Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour
Claudiu Roman
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi,
Iasi, 11th Carol I, 700506, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region – CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, 11th Carol I, 700506, Romania
Cecilia Arsene
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi,
Iasi, 11th Carol I, 700506, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region – CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, 11th Carol I, 700506, Romania
Iustinian Gabriel Bejan
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi,
Iasi, 11th Carol I, 700506, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region – CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, 11th Carol I, 700506, Romania
Romeo Iulian Olariu
CORRESPONDING AUTHOR
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi,
Iasi, 11th Carol I, 700506, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region – CERNESIM, “Alexandru Ioan Cuza” University of Iasi, Iasi, 11th Carol I, 700506, Romania
Related authors
James D'Souza Metcalf, Ruth K. Winkless, Caterina Mapelli, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 25, 9169–9181, https://doi.org/10.5194/acp-25-9169-2025, https://doi.org/10.5194/acp-25-9169-2025, 2025
Short summary
Short summary
Oxymethylene ethers are a class of sustainable compounds that could be used to replace harmful organic solvents in a range of applications. In this work, we use lab-based experiments to identify the main breakdown routes of these compounds in the atmosphere. We have determined that they likely contribute less to air pollution than the compounds that they replace.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
James D'Souza Metcalf, Ruth K. Winkless, Caterina Mapelli, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 25, 9169–9181, https://doi.org/10.5194/acp-25-9169-2025, https://doi.org/10.5194/acp-25-9169-2025, 2025
Short summary
Short summary
Oxymethylene ethers are a class of sustainable compounds that could be used to replace harmful organic solvents in a range of applications. In this work, we use lab-based experiments to identify the main breakdown routes of these compounds in the atmosphere. We have determined that they likely contribute less to air pollution than the compounds that they replace.
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023, https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Short summary
OH and HO2 are key reactive intermediates in the Earth's atmosphere. Accurate measurements in either the field or simulation chambers provide a good test for chemical mechanisms. Fluorescence techniques have the appropriate sensitivity for detection but require calibration. This paper compares different methods of calibration and specifically how calibration factors vary across a temperature range relevant to atmospheric and chamber determinations.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Cited articles
Alif, A., Pilichowski, J. F., and Boule, P.: Photochemistry and environment XIII: Phototransformation of 2-nitrophenol in aqueous solution, J. Photochem. Photobiol. A Chem., 59, 209–219,
https://doi.org/10.1016/1010-6030(91)87009-K, 1991.
Aschmann, S. M., Arey, J., and Atkinson, R.: Rate constants for the
reactions of OH radicals with 1,2,4,5-tetramethylbenzene,
pentamethylbenzene, 2,4,5-trimethylbenzaldehyde, 2,4,5-trimethylphenol, and
3-methyl-3-hexene-2,5-dione and products of OH +
1,2,4,5-tetramethylbenzene, J. Phys. Chem., 117, 2556–2568,
https://doi.org/10.1021/jp8074018, 2013.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
hydroxyl radical with organic compounds, J. Phys. Chem. Ref. Data, 1, 1–246, 1989.
Atkinson, R. and Aschmann, S. M.: Products of the gas-phase reactions of
aromatic hydrocarbons: Effect of NO2 concentration, Int. J. Chem. Kinet., 26, 929–944, https://doi.org/10.1002/kin.550260907, 1994.
Atkinson, R., Aschmann, S. M., Arey, J., Barbara, Z., and Schuetzle, D.:
Gas-phase atmospheric chemistry of 1- and 2-nitronaphthalene and
1,4-naphthoquinone, Atmos. Environ., 23, 2679–2690,
https://doi.org/10.1016/0004-6981(89)90548-9, 1989.
Atkinson, R., Aschmann, S. M., and Arey, J.: Reactions of hydroxyl and
nitrogen trioxide radicals with phenol, cresols, and 2-nitrophenol at 296 ± 2 K, Environ. Sci. Technol., 26, 1397–1403,
https://doi.org/10.1021/es00031a018, 1992.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Bejan, I., Abd El Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., and
Kleffmann, J.: The photolysis of ortho-nitrophenols: a new gas phase source
of HONO, Phys. Chem. Chem. Phys., 8, 2028, https://doi.org/10.1039/b516590c,
2006.
