Articles | Volume 22, issue 6
https://doi.org/10.5194/acp-22-4187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Audrey Lecouffe
CORRESPONDING AUTHOR
LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Paris, France
Sophie Godin-Beekmann
LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Paris, France
Andrea Pazmiño
LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Paris, France
Alain Hauchecorne
LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Paris, France
Related authors
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Sergey Khaykin, Slimane Bekki, Sophie Godin-Beekmann, Michael D. Fromm, Philippe Goloub, Qiaoyun Hu, Béatrice Josse, Alexandra Laeng, Mehdi Meziane, David A. Peterson, Sophie Pelletier, and Valérie Thouret
EGUsphere, https://doi.org/10.5194/egusphere-2025-3152, https://doi.org/10.5194/egusphere-2025-3152, 2025
Short summary
Short summary
In 2023, massive wildfires in Canada injected huge amounts of smoke into the atmosphere. Surprisingly, despite their intensity, the smoke didn’t rise very high but lingered at flight cruising altitudes, causing widespread pollution. This study shows how two different pathways lifted smoke into the lower stratosphere and reveals new insights into how wildfires affect air quality and climate, challenging what we thought we knew about fire and atmospheric impacts.
Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard Barras, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerard Ancellet, Richard Querel, Roeland Van Malderen, and Daniel Zawada
Atmos. Chem. Phys., 25, 2895–2936, https://doi.org/10.5194/acp-25-2895-2025, https://doi.org/10.5194/acp-25-2895-2025, 2025
Short summary
Short summary
Observational records show that stratospheric ozone is recovering in accordance with the implementation of the Montreal Protocol and its amendments. Natural ozone variability complicates the detection of small trends. This study optimizes a statistical model fit in ground-station-based observational records by adding parameters that interpret seasonal and long-term changes in atmospheric circulation and airmass mixing, which reduces uncertainties in detecting the stratospheric ozone recovery.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Joan Alexander, Alexis Mariaccia, Philippe Keckhut, and Antoine Mangin
EGUsphere, https://doi.org/10.5194/egusphere-2025-394, https://doi.org/10.5194/egusphere-2025-394, 2025
Short summary
Short summary
This study investigates how tropical convection generates gravity waves, which play a key role in transporting energy across the atmosphere. By combining Aeolus satellite data with ERA5 reanalysis data and radio-occultation measurements, we identified significant wave activity overlooked by ERA5, particularly over the Indian Ocean. Aeolus fills major gaps in wind data, offering a clearer picture of wave dynamics and challenging assumptions about their behavior, improving climate models.
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024, https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary
Short summary
We describe three instruments that have been measuring interactions between aerosols (particles of various origin) and light over Réunion Island since 2012. Aerosols directly or indirectly influence the temperature in the atmosphere and can interact with clouds. Details are given on how we derived aerosol properties from our measurements and how we assessed the quality of our data before sharing them with the scientific community. A good correlation was found between the three instruments.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2645, https://doi.org/10.5194/egusphere-2023-2645, 2023
Preprint withdrawn
Short summary
Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of aerosols, sulfur dioxide, and water vapor into the stratosphere. Satellite and ground instruments followed the displacement of the volcanic aerosol plume and its impact on ozone levels over the Indian Ocean. Ozone data reveal the presence of a persistent ozone mini-hole structure from 17 January to 22 January, with most ozone depletion occurring within the ozone layer at the location of the aerosol plume.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Irina Petropavlovskikh, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet, and Sophie Godin-Beekmann
Atmos. Meas. Tech., 15, 1849–1870, https://doi.org/10.5194/amt-15-1849-2022, https://doi.org/10.5194/amt-15-1849-2022, 2022
Short summary
Short summary
The Montreal Protocol and its amendments assure the recovery of the stratospheric ozone layer that protects the Earth from harmful ultraviolet radiation. To monitor ozone recovery, multiple satellites and ground-based observational platforms collect ozone data. The changes in instruments can influence the continuation of the ozone data. We discuss a method to remove instrumental artifacts from ozone records to improve the internal consistency among multiple observational records.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Cited articles
Akiyoshi, H., Zhou, L., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima,
T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T.: A CCM
simulation of the breakup of the Antarctic polar vortex in the years
1980–2004 under the CCMVal scenarios, J. Geophys. Res.-Atmos., 114, D03103, https://doi.org/10.1029/2007JD009261, 2009. a, b, c
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics,
40, Academic Press, 489 pp., ISBN 0080511678, 9780080511672, 1987. a
Atkinson, R. J., Matthews, W. A., Newman, P. A., and Plumb, R. A.: Evidence of
the mid-latitude impact of Antarctic ozone depletion, Nature, 340, 290–294, https://doi.org/10.1038/340290a0,
1989. a
Baldwin, M. P. and Dunkerton, T. J.: Quasi-biennial modulation of the southern
hemisphere stratospheric polar vortex, Geophys. Res. Lett., 25,
3343–3346, https://doi.org/10.1029/98GL02445, 1998. a, b
Bodeker, G., Struthers, H., and Connor, B.: Dynamical containment of Antarctic
ozone depletion, Geophys. Res. Lett., 29, 1098, https://doi.org/10.1029/2001GL014206, 2002. a, b
Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as
a diagnostic for tracer transport on an isentropic surface, J.
