Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of organic acids in new particle formation from methanesulfonic acid and methylamine
Rongjie Zhang
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Jiewen Shen
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Hong-Bin Xie
CORRESPONDING AUTHOR
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Jingwen Chen
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Jonas Elm
Department of Chemistry and iClimate, Aarhus University,
Langelandsgade 140, 8000 Aarhus C, Denmark
Related authors
No articles found.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
EGUsphere, https://doi.org/10.5194/egusphere-2023-1444, https://doi.org/10.5194/egusphere-2023-1444, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Secondary organic aerosols (SOA) can exist in liquid, semi-solid or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in the northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976, https://doi.org/10.5194/acp-21-9955-2021, https://doi.org/10.5194/acp-21-9955-2021, 2021
Short summary
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Yibei Wan, Xiangpeng Huang, Bin Jiang, Binyu Kuang, Manfei Lin, Deming Xia, Yuhong Liao, Jingwen Chen, Jian Zhen Yu, and Huan Yu
Atmos. Chem. Phys., 20, 9821–9835, https://doi.org/10.5194/acp-20-9821-2020, https://doi.org/10.5194/acp-20-9821-2020, 2020
Short summary
Short summary
Biogenic iodine emission from macroalgae and microalgae could initiate atmospheric new particle formation (NPF). But it is unknown if other species are needed to drive the growth of new iodine particles in the marine boundary layer. Unlike the deeper understanding of organic compounds driving continental NPF, little is known about the organics involved in coastal or open-ocean NPF. This article reveals a new group of important organic compounds involved in this process.
Noora Hyttinen, Jonas Elm, Jussi Malila, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 5679–5696, https://doi.org/10.5194/acp-20-5679-2020, https://doi.org/10.5194/acp-20-5679-2020, 2020
Short summary
Short summary
Organosulfates have been identified in atmospheric secondary organic aerosol (SOA). The thermodynamic properties of SOA constituents, such as organosulfates, affect the stability and atmospheric impact of the SOA. Here we present estimated solubility, activity, pKa, saturation vapor pressure and Henry's law solubility values for several atmospherically relevant monoterpene- and isoprene-derived organosulfate compounds. These properties can be used, for example, in aerosol process modeling.
Yonghong Wang, Matthieu Riva, Hongbin Xie, Liine Heikkinen, Simon Schallhart, Qiaozhi Zha, Chao Yan, Xu-Cheng He, Otso Peräkylä, and Mikael Ehn
Atmos. Chem. Phys., 20, 5145–5155, https://doi.org/10.5194/acp-20-5145-2020, https://doi.org/10.5194/acp-20-5145-2020, 2020
Short summary
Short summary
Chamber experiments were conducted with alpha-pinene and chlorine under low- and high-nitrogen-oxide (NOX) conditions. We estimated the HOM yields from chlorine-initiated oxidation of alpha-pinene under low-NOX conditions to be around 1.8 %, though with a uncertainty range (0.8 %–4 %) due to lack of suitable calibration methods. Our study clearly demonstrates that the chlorine-atom-initiated oxidation of alpha-pinene can produce low-volatility organic compounds.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Anthropogenic amplification of biogenic secondary organic aerosol production
A dynamic parameterization of sulfuric acid–dimethylamine nucleation and its application in three-dimensional modeling
Modeling dust mineralogical composition: sensitivity to soil mineralogy atlases and their expected climate impacts
Assessment of the impacts of cloud chemistry on surface SO2 and sulfate levels in typical regions of China
Impact of Landes forest fires on air quality in France during the 2022 summer
Global nitrogen and sulfur deposition mapping using a measurement–model fusion approach
Comprehensive simulations of new particle formation events in Beijing with a cluster dynamics–multicomponent sectional model
Implications of differences between recent anthropogenic aerosol emission inventories for diagnosed AOD and radiative forcing from 1990 to 2019
Unbalanced emission reductions of different species and sectors in China during COVID-19 lockdown derived by multi-species surface observation assimilation
Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator
Modelling wintertime sea-spray aerosols under Arctic haze conditions
Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6
Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Analysis of new particle formation events and comparisons to simulations of particle number concentrations based on GEOS-Chem–advanced particle microphysics in Beijing, China
Simulation of organic aerosol, its precursors, and related oxidants in the Landes pine forest in southwestern France: accounting for domain-specific land use and physical conditions
Modelling the European wind-blown dust emissions and their impact on particulate matter (PM) concentrations
Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: a comparison of three schemes (Briggs, Freitas, and Sofiev)
How Does Tropospheric VOC Chemistry Affect Climate? An Investigation Using the Community Earth System Model Version 2
Effects of Secondary Organic Aerosol Water on fine PM levels and composition over US
Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin
Sources of organic aerosols in eastern China: a modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions
Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region
Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry
Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Modelling SO2 conversion into sulfates in the mid-troposphere with a 3D chemistry transport model: the case of Mount Etna's eruption on 12 April 2012
Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA
Opinion: Coordinated development of emission inventories for climate forcers and air pollutants
Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China
Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in large East African urban conurbations
Impact of urban heat island on inorganic aerosol in the lower free troposphere: a case study in Hangzhou, China
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on machine learning estimates
Quantifying the effects of mixing state on aerosol optical properties
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects
Effect of dust on rainfall over the Red Sea coast based on WRF-Chem model simulations
A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation
Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Molecular-level nucleation mechanism of iodic acid and methanesulfonic acid
Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 8789–8804, https://doi.org/10.5194/acp-23-8789-2023, https://doi.org/10.5194/acp-23-8789-2023, 2023
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid–dimethylamine (SA–DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
María Gonçalves Ageitos, Vincenzo Obiso, Ron L. Miller, Oriol Jorba, Martina Klose, Matt Dawson, Yves Balkanski, Jan Perlwitz, Sara Basart, Enza Di Tomaso, Jerónimo Escribano, Francesca Macchia, Gilbert Montané, Natalie M. Mahowald, Robert O. Green, David R. Thompson, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023, https://doi.org/10.5194/acp-23-8623-2023, 2023
Short summary
Short summary
Dust aerosols affect our climate differently depending on their mineral composition. We include dust mineralogy in an atmospheric model considering two existing soil maps, which still have large associated uncertainties. The soil data and the distribution of the minerals in different aerosol sizes are key to our model performance. We find significant regional variations in climate-relevant variables, which supports including mineralogy in our current models and the need for improved soil maps.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023, https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary
Short summary
This study is about the wildfires occurring in France during the summer 2022. We study the forest fires that took place in the Landes during the summer of 2022. We show the direct impact of these fires on the air quality, especially downstream of the smoke plume towards the Paris region. We quantify the impact of these fires on the pollutants peak concentrations and the possible exceedance of thresholds.
Hannah J. Rubin, Joshua S. Fu, Frank Dentener, Rui Li, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 23, 7091–7102, https://doi.org/10.5194/acp-23-7091-2023, https://doi.org/10.5194/acp-23-7091-2023, 2023
Short summary
Short summary
We update the 2010 global deposition budget for nitrogen (N) and sulfur (S) with new regional wet deposition measurements, improving the ensemble results of 11 global chemistry transport models from HTAP II. Our study demonstrates that a global measurement–model fusion approach can substantially improve N and S deposition model estimates at a regional scale and represents a step forward toward the WMO goal of global fusion products for accurately mapping harmful air pollution.
Chenxi Li, Yuyang Li, Xiaoxiao Li, Runlong Cai, Yaxin Fan, Xiaohui Qiao, Rujing Yin, Chao Yan, Yishuo Guo, Yongchun Liu, Jun Zheng, Veli-Matti Kerminen, Markku Kulmala, Huayun Xiao, and Jingkun Jiang
Atmos. Chem. Phys., 23, 6879–6896, https://doi.org/10.5194/acp-23-6879-2023, https://doi.org/10.5194/acp-23-6879-2023, 2023
Short summary
Short summary
New particle formation and growth in polluted environments are not fully understood despite intensive research. We applied a cluster dynamics–multicomponent sectional model to simulate the new particle formation events observed in Beijing, China. The simulation approximately captures how the events evolve. Further diagnosis shows that the oxygenated organic molecules may have been under-detected, and modulating their abundance leads to significantly improved simulation–observation agreement.
Marianne Tronstad Lund, Gunnar Myhre, Ragnhild Bieltvedt Skeie, Bjørn Hallvard Samset, and Zbigniew Klimont
Atmos. Chem. Phys., 23, 6647–6662, https://doi.org/10.5194/acp-23-6647-2023, https://doi.org/10.5194/acp-23-6647-2023, 2023
Short summary
Short summary
Here we show that differences, in magnitude and trend, between recent global anthropogenic emission inventories have a notable influence on simulated regional abundances of anthropogenic aerosol over the 1990–2019 period. This, in turn, affects estimates of radiative forcing. Our findings form a basis for comparing existing and upcoming studies on anthropogenic aerosols using different emission inventories.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia M. Upchurch, Thomas Tuch, Alfred Wiedensohler, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023, https://doi.org/10.5194/acp-23-5641-2023, 2023
Short summary
Short summary
Remote and local anthropogenic emissions contribute to wintertime Arctic haze, with enhanced aerosol concentrations, but natural sources, which also contribute, are less well studied. Here, modelled wintertime sea-spray aerosols are improved in WRF-Chem over the wider Arctic by including updated wind speed and temperature-dependent treatments. As a result, anthropogenic nitrate aerosols are also improved. Open leads are confirmed to be the main source of sea-spray aerosols over northern Alaska.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023, https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, vegetation, and other sources are chemically transformed in the atmosphere to secondary products including criteria and hazardous air pollutants. The Community Regional Atmospheric Chemistry Multiphase Mechanism integrates gas-phase radical chemistry with pathways to fine-particle mass. New species were implemented, resulting in a bottom-up representation of organic aerosol, which is required for accurate source attribution of pollutants.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
EGUsphere, https://doi.org/10.5194/egusphere-2023-406, https://doi.org/10.5194/egusphere-2023-406, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemistry transport models.
