykkä, T., and Hakola, H.: Importance of monoterpenes and
isoprene in urban air in northern Europe, Atmos. Environ., 59, 59–66,
https://doi.org/10.1016/j.atmosenv.2012.04.049, 2012.
Honour, S. L., Bell, J. N. B., Ashenden, T. W., Cape, J. N., and Power, S.
A: Responses of herbaceous plants to urban air pollution: Effects on growth,
phenology and leaf surface characteristics, Environ. Pollution, 157,
1279–1286, https://doi.org/10.1016/j.envpol.2008.11.049, 2009.
Jacovides, C., Tymvios, F., Asimakopoulos, D., Theofilou, K. M., and
Pashiardes, S.: Global photosynthetically active radiation and its
relationship with global solar radiation in the Eastern Mediterranean basin,
Theor. Appl. Climatol., 74, 227–233,
https://doi.org/10.1007/s00704-002-0685-5, 2003.
Jochner, S., Markevych, I., Beck, I., Traidl-Hoffmann, C., Heinrich, J., and
Menzel, A.: The effects of short- and long-term air pollutants on plan
phenology and leaf characteristics, Enrion. Pollution, 206, 382–389,
https://doi.org/10.1016/j.envpol.2015.07.040, 2015.
Johansson, C. and Janson, R.W.: Diurnal cycle of O3 and monoterpenes in a
coniferous forest: Importance of atmospheric stability, surface exchange,
and chemistry, J. Geophys. Res., 9, 5121–5134,
https://doi.org/10.1029/92JD02829, 1993.
Juráň, S., Pallozzi, E., Guidolotti, G., Fares, S., Šigut, L.,
Calfapietra, C., Alivernini, A., Savi, F., Večeřová, K.,
Křůmal, K., Večeřa, Z., and Urban, O.: Fluxes of biogenic
volatile organic compounds above temperate Norway spruce forest of the Czech
Republic, Agric. For. Meteorol., 232, 500–513,
https://doi.org/10.1016/j.agrformet.2016.10.005, 2017.
Kaltsonoudis, C., Kostenidou, E., Florou, K., Psichoudaki, M., and Pandis, S. N.: Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean, Atmos. Chem. Phys., 16, 14825–14842, https://doi.org/10.5194/acp-16-14825-2016, 2016.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models, Biogeosciences, 6, 1059–1087, https://doi.org/10.5194/bg-6-1059-2009, 2009.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban
flux measurements reveal a large pool of oxygenated volatile organic
compound emissions, PNAS, 115/6, 1186–1191,
https://doi.org/10.1073/pnas.1714715115, 2018.
Karl, T., Gohm, A., Rotach, M., Ward, H., Graus, M., Cede, A., Wohlfahrt,
G., Hammerle, A., Haid, M., Tiefengraber, M., Lamprecht, C., Vergeiner, J.,
Kreuter, A., Wagner, J., and Staudinger, M.: Studying Urban Climate and Air
quality in the Alps – The Innsbruck Atmospheric Observatory, B. Am.
Meteorol. Soc., 101/4, E488–E507,
https://doi.org/10.1175/BAMS-D-19-0270.1, 2020.
Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC):
an overview on emission, physiology and ecology, J. Atmos. Chem., 33, 23–88,
https://doi.org/10.1023/A:1006127516791, 1999.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kota S. H., Park, C., Hale, M. C., Werner, N. D., Schade, G. W., and Ying,
Q.: Estimation of VOC emission factors from flux measurements using a
receptor model and footprint analysis, Atmos. Environ., 82, 24–35,
https://doi.org/10.1016/j.atmosenv.2013.09.052, 2014.
Langford, B., Misztal, P. K., Nemitz, E., Davison, B., Helfter, C., Pugh, T. A. M., MacKenzie, A. R., Lim, S. F., and Hewitt, C. N.: Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest, Atmos. Chem. Phys., 10, 8391–8412, https://doi.org/10.5194/acp-10-8391-2010, 2010.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C.N.: Biogenic
volatile organic compounds in the Earth system, New Phytol., 183, 27–51,
https://doi.org/10.1111/j.1469-8137.2009.02859.x, 2009.