Atmos. Sci., 43, 1319–1339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2, 1986. a
Butler, A. H., Charlton-Perez, A., Domeisen, D. I., Simpson, I. R., and
Sjoberg, J.: Predictability of Northern Hemisphere final stratospheric
warmings and their surface impacts, Geophys. Res. Lett., 46,
10578–10588, https://doi.org/10.1029/2019GL083346, 2019. a
Camp, C. D. and Tung, K.-K.: The influence of the solar cycle and QBO on the
late-winter stratospheric polar vortex, J. Atmos. Sci.,
64, 1267–1283, https://doi.org/10.1175/JAS3883.1, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Domeisen, D. I., Garfinkel, C. I., and Butler, A. H.: The teleconnection of El
Niño Southern Oscillation to the stratosphere, Rev. Geophys., 57,
5–47, https://doi.org/10.1029/2018RG000596, 2019. a, b
ECMWF: ERA-Interim, ECMWF [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 15 January 2022.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClO NOx interaction, Nature, 315, 207–210, https://doi.org/10.1038/315207a0,
1985. a
Godin, S., Bergeret, V., Bekki, S., David, C., and Mégie, G.: Study of the interannual ozone loss and the permeability of the Antarctic polar vortex from aerosol and ozone lidar measurements in Dumont d'Urville (66.4∘ S, 140∘ E), J. Geophys. Res.-Atmos., 106, 1311–1330, https://doi.org/10.1029/2000JD900459, 2001. a
Goutail, F., Pommereau, J.-P., Lefèvre, F., van Roozendael, M., Andersen, S. B., Kåstad Høiskar, B.-A., Dorokhov, V., Kyrö, E., Chipperfield, M. P., and Feng, W.: Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters, Atmos. Chem. Phys., 5, 665–677, https://doi.org/10.5194/acp-5-665-2005, 2005. a
Gray, L. J.: The influence of the equatorial upper stratosphere on
stratospheric sudden warmings, Geophys. Res. Lett., 30, 1166, https://doi.org/10.1029/2002GL016430, 2003. a
Grooß, J.-U. and Müller, R.: Simulation of record Arctic stratospheric
ozone depletion in 2020, J. Geophys. Res.-Atmos., 126,
e2020JD033339, https://doi.org/10.1029/2020JD033339, 2020. a
Haigh, J. D. and Roscoe, H. K.: The final warming date of the Antarctic polar
vortex and influences on its interannual variability, J. Climate, 22,
5809–5819, https://doi.org/10.1175/2009JCLI2865.1, 2009. a
Hauchecorne, A., Godin, S., Marchand, M., Heese, B., and Souprayen, C.:
Quantification of the transport of chemical constituents from the polar
vortex to midlatitudes in the lower stratosphere using the high-resolution
advection model MIMOSA and effective diffusivity, J. Geophys.
Res.-Atmos., 107, 8289, https://doi.org/10.1029/2001JD000491, 2002. a, b, c
Heese, B., Godin, S., and Hauchecorne, A.: Forecast and simulation of
stratospheric ozone filaments: A validation of a high-resolution potential
vorticity advection model by airborne ozone lidar measurements in winter
1998/1999, J. Geophys. Res.-Atmos., 106,
20011–20024, https://doi.org/10.1029/2000JD900818, 2001. a
Holton, J. R. and Tan, H.-C.: The influence of the equatorial quasi-biennial
oscillation on the global circulation at 50 mb, J. Atmos.
Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980. a
Hoppel, K., Bevilacqua, R., Allen, D., Nedoluha, G., and Randall, C.: POAM III
observations of the anomalous 2002 Antarctic ozone hole, Geophys. Res.