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023, https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Short summary
New particle formation in the upper troposphere is important for the global boundary layer aerosol population, and they can be transported downward in Amazonia. We use a global and a regional model to quantify the number of aerosols that are formed at high altitude and transported downward in a 1000 km region. We find that the majority of the aerosols are from outside the region. This suggests that the 1000 km region is unlikely to be a
closed loopfor aerosol formation, transport and growth.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys., 23, 4091–4104, https://doi.org/10.5194/acp-23-4091-2023, https://doi.org/10.5194/acp-23-4091-2023, 2023
Short summary
Short summary
From 12 March to 6 April 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days, and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing and then conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Marina Liaskoni, Peter Huszar, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Ondřej Vlček
Atmos. Chem. Phys., 23, 3629–3654, https://doi.org/10.5194/acp-23-3629-2023, https://doi.org/10.5194/acp-23-3629-2023, 2023
Short summary
Short summary
Wind-blown dust (WBD) emissions emitted from European soils are estimated for the 2007–2016 period, and their impact on the total particulate matter (PM) concentration is calculated. We found a considerable increase in PM concentrations due to such emissions, especially on selected days (rather than on a seasonal average). We also found that WBD emissions are strongest over western Europe, and the highest impacts on PM are calculated for this region.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Noah A. Stanton and Neil F. Tandon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-17, https://doi.org/10.5194/acp-2023-17, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Chemistry in Earth’s atmosphere has a potentially strong but very uncertain impact on climate. Past attempts to fully model chemistry in Earth’s troposphere (the lowest layer of the atmosphere) required compromises in the representation of Earth’s surface that in turn limit the ability to simulate changes in climate. The cutting-edge model that we use in this study does not require such compromises, and we use it to examine the climate effects of chemical interactions in the troposphere.
Stylianos Kakavas, Spyros Pandis, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-815, https://doi.org/10.5194/acp-2022-815, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds, but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out year-long aerosol simulations over the continental US. We show that such organic water impacts can have an important impact on dry PM1 levels when RH levels and PM1 concentrations are high.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023, https://doi.org/10.5194/acp-23-23-2023, 2023
Short summary
Short summary
We apply the 3-D global chemical transport model (GEOS-Chem) to simulate co-polluted days by O3 and PM2.5 (O3–PM2.5PDs) in Beijing–Tianjin–Hebei in 2013–2020 and investigate the chemical and physical characteristics of O3–PM2.5PDs by composited analyses of such days that are captured by both the observations and the model. We report for the first time the unique features in vertical distributions of aerosols during O3–PM2.5PDs and the physical and chemical characteristics of O3–PM2.5PDs.
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468, https://doi.org/10.5194/acp-22-15449-2022, https://doi.org/10.5194/acp-22-15449-2022, 2022
Short summary
Short summary
Correctly predicting aerosol surface area concentrations is important for determining the rate of heterogeneous reactions in chemical transport models. Here, we compare aircraft measurements of aerosol surface area with a regional model. In polluted air masses, we show that the model underpredicts aerosol surface area by a factor of 2. Despite this disagreement, the representation of heterogeneous chemistry still dominates the overall uncertainty in the loss rate of molecules such as N2O5.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 14529–14546, https://doi.org/10.5194/acp-22-14529-2022, https://doi.org/10.5194/acp-22-14529-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the oligomerization reaction mechanisms and kinetics of distinct stabilized Criegee intermediate (SCI) reactions with hydroperoxide esters, where calculations show that SCI addition reactions with hydroperoxide esters proceed through the successive insertion of SCIs to form oligomers that involve SCIs as the repeating unit. The saturated vapor pressure of the formed oligomers decreases monotonically with the increasing number of SCIs.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Siying Lian, Luxi Zhou, Daniel M. Murphy, Karl D. Froyd, Owen B. Toon, and Pengfei Yu
Atmos. Chem. Phys., 22, 13659–13676, https://doi.org/10.5194/acp-22-13659-2022, https://doi.org/10.5194/acp-22-13659-2022, 2022
Short summary
Short summary
Parameterizations of dust lifting and microphysical properties of dust in climate models are still subject to large uncertainty. Here we use a sectional aerosol climate model to investigate the global vertical distributions of the dust. Constrained by a suite of observations, the model suggests that, although North African dust dominates global dust mass loading at the surface, the relative contribution of Asian dust increases with altitude and becomes dominant in the upper troposphere.
Steven J. Smith, Erin E. McDuffie, and Molly Charles
Atmos. Chem. Phys., 22, 13201–13218, https://doi.org/10.5194/acp-22-13201-2022, https://doi.org/10.5194/acp-22-13201-2022, 2022
Short summary
Short summary
Emissions into the atmosphere of greenhouse gases (GHGs) and air pollutants, quantified in emission inventories, impact human health, ecosystems, and the climate. We review how air pollutant and GHG inventory activities have historically been structured and their different uses and requirements. We discuss the benefits of increasing coordination between air pollutant and GHG inventory development efforts, but also caution that there are differences in appropriate methodologies and applications.