Bejan, I., Barnes, I., Olariu, R., Zhou, S., Wiesen, P., and Benter, T.:
Investigations on the gas-phase photolysis and OH radical kinetics of
methyl-2-nitrophenols, Phys. Chem. Chem. Phys., 9, 5686,
https://doi.org/10.1039/b709464g, 2007.
Bejan, I., Schurmann, A., Barnes, I., and Benter, T.: Kinetics of the
gas-phase reactions of OH radicals with a series of trimethylphenols, Int.
J. Chem. Kinet., 44, 117–124, https://doi.org/10.1002/kin.20618, 2012.
Bejan, I., Olariu, R., and Wiesen, P.: Secondary organic aerosol formation
from nitrophenols photolysis under atmospheric conditions, Atmosphere, 11, 1346, https://doi.org/10.3390/atmos11121346, 2020.
Bejan, I. G.: Investigations on the gas phase atmospheric chemistry of
nitrophenols and catechols, PhD thesis, Bergische Universität Wuppertal, http://d-nb.info/984997873/34 (last access: 1 February 2021), 2006.
Belloli, R., Bolzacchini, E., Clerici, L., Rindone, B., Sesana, G., and
Librando, V.: Nitrophenols in air and rainwater, Environ. Eng. Sci., 23,
405–415, https://doi.org/10.1089/ees.2006.23.405, 2006.
Berndt, T. and Böge, O.: Gas-phase reaction of OH radicals with phenol, Phys. Chem. Chem. Phys., 5, 342–350, https://doi.org/10.1039/B208187C, 2003.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005.
Brown, H. and Okamoto, Y.: Electrophilic substituent constants, J. Am. Chem.
Soc., 80, 4979–4987, 1958.
Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J. H.,
Wallington, T. J., and Yarwood, G.: The mechanisms of atmospheric oxidation
of the aromatic hydrocarbons, Oxford University Press, 566 pp., ISBN 9780195146288, 2002.
Coeur-Tourneur, C., Henry, F., Janquin, M. A., and Brutier, L.: Gas-phase
reaction of hydroxyl radicals with m-, o- and p-cresol, Int. J. Chem.
Kinet., 38, 553–562, https://doi.org/10.1002/kin.20186, 2006.
Coeur-Tourneur, C., Foulon, V., and Laréal, M.: Determination of aerosol
yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation
chamber, Atmos. Environ., 44, 852–857,
https://doi.org/10.1016/j.atmosenv.2009.11.027, 2010a.
Coeur-Tourneur, C., Cassez, A., and Wenger, J. C.: Rate coefficients for the
gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and
related compounds, J. Phys. Chem. A, 114, 11645–11650,
https://doi.org/10.1021/jp1071023, 2010b.
Delhomme, O., Morville, S., and Millet, M.: Seasonal and diurnal variations
of atmospheric concentrations of phenols and nitrophenols measured in the
Strasbourg area, France, Atmos. Pollut. Res., 1, 16–22,
https://doi.org/10.5094/APR.2010.003, 2010.
DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling, Jet Propulsion Laboratory, Pasadena, CA, NASA Evaluation No. 13, JPL Publication 97-4, 24–26, https://jpldataeval.jpl.nasa.gov/pdf/Atmos97_Anotated.pdf (last access: 10 March 2021), 1997.
Finewax, Z., De Gouw, J. A., and Ziemann, P. J.: Identification and
quantification of 4-nitrocatechol formed from OH and NO3 radical-initiated
reactions of catechol in air in the presence of NOx: implications for
secondary organic aerosol formation from biomass burning, Environ. Sci.
Technol., 52, 1981–1989, https://doi.org/10.1021/acs.est.7b05864, 2018.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere, Academic Press, https://doi.org/10.1016/B978-012257060-5/50007-1, 2000.
Grosjean, D.: Atmospheric fate of toxic aromatic compounds, Sci. Total
Environ., 100, 367–414, https://doi.org/10.1016/0048-9697(91)90386-S, 1991.
Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and
Iulian Olariu, R.: Nitrated phenols in the atmosphere: A review, Atmos.
Environ., 39, 231–248, https://doi.org/10.1016/j.atmosenv.2004.09.044,
2005.