Li, D., Chen, Y., Shi, Y., He, X., and Chen, X.: Impact of elevated CO2 and O3
concentrations on biogenic volatile organic compounds emissions from Ginkgo
biloba, Bull. Environ. Contam. Toxicol., 82, 473-477,
https://doi.org/10.1007/s00128-008-9590-7, 2009.
Livesley, S. J., McPherson, G. M., and Calfapietra, C.: The urban forest and
ecosystem services: impacts on urban water, heat, and pollution cycles at
the tree, street, and city scale, J. Environ. Qual., 45, 119–124,
https://doi.org/10.2134/jeq2015.11.0567, 2016.
Loreto, F., Ciccioli, P., Brancaleoni, E., Valentini, R., Lillis, M. D.,
Csiky, O., and Seufert, G.: A hypothesis on the evolution of isoprenoid
emission by oaks based on the correlation between emission type and Quercus
taxonomy, Oecologia, 115, 302–305, htpps://doi.org/ 10.1007/s004420050520,
1998.
Monson, R. K. and Fall, R.: Isoprene emission from aspen leaves. The
influence of environment and relation to photosynthesis and
photorespiration, Plant Physiol., 90, 267–274,
https://doi.org/10.1104/pp.90.1.267, 1989.
Niinemets, U.: Mild versus severe stress and BVOCs: thresholds, priming and
consequences, Trends Plant Sci., 15, 145–153,
https://doi.org/10.1016/j.tplants.2009.11.008, 2010.
Niinemets, U. and Reichstein, M.: Controls on the emission of plant volatiles
through stomata: Differential sensitivity of emission rates to stomatal
closure explained, J. Geophys. Res.-Atmos., 108, 4208, https://doi.org/10.1029/2002JD002620, 2003.
Noe, S. M., Penuelas, J., and Niinemets, U.: Monoterpene emissions from
ornamental trees in urban areas: a case study of Barcelona, Spain, Plant
Biol., 10, 163–169, 2008.
Nowak, D., Crane, D., Stevens, J., and Ibarra, M.: Brooklyn's Urban Forest,
Report NE- 29050-53, https://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/2002/gtrne290.pdf (last access: 20 April 2022), 2002.
Otu-Larbi, F., Bolas, C. G., Ferracci, V., Staniaszek, Z., Jones, R. L.,
Malhi, Y., Harris, N. R. P., Wild, O., and Ashworth, K.: Modelling the effect
of the 2018 summer heatwave and drought on isoprene emissions in a UK
woodland, Glob. Change Biol., 26, 2320–2335, https://doi.org/10.1111/gcb.14963, 2019.
Owen, S. M., MacKenzie, A. R., Stewart, H., Donovan, R., and Hewitt, C. N.:
Biogenic volatile organic compound (VOC) emissionestimates from an urban
tree canopy, Ecol. Appl., 13, 927–938, https://doi.org/10.1890/01-5177,
2003.
Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T. P.,
Guenther, A., Wiedinmyer, C., Stanton, J. C., Pilling, M. J., Pressley, S.,
Lamb, B., and Sumner, A. L.: Quantifying the seasonal and interannual variability
of North American isoprene emissions using satellite observations of the
formaldehyde column, J. Geophys. Res., 111, D12315,
https://doi.org/10.1029/2005JD006689, 2006.
Papiez, M. R., Potosnak, M. J., Goliff, W. S., Guenther, A. B., Matsunaga,
S. N., and Stockwell, W. R.: The impacts of reactive terpene emissions from plants on air quality in Las
Vegas, Nevada, Atmos. Environ., 43, 4109–4123,
https://doi.org/10.1016/j.atmosenv.2009.05.048, 2009.
Park, C., Schade, G. W., and Boedeker, I.: Flux measurements of volatile
organic compounds by the relaxed eddy accumulation method combined with a
GC-FID system in urban Houston, Texas, Atmos. Environ., 44, 2605–2614,
https://doi.org/10.1016/j.atmosenv.2010.04.016, 2010.