Jinjin Sun, Momei Qin, Xiaodong Xie, Wenxing Fu, Yang Qin, Li Sheng, Lin Li, Jingyi Li, Ishaq Dimeji Sulaymon, Lei Jiang, Lin Huang, Xingna Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022, https://doi.org/10.5194/acp-22-12629-2022, 2022
Short summary
Short summary
NO3- has become the dominant and the least reduced chemical component of fine particulate matter in China. NO3- formation is mostly in the NH3-rich regime in the Yangtze River Delta (YRD). OH + NO2 contributes 60 %–83 % of the TNO3 production rates, and the N2O5 heterogeneous pathway contributes 10 %–36 %. The N2O5 heterogeneous pathway becomes more important in cold seasons. Local emissions and regional transportation contribute 50 %–62 % and 38 %–50 % to YRD NO3- concentrations, respectively.
Thomas Drugé, Pierre Nabat, Marc Mallet, Martine Michou, Samuel Rémy, and Oleg Dubovik
Atmos. Chem. Phys., 22, 12167–12205, https://doi.org/10.5194/acp-22-12167-2022, https://doi.org/10.5194/acp-22-12167-2022, 2022
Short summary
Short summary
This study presents the implementation of brown carbon in the atmospheric component of the CNRM global climate model and particularly in its aerosol scheme TACTIC. Several simulations were carried out with this climate model, over the period 2000–2014, to evaluate the model by comparison with different reference datasets (PARASOL-GRASP, OMI-OMAERUVd, MACv2, FMI_SAT, AERONET) and to analyze the brown carbon radiative and climatic effects.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022, https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
Short summary
A modelling system for meteorology and chemistry transport processes, WRF–CHIMERE, has been tested and validated for three East African conurbations using the most up-to-date anthropogenic emissions available. Results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observations in both urban and rural environments, encouraging the adoption of numerical modelling as a tool for air quality management in East Africa.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022, https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Short summary
Evaluating impacts of emission changes on air quality requires accounting for meteorological variability. Many studies use simple regression methods to correct for meteorology, but little is known about their performance. Using cases in the US and China, we show that widely used regression models do not perform well and can lead to biased estimates of emission-driven trends. We propose a novel machine learning method with lower bias and provide recommendations to policymakers and researchers.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Yu Yao, Jeffrey H. Curtis, Joseph Ching, Zhonghua Zheng, and Nicole Riemer
Atmos. Chem. Phys., 22, 9265–9282, https://doi.org/10.5194/acp-22-9265-2022, https://doi.org/10.5194/acp-22-9265-2022, 2022
Short summary
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects on calculating aerosol direct radiative forcing.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022, https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Short summary
China has been implementing a sequence of policies for clean air since the year 2013. The aerosol decline produced a 0.09 ± 0.10°C warming during 2013–2017 estimated in this study, and the increase in ozone in the lower troposphere during this time period accelerated the warming, leading to a total 0.16 ± 0.15°C temperature increase in eastern China. Residential emission reductions led to a cooling effect because of a substantial decrease in light-absorbing aerosols.
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Short summary
In this study, we investigated the response of secondary pollutants to changes in precursor emissions, focusing on the formation of secondary PM, during the COVID-19 lockdown period. We show that, due to the decrease in primary NOx emissions, atmospheric oxidizing capacity is increased. The nighttime increase in ozone, caused by less NO titration, results in higher NO3 radicals, which contribute significantly to the formation of PM nitrates. O3 should be limited in order to control PM pollution.
An Ning, Ling Liu, Lin Ji, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 6103–6114, https://doi.org/10.5194/acp-22-6103-2022, https://doi.org/10.5194/acp-22-6103-2022, 2022
Short summary
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Cited articles
Almeida, J., Schobesberger, S., Kuerten, A., Ortega, I. K.,
Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F.,
Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A.,
Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida,
R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T.,
Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten,
T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J.,
Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T.,
Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen,
M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S.,
Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y.,
Stratmann, F., Tome, A., Troestl, J., Tsagkogeorgas, G., Vaattovaara, P.,
Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex,
H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S.,
Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H.,
and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle
nucleation in the atmosphere, Nature, 502, 359–363,
https://doi.org/10.1038/nature12663, 2013.
An, P., Yuan, C.-Q., Liu, X.-H., Xiao, D.-B., and Luo, Z.-X.: Vibrational
spectroscopic identification of isoprene, pinenes and their mixture, Chin.
Chem. Lett., 27, 527–534, https://doi.org/10.1016/j.cclet.2016.01.036, 2016.
Arquero, K. D., Gerber, R. B., and Finlayson-Pitts, B. J.: The role of
oxalic acid in new particle formation from methanesulfonic Acid,
methylamine, and water, Environ. Sci. Technol., 51, 2124–2130,
https://doi.org/10.1021/acs.est.6b05056, 2017a.