Herterich, R.: Gas chromatographic determination of nitrophenols in
atmospheric liquid water and airborne particulates, J. Chromatogr. A, 549,
313–324, https://doi.org/10.1016/S0021-9673(00)91442-0, 1991.
Herterich, R. and Herrmann, R.: Comparing the distribution of nitrated
phenols in the atmosphere of two German hill sites, Environ. Technol., 11,
961–972, https://doi.org/10.1080/09593339009384948, 1990.
Hofzumahaus, A., Kraus, A., and Müller, M.: Solar actinic flux
spectroradiometry: a technique for measuring photolysis frequencies in the
atmosphere, Appl. Opt., 38, 4443, https://doi.org/10.1364/ao.38.004443,
1999.
Iinuma, Y., Böge, O., and Herrmann, H.: Methyl-nitrocatechols:
Atmospheric tracer compounds for biomass burning secondary organic aerosols,
Environ. Sci. Technol., 44, 8453–8459, https://doi.org/10.1021/es102938a,
2010.
Ikemori, F., Nakayama, T., and Hasegawa, H.: Characterization and possible
sources of nitrated mono- and di-aromatic hydrocarbons containing hydroxyl
and/or carboxyl functional groups in ambient particles in Nagoya, Japan,
Atmos. Environ., 211, 91–102,
https://doi.org/10.1016/j.atmosenv.2019.05.009, 2019.
Jenkin, M. E., Derwent, R. G., and Wallington, T. J.: Photochemical ozone
creation potentials for volatile organic compounds: Rationalization and
estimation, Atmos. Environ., 163, 128–137,
https://doi.org/10.1016/j.atmosenv.2017.05.024, 2017.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T. J.: Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, 2018a.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T. J.: Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aromatic organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 18, 9329–9349, https://doi.org/10.5194/acp-18-9329-2018, 2018b.
Kitanovski, Z., Grgić, I., Yasmeen, F., Claeys, M., and Čusak, A.:
Development of a liquid chromatographic method based on ultraviolet-visible
and electrospray ionization mass spectrometric detection for the
identification of nitrocatechols and related tracers in biomass burning
atmospheric organic aerosol, Rapid Commun. Mass Spectrom., 26, 793–804,
https://doi.org/10.1002/rcm.6170, 2012a.
Kitanovski, Z., Grgić, I., Vermeylen, R., Claeys, M., and Maenhaut, W.:
Liquid chromatography tandem mass spectrometry method for characterization
of monoaromatic nitro-compounds in atmospheric particulate matter, J.
Chromatogr. A, 1268, 35–43, https://doi.org/10.1016/j.chroma.2012.10.021,
2012b.
Kitanovski, Z., Hovorka, J., Kuta, J., Leoni, C., Prokeš, R.,
Sáňka, O., Shahpoury, P., and Lammel, G.: Nitrated monoaromatic
hydrocarbons (nitrophenols, nitrocatechols, nitrosalicylic acids) in ambient
air: levels, mass size distributions and inhalation bioaccessibility,
Environ. Sci. Pollut. Res., 28, 59131–59140, https://doi.org/10.1007/s11356-020-09540-3, 2021.
Klotz, B., Barnes, I., Becker, K. H., and Golding, B. T.: Atmospheric
chemistry of benzene oxide/oxepin, J. Chem. Soc. Faraday Trans., 93,
1507–1516, https://doi.org/10.1039/a606152d, 1997.
Klotz, B., Sørensen, S., Barnes, I., Becker, K. H., Etzkorn, T.,
Volkamer, R., Platt, U., Wirtz, K., and Martın-Reviejo, M.: Atmospheric
oxidation of toluene in a large-volume outdoor photoreactor: In situ
determination of ring-retaining product yields, J. Phys. Chem. A, 102,
10289–10299, https://doi.org/10.1021/jp982719n, 1998.
Klotz, B., Volkamer, R., Hurley, M. D., Andersen, M. P. S., Nielsen, O. J.,
Barnes, I., Imamura, T., Wirtz, K., Becker, K. H., Platt, U., Wallington, T.
J., and Washida, N.: OH-initiated oxidation of benzene part II. Influence of
elevated NOx concentrations, Phys. Chem. Chem. Phys., 4, 4399–4411,
https://doi.org/10.1039/b204398j, 2002.