Pegoraro, E., Rey, A., Bobich, E. G., Barron-Gafford, G. A., Grieve, K. A.,
Mahli, Y., and Murthy, R.: Effect of elevated CO2 concentration and vapour
pressure deficit on isoprene emission from leaves of Populus deltoides
during drought, Funct. Plant Biol., 31, 1137–1147,
https://doi.org/10.1071/FP04142, 2004a.
Pegoraro, E., Rey, A., Greenberg, J., Harley, P., Grace, J., Mahli, Y., and
Guenther, A.: Effect of drought on isoprene emission rates from leaves of
Quercus virginiana Mill, Atmos. Environ., 38, 6149–6156,
https://doi.org/10.1016/j.atmosenv.2004.07.028, 2004b.
Poisson, N., Kanakidou, M., Bonsang, B., Behmann, T., Burrows, J. P.,
Fischer, H., Gölz, C., Harder, H., Lewis, A., Moortgat, G. K., Nunes, T.,
Pio, C. A., Platt, U., Sauer, F., Schuster, G., Seakins, P., Senzig, J.,
Seuwen, R., Trapp, D., Volz-Thomas, A., Zenker, T., and Zitzelberger, R.: The
impact of natural non-methane hydrocarbon oxidation on the free radical and
ozone budgets above a eucalyptus forest, Chemosphere – Global Change
Science, 3, 353–366, https://doi.org/10.1016/S1465-9972(01)00016-2, 2001.
Potosnak, M. J., LeStourgeon, L., Pallardy, S. G., Hosman, K. P., Gu, L., Karl,
T., Geron, C., and Guenther, A. B.: Observed and modeled ecosystem isoprene
fluxes from an oak-dominated temperate forest and the influence of drought
stress, Atmos. Environ., 84, 314–322,
https://doi.org/10.1016/j.atmosenv.2013.11.055, 2014.
Piccot, S., Watson, J., and Jones, J.: A global inventory of volatile
organic compound emissions from anthropogenic sources, J. Geophys. Res., 97,
9897–9912, https://doi.org/10.1029/92JD00682, 1992.
Pressley, S., Lamb, B., Westberg, H., Flaherty, J., Chen, J., and Vogel, C.:
Long-term isoprene flux measurements above a northern hardwood forest, J.
Geophys. Res., 110, D7, https://doi.org/07310.01029/02004JD005523, 2005.
Rantala, P., Järvi, L., Taipale, R., Laurila, T. K., Patokoski, J., Kajos, M. K., Kurppa, M., Haapanala, S., Siivola, E., Petäjä, T., Ruuskanen, T. M., and Rinne, J.: Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland, Atmos. Chem. Phys., 16, 7981–8007, https://doi.org/10.5194/acp-16-7981-2016, 2016.
Reichle, R., De Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., and
Liu, Q.: SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil
Moisture Geophysical Data, Version 4, Boulder, Colorado USA, NASA National
Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/KPJNN2GI1DQR, 2018.
Reimann, S., Calanca, P., and Hofer, P.: Isoprene concentrations in a rural
atmosphere, Atmos. Environ., 34, 109–115, https://doi.org/10.1016/S1352-2310(99)00285-X, 2000.
Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X., Tani, A., Guo,
P., Ge, Y., and Chang, J.: Air quality and health effects of biogenic volatile
organic compounds emissions from urban green spaces and the mitigation
strategies, Environ. Pollut., 230, 849–861,
https://doi.org/10.1016/j.envpol.2017.06.049, 2017.
Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petäjä, T., Worsnop,
D. R., Kulmala, M., and Donahue, N. M.: The contribution of organics to
atmospheric nanoparticle growth, Nat. Geosci., 5, 453–458,
https://doi.org/10.1038/ngeo1499, 2012.
Rosenstiel, T. N., Ebbets, A. L., Khatri, W. C., Fall, R., and Monson, R. K.:
Induction of Poplar Leaf Nitrate Reductase: A Test of Extrachloroplastic
Control of Isoprene Emission Rate, Plant Biol., 6, 12–21,
https://doi.org/10.1055/s-2003-44722, 2008.
Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S.,
Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and Sesquiterpene
Emission Estimates for the United States, Environ. Sci. Technol., 42, 1623–1629,
https://doi.org/10.1021/es702274e, 2008
Seco, R., Karl, T., Guenther, A., Hosman, K. P., Pallardy, S. G., Gu, L.,
Geron, C., Harley, P., and Kim, S.: Ecosystem-scale VOC fluxes during an
extreme drought in a broad-leaf temperate forest of the Missouri Ozarks
(central USA), Glob. Change Biol., 21, 3657–3674,
https://doi.org/10.1111/gcb.12980, 2015.
Simon, H., Fallmann, J., Kropp, T., Tost, H., and Bruse: M. Urban Trees and
Their Impact on Local Ozone Concentration – A Microclimate Modeling Study,
Atmosphere, 10, 154, https://doi.org/10.3390/atmos10030154, 2019.
Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kürten, A., Rörup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P. S., Beck, L., Bergen, A., Bianchi, F., Bräkling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D. C., Duplissy, J., El-Haddad, I., Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L., Gordon, H., Granzin, M., Hakala, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kong, W., Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Manninen, H. E., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L. L. J., Ranjithkumar, A., Rissanen, M. P., Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A. R., Vazquez-Pufleau, M., Vogel, A. L., Wagner, R., Wang, M., Wang, D. S., Wang, Y., Weber, S. K., Wu, Y., Xiao, M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Baltensperger, U., Dommen, J., Flagan, R. C., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular understanding of new-particle formation from α-pinene between −50 and +25 ∘C, Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, 2020.
Staudt, M. and Seufert, G.: Light-dependent emission of monoterpenes by
holm oak (Quercus ilex L.), Sci. Nat., 82, 89–92,
https://doi.org/10.1007/BF01140148, 1995.
Steinbrecher, R., Smiatek, G., Köble, R., Seufert, G., Theloke, J.,
Hauff, K., Ciccioli, P., Vautard, R., and Curci, G.: Intra- and inter-annual
variability of VOC emissions from natural and semi e natural vegetation in
Europe and neighbouring countries, Atmos. Environ., 43, 1380e1391,
https://doi.org/10.1016/j.atmosenv.2008.09.072, 2009.
Stewart, H. E., Hewitt, C. N., Bunce, R. G. H., Steinbrecher, R., Smiatek, G.,
and Schoenemeyer, T.: A highly spatially and temporally resolved inventory
for biogenic isoprene and monoterpene emissions: Model description and
application to Great Britain., J. Geophys. Res., 108, 4644,
https://doi.org/10.1029/2002JD002694, 2003.
Striednig, M., Graus, M., Märk, T. D., and Karl, T. G.: InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case, Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020, 2020 (data available at: https://git.uibk.ac.at/acinn/apc/innflux, last access: 1 August 2021).
Sulzer, P., Hartungen, E., Hanel, G., Feil, S., Winkler, K., Mutschlechner,
P., Haidacher, S., Schottkowsky, R., Gunsch, D., Seehauser, H., Striednig,
M., Juerschik, S., Breiev, K., Lanza, M., Herbig, J., Maerk, L., Maerk, T., and Jordan, A.: A Proton Transfer Reaction-Quadrupole interface Time-Of-Flight
Mass Spectrometer (PTR-QiTOF): High speed due to extreme sensitivity, Int.
J. Mass Spectrom., 368, 1–5, https://doi.org/10.1016/j.ijms.2014.05.004,
2014.
Tattini, M., Loreto, F., Fini, A., Guidi, L., Brunetti, C., Velikova, V.,
Gori, A., and Ferrini, F.: Isoprenoids and phenylpropanoids are part of the
antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers, New Phytol., 207,
613–626, https://doi.org/10.1111/nph.13380, 2015.
Tawfik, A. B., Stöckli, R., Goldstein, A., Pressley, S., and Steiner,
A. L.: Quantifying the contribution of environmental factors to isoprene flux
interannual variability, Atmos. Environ., 54, 216–224,
https://doi.org/10.1016/j.atmosenv.2012.02.018, 2012.