Arquero, K. D., Xu, J., Gerber, R. B., and Finlayson-Pitts, B. J.: Particle
formation and growth from oxalic acid, methanesulfonic acid, trimethylamine
and water: a combined experimental and theoretical study, Phys. Chem. Chem.
Phys., 19, 28286–28301, https://doi.org/10.1039/c7cp04468b, 2017b.
Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger,
S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid
oxidation yields low volatility organic acids in clouds, Geophys. Res.
Lett., 33, 4, https://doi.org/10.1029/2005gl025374, 2006.
Chan, M. N., Choi, M. Y., Ng, N. L., and Chan, C. K.: Hygroscopicity of
water-soluble organic compounds in atmospheric aerosols: Amino acids and
biomass burning derived organic species, Environ. Sci. Technol., 39,
1555–1562, https://doi.org/10.1021/es049584l, 2005.
Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence,
sources, and sinks: A review, Atmos. Environ., 30, 4233–4249,
https://doi.org/10.1016/1352-2310(96)00102-1, 1996.
Chen, D., Li, D., Wang, C., Liu, F., and Wang, W.: Formation mechanism of
methanesulfonic acid and ammonia clusters: A kinetics simulation study,
Atmos. Environ., 222, 117161, https://doi.org/10.1016/j.atmosenv.2019.117161,
2020a.
Chen, D., Li, D., Wang, C., Luo, Y., Liu, F., and Wang, W.: Atmospheric
implications of hydration on the formation of methanesulfonic acid and
methylamine clusters: A theoretical study, Chemosphere, 244, 125538,
https://doi.org/10.1016/j.chemosphere.2019.125538, 2020b.
Chen, H. and Finlayson-Pitts, B. J.: New particle formation from
methanesulfonic acid and amines/ammonia as a function of temperature,
Environ. Sci. Technol., 51, 243–252, https://doi.org/10.1021/acs.est.6b04173,
2017.
Chen, H., Ezell, M. J., Arquero, K. D., Varner, M. E., Dawson, M. L.,
Gerber, R. B., and Finlayson-Pitts, B. J.: New particle formation and growth
from methanesulfonic acid, trimethylamine and water, Phys. Chem. Chem.
Phys., 17, 13699–13709, https://doi.org/10.1039/c5cp00838g, 2015.
Chen, H., Varner, M. E., Gerber, R. B., and Finlayson-Pitts, B. J.:
Reactions of methanesulfonic acid with amines and ammonia as a source of new
particles in air, J. Phys. Chem. B, 120, 1526–1536,
https://doi.org/10.1021/acs.jpcb.5b07433, 2016.
Cong, Z., Kawamura, K., Kang, S., and Fu, P.: Penetration of biomass-burning
emissions from South Asia through the Himalayas: new insights from
atmospheric organic acids, Sci. Rep., 5, 9580, https://doi.org/10.1038/srep09580,
2015.
Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and
Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from
methanesulfonic acid, amines, and water via experiments and ab initio
calculations, Proc. Natl. Acad. Sci. USA, 109, 18719–18724,
https://doi.org/10.1073/pnas.1211878109, 2012.
Elm, J.: Clusteromics II: Methanesulfonic Acid–Base Cluster Formation, ACS
Omega, 6, 17035–17044, https://doi.org/10.1021/acsomega.1c02115, 2021.
Elm, J. and Kristensen, K.: Basis set convergence of the binding energies of
strongly hydrogen-bonded atmospheric clusters, Phys. Chem. Chem. Phys., 19,
1122–1133, https://doi.org/10.1039/c6cp06851k, 2017.
Elm, J., Bilde, M., and Mikkelsen, K. V.: Assessment of binding energies of
atmospherically relevant clusters, Phys. Chem. Chem. Phys., 15, 16442–16445,
https://doi.org/10.1039/c3cp52616j, 2013.
Elm, J., Myllys, N., and Kurten, T.: What is required for highly oxidized
molecules to form clusters with sulfuric acid?, J. Phys. Chem. A, 121,
4578–4587, https://doi.org/10.1021/acs.jpca.7b03759, 2017.
Elm, J., Hyttinen, N., Lin, J. J., Kurten, T., and Prisle, N. L.: Strong
Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid
Dimers: Implications for Condensation Thermodynamics, J. Phys. Chem. A, 123,
9594–9599, https://doi.org/10.1021/acs.jpca.9b08020, 2019.
Elm, J., Kubecka, J., Besel, V., Jaaskelainen, M. J., Halonen, R., Kurten,
T., and Vehkamaki, H.: Modeling the formation and growth of atmospheric
molecular clusters: A review, J. Aerosol Sci., 149, 105621,
https://doi.org/10.1016/j.jaerosci.2020.105621, 2020.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., and Artaxo, P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods, Atmos. Chem. Phys., 5, 781–797, https://doi.org/10.5194/acp-5-781-2005, 2005.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt,
C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.:
Emissions of volatile organic compounds from vegetation and the implications
for atmospheric chemistry, Glob. Biogeochem. Cycle, 6, 389–430,
https://doi.org/10.1029/92gb02125, 1992.
Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur, P.