Lett., 30, 1394, https://doi.org/10.1029/2003GL016899, 2003. a, b
Hu, J., Ren, R., and Xu, H.: Occurrence of winter stratospheric sudden warming
events and the seasonal timing of spring stratospheric final warming, J. Atmos. Sci., 71, 2319–2334, https://doi.org/10.1175/JAS-D-13-0349.1, 2014. a
Hurwitz, M., Newman, P., Oman, L., and Molod, A.: Response of the Antarctic
stratosphere to two types of El Niño events, J. Atmos.
Sci., 68, 812–822, https://doi.org/10.1175/2011JAS3606.1, 2011. a
Institute of Meteorology, Freie Unversistät Berlin: Monthly mean zonal wind components [data set], https://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat, last access: 15 January 2022.
Jiang, J., Cameron, R. H., and Schuessler, M.: The cause of the weak solar
cycle 24, Astrophys. J. Lett., 808, L28, https://doi.org/10.1088/2041-8205/808/1/L28, 2015. a
Labitzke, K. and Van Loon, H.: Associations between the 11-year solar cycle,
the QBO and the atmosphere. Part I: the troposphere and stratosphere in the
northern hemisphere in winter, J. Atmos. Terr.
Phys., 50, 197–206, https://doi.org/10.1016/0021-9169(88)90068-2, 1988. a
Li, T., Calvo, N., Yue, J., Russell, J. M., Smith, A. K., Mlynczak, M. G.,
Chandran, A., Dou, X., and Liu, A. Z.: Southern hemisphere summer mesopause
responses to El Niño–Southern Oscillation, J. Climate, 29,
6319–6328, https://doi.org/10.1175/JCLI-D-15-0816.1, 2016. a, b
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W., Dowdy,
A. J., and Arblaster, J. M.: Australian hot and dry extremes induced by
weakenings of the stratospheric polar vortex, Nat. Geosci., 12,
896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019. a
Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W., Lawrence, Z. D.,
Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi,
C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P. A., and Wang, G.: The 2019 Southern Hemisphere stratospheric polar vortex weakening
and its impacts, B. Am. Meteorol. Soc., 102,
E1150–E1171, https://doi.org/10.1175/BAMS-D-20-0112.1, 2021. a, b
Manney, G., Zurek, R., Gelman, M., Miller, A., and Nagatani, R.: The anomalous
Arctic lower stratospheric polar vortex of 1992–1993, Geophys. Res.
Lett., 21, 2405–2408, https://doi.org/10.1029/94GL02368, 1994. a, b, c
McIntyre, M. E. and Palmer, T.: Breaking planetary waves in the stratosphere,
Nature, 305, 593–600, https://doi.org/10.1038/305593a0, 1983. a
Millán, L. F., Manney, G. L., and Lawrence, Z. D.: Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics, Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, 2021. a
Mishra, V., Tiwari, D. P., Tiwari, C. M., and Agrawal, S. P.: Comparative study of different solar parameters with sunspot numbers, Indian Journal of Radio & Space Physics, 34, 13–16, http://nopr.niscair.res.in/handle/123456789/25632 (last access: 15 January 2022), 2005. a
Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251–264, https://doi.org/10.5194/acp-8-251-2008, 2008. a
Nakamura, N.: Two-dimensional mixing, edge formation, and permeability
diagnosed in an area coordinate, J. Atmos. Sci., 53,
1524–1537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2, 1996. a
National Research Council Canada (Dominion Radio Astrophysical Observatory): Monthly averages of Solar 10.7 cm flux [data set],
ftp://ftp.seismo.nrcan.gc.ca/spaceweather/solar_flux/monthly_averages/solflux_monthly_average.txt, last access: 15 January 2022.
NOAA: NASA Ozone Watch, NASA [data set], https://ozonewatch.gsfc.nasa.gov (last access: 15 January 2022), 2021. a
NOAA: Multivariate ENSO Index Version 2 (MEI.v2), NOAA [data set], https://www.esrl.noaa.gov/psd/enso/mei, last access: 15 January 2022.