Thunis, P. and Cuvelier, C.: Impact of biogenic emissions on ozone formation
in the Mediterranean area – a BEMA modelling study, Atmos. Environ., 34,
467–481, https://doi.org/10.1016/S1352-2310(99)00313-1, 2000.
Tsigaridis, K. and Kanakidou, M.: Importance of volatile organic compounds
photochemistry over a forested area in central Greece, Atmos. Environ., 36,
3137–3146, https://doi.org/10.1016/S1352-2310(02)00234-0, 2002.
Valach, A. C., Langford, B., Nemitz, E., MacKenzie, A. R., and Hewitt, C. N.: Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London, Atmos. Chem. Phys., 15, 7777–7796, https://doi.org/10.5194/acp-15-7777-2015, 2015.
Vaughan, A. R., Lee, J. D., Shaw, M. D., Misztal, P. K., Metzger, S., Vieno,
M., Davison, B., Karl, T. G., Carpenter, L. J., Lewis, A. C., Purvis, R. M.,
Goldstein, A. H., and Hewitt, C. N.: VOC emission rates over London and South
East England obtained by airborne eddy covariance, Faraday Discuss., 200,
599–620, https://doi.org/10.1039/c7fd00002b, 2017.
Wagner, P. and Kuttler, W.: Biogenic and anthropogenic isoprene in the
near-surface urban atmosphere – A case study in Essen, Germany, Sci. Tot.
Environ., 475, 104–115, https://doi.org/10.1016/j.scitotenv.2013.12.026,
2014.
Wang, J.-L., Chew, C., Chang, C.-Y., Liao, W.-C., Lung, S.-C. C., Chen,
W.-N., Lee, P.-J., Lin, P.-H., and Chang, C.-C.: Biogenic isoprene in
subtropical urban settings and implications for air quality,
Atmos. Environ., 79, 369–379,
https://doi.org/10.1016/j.atmosenv.2013.06.055, 2013.
Wang, Q., Han, Z., Wang, T., and Higano, Y.: An Estimate of Biogenic
Emissions of Volatile Organic Compounds during Summertime in China, Env.
Sci. Poll. Res. Int., 14, 69–75 https://doi.org/10.1065/espr2007.02.376,
2007.
Warneke, C., de Gouw, J. A., Del Negro, L., Brioude, J., McKeen, S., Stark,
H., Kuster, W. C., Goldan, P. D., Trainer, M., Fehsenfeld, F. C.,
Wiedinmyer, C., Guenther, A. B., Hansel, A., Wisthaler, A., Atlas, E.,
Holloway, J. S., Ryerson, T. B., Peischl, J., Huey, L. G., and Case Hanks, A.
T.: Biogenic emission measurement and inventories determination of biogenic
emissions in the eastern United States and Texas and comparison with
biogenic emission inventories, J. Geophys. Res., 115, D00F18,
https://doi.org/10.1029/2009JD012445, 2010.
Wu, C., Pullinen, I., Andres, S., Carriero, G., Fares, S., Goldbach, H., Hacker, L., Kasal, T., Kiendler-Scharr, A., Kleist, E., Paoletti, E., Wahner, A., Wildt, J., and Mentel, Th. F.: Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce, Biogeosciences, 12, 177–191, https://doi.org/10.5194/bg-12-177-2015, 2015.
Yadav, R., Sahu, L. K., Tripathi, N., Pal, D., Beig, G., and Jaaffrey, S. N. A.:
Investigation of emission characteristics of NMVOCs over urban site of
western India, Environ. Pollution, 252, 245–255,
https://doi.org/10.1016/j.envpol.2019.05.089, 2019.
Yang, K.-L., Ting, C.-C., Wang, J.-L., Wingenter, O. W., and Chan, C.-C.: Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan, Atmos. Environ., 39, 2829–2838, https://doi.org/10.1016/j.atmosenv.2004.10.004, 2005.
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric...
Altmetrics
Final-revised paper
Preprint