F., De Maziere, M., De Smedt, I., Dorn, H. P., Emmerichs, T., Fuchs, H.,
Gkatzelis, G., Griffith, D. W. T., Gromov, S., Hannigan, J. W., Hase, F.,
Hohaus, T., Jones, N., Kerkweg, A., Kiendler-Scharr, A., Lutsch, E., Mahieu,
E., Novelli, A., Ortega, I., Paton-Walsh, C., Pommier, M., Pozzer, A.,
Reimer, D., Rosanka, S., Sander, R., Schneider, M., Strong, K., Tillmann,
R., Van Roozendael, M., Vereecken, L., Vigouroux, C., Wahner, A., and
Taraborrelli, D.: Ubiquitous atmospheric production of organic acids
mediated by cloud droplets, Nature, 593, 233–237,
https://doi.org/10.1038/s41586-021-03462-x, 2021.
Friedman, B., Link, M. F., Fulgham, S. R., Brophy, P., Galang, A., Brune, W.
H., Jathar, S. H., and Farmer, D. K.: Primary and secondary sources of
gas-phase organic acids from diesel exhaust, Environ. Sci. Technol., 51,
10872–10880, https://doi.org/10.1021/acs.est.7b01169, 2017.
Glasoe, W. A., Volz, K., Panta, B., Freshour, N., Bachman, R., Hanson, D.
R., McMurry, P. H., and Jen, C.: Sulfuric acid nucleation: An experimental
study of the effect of seven bases, J. Geophys. Res.-Atmos., 120,
1933–1950, https://doi.org/10.1002/2014jd022730, 2015.
Heal, M. R., Kumar, P., and Harrison, R. M.: Particles, air quality, policy
and health, Chem. Soc. Rev., 41, 6606–6630,
https://doi.org/10.1039/c2cs35076a, 2012.
Ho, K. F., Cao, J. J., Lee, S. C., Kawamura, K., Zhang, R. J., Chow, J. C.,
and Watson, J. G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls
in the urban atmosphere of China, J. Geophys. Res.-Atmos., 112, D22S27,
https://doi.org/10.1029/2006jd008011, 2007.
Kavouras, I. G., Mihalopoulos, N., and Stephanou, E. G.: Formation of
atmospheric particles from organic acids produced by forests, Nature, 395,
683–686, https://doi.org/10.1038/27179, 1998.
Khwaja, H. A.: Atmospheric concentrations of carboxylic acids and related
compounds at a semiurban site, Atmos. Environ., 29, 127–139,
https://doi.org/10.1016/1352-2310(94)00211-3, 1995.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagne, S., Ickes, L., Kuerten, A., Kupc, A., Metzger, A.,
Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D.,
Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard,
A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W.,
Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima,
J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P.,
Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer,
R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A.,
Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R.,
Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and
galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476,
429–433, https://doi.org/10.1038/nature10343, 2011.
Kurtén, T., Loukonen, V., Vehkamäki, H., and Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia, Atmos. Chem. Phys., 8, 4095–4103, https://doi.org/10.5194/acp-8-4095-2008, 2008.
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang,
R.: New particle formation in the atmosphere: from molecular clusters to
global climate, J. Geophys. Res.-Atmos., 124, 7098–7146,
https://doi.org/10.1029/2018jd029356, 2019.
Li, H., Kupiainen-Maatta, O., Zhang, H., Zhang, X., and Ge, M.: A
molecular-scale study on the role of lactic acid in new particle formation:
Influence of relative humidity and temperature, Atmos. Environ., 166,
479–487, https://doi.org/10.1016/j.atmosenv.2017.07.039, 2017.
Li, Y., Zhang, H., Zhang, Q., Xu, Y., and Nadykto, A. B.: Interactions of
sulfuric acid with common atmospheric bases and organic acids:
Thermodynamics and implications to new particle formation, J. Environ. Sci., 95, 130–140, https://doi.org/10.1016/j.jes.2020.03.033, 2020.
Lin, Y., Ji, Y., Li, Y., Secrest, J., Xu, W., Xu, F., Wang, Y., An, T., and Zhang, R.: Interaction between succinic acid and sulfuric acid–base clusters, Atmos. Chem. Phys., 19, 8003–8019, https://doi.org/10.5194/acp-19-8003-2019, 2019.
Liu, L., Kupiainen-Maatta, O., Zhang, H., Li, H., Zhong, J., Kurten, T.,
Vehkamaki, H., Zhang, S., Zhang, Y., Ge, M., Zhang, X., and Li, Z.:
Clustering mechanism of oxocarboxylic acids involving hydration reaction:
Implications for the atmospheric models, J. Chem. Phys., 148, 214303,
https://doi.org/10.1063/1.5030665, 2018.
Loukonen, V., Kurtén, T., Ortega, I. K., Vehkamäki, H., Pádua, A. A. H., Sellegri, K., and Kulmala, M.: Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study, Atmos. Chem. Phys., 10, 4961–4974, https://doi.org/10.5194/acp-10-4961-2010, 2010.