Pazmiño, A., Godin-Beekmann, S., Hauchecorne, A., Claud, C., Khaykin, S., Goutail, F., Wolfram, E., Salvador, J., and Quel, E.: Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring, Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, 2018. a, b, c
Pommereau, J.-P., Goutail, F., Pazmino, A., Lefèvre, F., Chipperfield,
M. P., Feng, W., Van Roozendael, M., Jepsen, N., Hansen, G., Kivi, R.,
Bognar, K., Strong, K., Walker, K., Kuzmichev, A., Khattatov, S., and Sitnikova, V.: Recent Arctic ozone depletion: Is there an impact of climate change?,
C. R. Geosci., 350, 347–353, https://doi.org/10.1016/j.crte.2018.07.009, 2018. a
Randel, W. J. and Newman, P. A.: The stratosphere in the Southern Hemisphere,
in: Meteorology of the Southern Hemisphere, edited by: Karoly, D. J. and Vincent, D. G., American Meteorological Society, Boston, MA, pp. 243–282, ISBN 978-1-935704-10-2, https://doi.org/10.1007/978-1-935704-10-2_9, 1998. a
Rao, J. and Garfinkel, C. I.: Projected changes of stratospheric final warmings
in the Northern and Southern Hemispheres by CMIP5/6 models, Clim. Dynam.,
56, 3353–3371, https://doi.org/10.1007/s00382-021-05647-6, 2021. a, b
Rao, J. and Ren, R.: Modeling study of the destructive interference between the
tropical Indian Ocean and eastern Pacific in their forcing in the southern
winter extratropical stratosphere during ENSO, Clim. Dynam., 54,
2249–2266, https://doi.org/10.1007/s00382-019-05111-6, 2020.
a
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.: The 2019 new year
stratospheric sudden warming and its real-time predictions in multiple S2S
models, J. Geophys. Res.-Atmos., 124, 11155–11174, https://doi.org/10.1029/2019JD030826,
2019. a
Rao, J., Garfinkel, C. I., White, I. P., and Schwartz, C.: The Southern
Hemisphere minor sudden stratospheric warming in September 2019 and its
predictions in S2S models, J. Geophys. Res.-Atmos., 125,
e2020JD032723, https://doi.org/10.1029/2020JD032723, 2020. a
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history,
Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999. a, b, c, d
Stone, K., Solomon, S., Kinnison, D., and Mills, M. J.: On Recent Large
Antarctic Ozone Holes and Ozone Recovery Metrics, Geophys. Res.
Lett., 48, e2021GL095232, https://doi.org/10.1029/2021GL095232, 2021. a
Tiwari, B. R. and Kumar, M.: The Solar Flux and Sunspot Number; A Long-Trend
Analysis, International Annals of Science, 5, 47–51, https://doi.org/10.21467/ias.5.1.47-51, 2018. a
Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann,
S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y.,
Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The predictability of the extratropical stratosphere on monthly
time-scales and its impact on the skill of tropospheric forecasts, Q.
J. Roy. Meteor. Soc., 141, 987–1003, https://doi.org/10.1002/qj.2432, 2015. a
Waugh, D. N.: Elliptical diagnostics of stratospheric polar vortices, Q.
J. Roy. Meteor. Soc., 123, 1725–1748, https://doi.org/10.1002/qj.49712354213, 1997. a
Waugh, D. W. and Randel, W. J.: Climatology of Arctic and Antarctic polar
vortices using elliptical diagnostics, J. Atmos. Sci.,
56, 1594–1613, https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2, 1999. a, b
Waugh, D. W., Randel, W. J., Pawson, S., Newman, P. A., and Nash, E. R.:
Persistence of the lower stratospheric polar vortices, J. Geophys.
Res.-Atmos., 104, 27191–27201, https://doi.org/10.1029/1999JD900795, 1999. a
World Meteorological Organization (WMO): Scientific Assessment of Ozone
Depletion: 2018, Global Ozone Research and Monitoring Project – Report No.
58, Geneva, Switzerland, Tech. rep., 588 pp., https://csl.noaa.gov/assessments/ozone/2018/downloads/ (last access: 15 January 2022), 2018. a, b, c, d, e, f
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T.,
Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W.,
Themens, D. R., David, R., Kristoffersen, S., and Alken, P.: September 2019 Antarctic sudden stratospheric
warming: Quasi-6-day wave burst and ionospheric effects, Geophys. Res.
Lett., 47, e2019GL086577, https://doi.org/10.1029/2019GL086577, 2020. a
Zhang, Y., Li, J., and Zhou, L.: The Relationship between Polar Vortex and
Ozone Depletion in the Antarctic Stratosphere during the Period 1979–2016,
Adv. Meteorol., 2017, 3078079, https://doi.org/10.1155/2017/3078079, 2017. a
Zhou, S., Gelman, M. E., Miller, A. J., and McCormack, J. P.: An
inter-hemisphere comparison of the persistent stratospheric polar vortex,
Geophys. Res. Lett., 27, 1123–1126, https://doi.org/10.1029/1999GL011018, 2000. a, b
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic...
Altmetrics
Final-revised paper
Preprint