Kwok, E. and Atkinson, R.: Estimation of hydroxyl radical reaction rate
constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Lanzafame, G. M., Srivastava, D., Favez, O., Bandowe, B. A. M., Shahpoury,
P., Lammel, G., Bonnaire, N., Alleman, L. Y., Couvidat, F., Bessagnet, B.,
and Albinet, A.: One-year measurements of secondary organic aerosol (SOA)
markers in the Paris region (France): Concentrations, gas/particle
partitioning and SOA source apportionment, Sci. Total Environ., 757, 143921,
https://doi.org/10.1016/j.scitotenv.2020.143921, 2021.
Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Deboudt, K., Fourmentin, M.,
and Choël, M.: Atmospheric reactivity of hydroxyl radicals with guaiacol
(2-methoxyphenol), a biomass burning emitted compound: Secondary organic
aerosol formation and gas-phase oxidation products, Atmos. Environ., 86, 155–163, https://doi.org/10.1016/j.atmosenv.2013.11.074, 2014.
Lauraguais, A., Bejan, I., Barnes, I., Wiesen, P., and Coeur, C.: Rate
coefficients for the gas-phase reactions of hydroxyl radicals with a series
of methoxylated aromatic compounds, J. Phys. Chem. A, 119, 6179–6187,
https://doi.org/10.1021/acs.jpca.5b03232, 2015.
Leuenberger, C., Czuczwa, J., Heyerdahl, E., and Giger, W.: Aliphatic and
polycyclic aromatic hydrocarbons in urban rain, snow and fog, Atmos.
Environ., 22, 695–705, https://doi.org/10.1016/0004-6981(88)90007-8, 1988.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular characterization of brown carbon in biomass
burning aerosol particles, Environ. Sci. Technol., 50, 11815–11824,
https://doi.org/10.1021/acs.est.6b03024, 2016.
Lüttke, J., Scheer, V., Levsen, K., Wünsch, G., Cape, J. N.,
Hargreaves, K. J., Storeton-West, R. L., Acker, K., Wieprecht, W., and
Jones, B.: Occurrence and formation of nitrated phenols in and out of cloud,
Atmos. Environ., 31, 2637–2648, https://doi.org/10.1016/S1352-2310(96)00229-4, 1997.
Olariu, R. I., Barnes, I., Becker, K. H., and Klotz, B.: Rate coefficients
for the gas-phase reaction of OH radicals with selected dihydroxybenzenes
and benzoquinones, Int. J. Chem. Kinet., 32, 696–702, 2000.
Olariu, R. I., Klotz, B., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR
study of the ring-retaining products from the reaction of OH radicals with
phenol, o-, m-, and p-cresol, Atmos. Environ., 36, 3685–3697,
https://doi.org/10.1016/S1352-2310(02)00202-9, 2002.
Olariu, R. I., Bejan, I., Barnes, I., Klotz, B., Becker, K. H., and Wirtz,
K.: Rate coefficients for the gas-phase reaction of NO3 radicals with
selected dihydroxybenzenes, Int. J. Chem. Kinet., 36, 577–583,
https://doi.org/10.1002/kin.20029, 2004.
Olariu, R. I., Barnes, I., Bejan, I., Arsene, C., Vione, D., Klotz, B., and
Becker, K. H.: FT-IR product study of the reactions of NO3 radicals with
ortho-, meta-, and para-cresol, Environ. Sci. Technol., 47, 7729–7738,
https://doi.org/10.1021/es401096w, 2013.
Palumbo, A., Napolitano, A., and D'Ischia, M.: Nitrocatechols versus
nitrocatecholamines as novel competitive inhibitors of neuronal nitric oxide
synthase: Lack of the aminoethyl side chain determines loss of
tetrahydrobiopterin-antagonizing properties, Bioorganic Med. Chem. Lett.,
12, 13–16, https://doi.org/10.1016/S0960-894X(01)00680-1, 2002.
Phousongphouang, P. T. and Arey, J.: Rate constants for the photolysis of
the nitronaphthalenes and methylnitronaphthalenes, J. Photochem. Photobiol.
A Chem., 157, 301–309, https://doi.org/10.1016/S1010-6030(03)00072-8, 2003.