Ma, F., Xie, H.-B., Elm, J., Shen, J., Chen, J., and Vehkamaki, H.:
Piperazine enhancing sulfuric acid-based new particle formation:
implications for the atmospheric fate of piperazine, Environ. Sci. Technol.,
53, 8785–8795, https://doi.org/10.1021/acs.est.9b02117, 2019a.
Ma, X., Sun, Y., Huang, Z., Zhang, Q., and Wang, W.: A density functional
theory study of the molecular interactions between a series of amides and
sulfuric acid, Chemosphere, 214, 781–790,
https://doi.org/10.1016/j.chemosphere.2018.08.152, 2019b.
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012.
Neese, F.: The ORCA program system, Wiley Interdiscip. Rev.-Comput. Mol.
Sci., 2, 73–78, https://doi.org/10.1002/wcms.81, 2012.
Nieminen, T., Manninen, H. E., Sihto, S. L., Yli-Juuti, T., Mauldin, I. R.
L., Petäjä, T., Riipinen, I., Kerminen, V. M., and Kulmala, M.:
Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest,
Environ. Sci. Technol., 43, 4715–4721, https://doi.org/10.1021/es803152j,
2009.
Nishino, N., Arquero, K. D., Dawson, M. L., and Finlayson-Pitts, B. J.:
Infrared studies of the reaction of methanesulfonic acid with trimethylamine
on surfaces, Environ. Sci. Technol., 48, 323–330,
https://doi.org/10.1021/es403845b, 2014.
Olenius, T., Kupiainen-Maatta, O., Ortega, I. K., Kurten, T., and Vehkamaki,
H.: Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric
acid-dimethylamine clusters, J. Chem. Phys., 139, 084312,
https://doi.org/10.1063/1.4819024, 2013.
Olenius, T., Halonen, R., Kurten, T., Henschel, H., Kupiainen-Maata, O.,
Ortega, I. K., Jen, C. N., Vehkamaki, H., and Riipinen, I.: New particle
formation from sulfuric acid and amines: Comparison of monomethylamine,
dimethylamine, and trimethylamine, J. Geophys. Res.-Atmos., 122, 7103–7118,
https://doi.org/10.1002/2017jd026501, 2017.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, https://doi.org/10.5194/acp-9-1479-2009, 2009.
Perraud, V., Horne, J. R., Martinez, A. S., Kalinowski, J., Meinardi, S.,
Dawson, M. L., Wingen, L. M., Dabdub, D., Blake, D. R., Gerber, R. B., and
Finlayson-Pitts, B. J.: The future of airborne sulfur-containing particles
in the absence of fossil fuel sulfur dioxide emissions, Proc. Natl. Acad.
Sci. USA, 112, 13514–13519, https://doi.org/10.1073/pnas.1510743112, 2015.
Perraud, V., Xu, J., Gerber, R. B., and Finlayson-Pitts, B. J.: Integrated
experimental and theoretical approach to probe the synergistic effect of
ammonia in methanesulfonic acid reactions with small alkylamines, Environ.
Sci.-Processes Impacts, 22, 305–328, https://doi.org/10.1039/c9em00431a,
2020a.
Perraud, V., Li, X., Jiang, J., Finlayson-Pitts, B. J., and Smith, J. N.:
Size-resolved chemical composition of sub-20 nm particles from
methanesulfonic acid reactions with methylamine and ammonia, ACS Earth Space
Chem., 4, 1182–1194, https://doi.org/10.1021/acsearthspacechem.0c00120,
2020b.
Shen, J., Xie, H.-B., Elm, J., Ma, F., Chen, J., and Vehkamaki, H.:
Methanesulfonic Acid-driven New Particle Formation Enhanced by
Monoethanolamine: A Computational Study, Environ. Sci. Technol., 53,
14387–14397, https://doi.org/10.1021/acs.est.9b05306, 2019.
Shen, J., Elm, J., Xie, H.-B., Chen, J., Niu, J., and Vehkamaki, H.:
Structural effects of amines in enhancing methanesulfonic acid-driven new
particle formation, Environ. Sci. Technol., 54, 13498–13508,
https://doi.org/10.1021/acs.est.0c05358, 2020.
Sheng, X., Wang, B., Song, X., Ngwenya, C. A., Wang, Y., and Zhao, H.:
Atmospheric Initial Nucleation Containing Carboxylic Acids, J. Phys. Chem. A,
123, 3876–3886, https://doi.org/10.1021/acs.jpca.9b01104, 2019.
Shi, X., Zhao, X., Zhang, R., Xu, F., Cheng, J., Zhang, Q., and Wang, W.:
Theoretical study of the cis-pinonic acid and its atmospheric hydrolysate
participation in the atmospheric nucleation, Sci. Total Environ., 674,
234–241, https://doi.org/10.1016/j.scitotenv.2019.03.479, 2019.
Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F.,
Patokoski, J., Mauldin, R. L. III., Hyvarinen, A.-P., Lihavainen, H., and
Kulmala, M.: The role of sulfuric acid in atmospheric nucleation, Science,
327, 1243–1246, https://doi.org/10.1126/science.1180315, 2010.
Stahl, C., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Aghdam, M. A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Hilario, M. R. A., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.: Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines, Atmos. Chem. Phys., 20, 15907–15935, https://doi.org/10.5194/acp-20-15907-2020, 2020.
Veres, P. R., Roberts, J. M., Cochran, A. K., Gilman, J. B., Kuster, W. C.,
Holloway, J. S., Graus, M., Flynn, J., Lefer, B., Warneke, C., and de Gouw,
J.: Evidence of rapid production of organic acids in an urban air mass,
Geophys. Res. Lett., 38, 5, https://doi.org/10.1029/2011gl048420, 2011.
Wang, H., Zhao, X., Zuo, C., Ma, X., Xu, F., Sun, Y., and Zhang, Q.: A
molecular understanding of the interaction of typical aromatic acids with
common aerosol nucleation precursors and their atmospheric implications, RSC
Adv., 9, 36171–36181, https://doi.org/10.1039/c9ra07398a, 2019.
Wen, H., Huang, T., Wang, C.-Y., Peng, X.-Q., Jiang, S., Liu, Y.-R., and
Huang, W.: A study on the microscopic mechanism of methanesulfonic
acid-promoted binary nucleation of sulfuric acid and water, Atmos. Environ.,
191, 214–226, https://doi.org/10.1016/j.atmosenv.2018.07.050, 2018.
Xie, H.-B., Elm, J., Halonen, R., Myllys, N., Kurten, T., Kulmala, M., and
Vehkamaki, H.: Atmospheric fate of monoethanolamine: enhancing new particle
formation of sulfuric acid as an important removal process, Environ. Sci.
Technol., 51, 8422–8431, https://doi.org/10.1021/acs.est.7b02294, 2017.
Xu, C. X., Jiang, S., Liu, Y. R., Feng, Y. J., Wang, Z. H., Huang, T., Zhao,
Y., Li, J., and Huang, W.: Formation of atmospheric molecular clusters of
methanesulfonic acid-diethylamine complex and its atmospheric significance,
Atmos. Environ., 226, 9, https://doi.org/10.1016/j.atmosenv.2020.117404,
2020.
Xu, J., Finlayson-Pitts, B. J., and Gerber, R. B.: Proton transfer in mixed
clusters of methanesulfonic acid, methylamine, and oxalic acid: implications
for atmospheric particle formation, J. Phys. Chem. A, 121, 2377–2385,
https://doi.org/10.1021/acs.jpca.7b01223, 2017.
Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J.,
Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M.,
Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F.,
Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petaja, T.,
Worsnop, D. R., Kulmala, M., and Wang, L.: Atmospheric new particle
formation from sulfuric acid and amines in a Chinese megacity, Science, 361,
278–281, https://doi.org/10.1126/science.aao4839, 2018.
Yin, R., Yan, C., Cai, R., Li, X., Shen, J., Lu, Y., Schobesberger, S., Fu,
Y., Deng, C., Wang, L., Liu, Y., Zheng, J., Xie, H., Bianchi, F., Worsnop,
D. R., Kulmala, M., and Jiang, J.: Acid-Base Clusters during Atmospheric New
Particle Formation in Urban Beijing, Environ. Sci. Technol., 55,
10994–11005, https://doi.org/10.1021/acs.est.1c02701, 2021.
Zhang, H., Kupiainen-Maatta, O., Zhang, X., Molinero, V., Zhang, Y., and Li,
Z.: The enhancement mechanism of glycolic acid on the formation of
atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017.
Zhang, H., Li, H., Liu, L., Zhang, Y., Zhang, X., and Li, Z.: The potential
role of malonic acid in the atmospheric sulfuric acid – Ammonia clusters
formation, Chemosphere, 203, 26–33,
https://doi.org/10.1016/j.chemosphere.2018.03.154, 2018.
Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X. X.,
Molina, L. T., and Molina, M. J.: Atmospheric new particle formation
enhanced by organic acids, Science, 304, 1487–1490,
https://doi.org/10.1126/science.1095139, 2004.
Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and growth
of nanoparticles in the atmosphere, Chem. Rev., 112, 1957–2011,
https://doi.org/10.1021/cr2001756, 2012.
Zhang, R., Wang, G., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of Urban Fine Particulate Matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhao, H., Jiang, X., and Du, L.: Contribution of methane sulfonic acid to
new particle formation in the atmosphere, Chemosphere, 174, 689–699,
https://doi.org/10.1016/j.chemosphere.2017.02.040, 2017.
Zuo, C., Zhao, X., Wang, H., Ma, X., Zheng, S., Xu, F., and Zhang, Q.: A
theoretical study of hydrogen-bonded molecular clusters of sulfuric acid and
organic acids with amides, J. Environ. Sci., 100, 328–339,
https://doi.org/10.1016/j.jes.2020.07.022, 2021.
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Formic acid is screened out as the species that can effectively catalyze the new particle...
Altmetrics
Final-revised paper
Preprint