Piccot, S. D., Watson, J. J., and Jones, J. W.: A global inventory of
volatile organic compound emissions from anthropogenic sources, J. Geophys.
Res., 97, 9897–9912, https://doi.org/10.1029/92JD00682, 1992.
Prinn, R. G., Weiss, R. F., Miller, B. R., Huang, J., Alyea, F. N., Cunnold,
D. M., Fraser, P. J., Hartley, D. E., and Simmonds, P. G.: Atmospheric
trends and lifetime of CH3CCl3 and global OH concentrations, Science, 269, 187–192, https://doi.org/10.1126/science.269.5221.187, 1995.
Richartz, H., Reischl, A., Trautner, F., and Hutzinger, O.: Nitrated phenols
in fog, Atmos. Environ. Part A, Gen. Top., 24, 3067–3071,
https://doi.org/10.1016/0960-1686(90)90485-6, 1990.
Roman, C., Roman, T., Arsene, C., Bejan, I. G., and Olariu, R. I.: Gas-phase
IR cross-sections and single crystal structures data for atmospheric
relevant nitrocatechols, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc.,
265, 120379, https://doi.org/10.1016/j.saa.2021.120379, 2022.
Rosenblatt, D. H., Epstein, T., and Levitch, M.: Some nuclearly substituted
catechols and their acid dissociation constants, J. Am. Chem. Soc., 75,
3277–3278, https://doi.org/10.1021/ja01109a511, 1953.
Rubio, M. A., Lissi, E., Herrera, N., Pérez, V., and Fuentes, N.: Phenol
and nitrophenols in the air and dew waters of Santiago de Chile,
Chemosphere, 86, 1035–1039, https://doi.org/10.1016/j.chemosphere.2011.11.046, 2012.
Salvador, C. M. G., Tang, R., Priestley, M., Li, L., Tsiligiannis, E., Le Breton, M., Zhu, W., Zeng, L., Wang, H., Yu, Y., Hu, M., Guo, S., and Hallquist, M.: Ambient nitro-aromatic compounds – biomass burning versus secondary formation in rural China, Atmos. Chem. Phys., 21, 1389–1406, https://doi.org/10.5194/acp-21-1389-2021, 2021.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of emissions from air pollution sources. 3. C1-C29 organic
compounds from fireplace combustion of wood, Environ. Sci. Technol., 35,
1716–1728, https://doi.org/10.1021/es001331e, 2001.
Schwantes, R. H., Schilling, K. A., McVay, R. C., Lignell, H., Coggon, M. M., Zhang, X., Wennberg, P. O., and Seinfeld, J. H.: Formation of highly oxygenated low-volatility products from cresol oxidation, Atmos. Chem. Phys., 17, 3453–3474, https://doi.org/10.5194/acp-17-3453-2017, 2017.
Sørensen, M., Hurley, M. D., Wallington, T. J., Dibble, T. S., and
Nielsen, O. J.: Do aerosols act as catalysts in the OH radical initiated
atmospheric oxidation of volatile organic compounds?, Atmos. Environ., 36,
5947–5952, https://doi.org/10.1016/S1352-2310(02)00766-5, 2002.
Taylor, W. D., Allston, T. D., Moscato, M. J., Fazekas, G. B., Kozlowski,
R., and Takacs, G. A.: Atmospheric photodissociation lifetimes for
nitromethane, methyl nitrite, and methyl nitrate, Int. J. Chem. Kinet., 12,
231–240, https://doi.org/10.1002/kin.550120404, 1980.
Thüner, L. P., Bardini, P., Rea, G. J., and Wenger, J. C.: Kinetics of
the gas-phase reactions of OH and NO3 radicals with dimethylphenols, J.
Photochem. Photobiol. A Chem., 108, 11019–11025,
https://doi.org/10.1021/jp046358p, 2004.
Vanni, A., Pellegrino, V., Gamberini, R., and Calabria, A.: An evidence for
nitrophenols contamination in Antarctic fresh-water and snow. Simultaneous
determination of nitrophenols and nitroarenes at ng/L levels, Int. J.
Environ. Anal. Chem., 79, 349–365,
https://doi.org/10.1080/03067310108044394, 2001.
Vidović, K., Lašič Jurković, D., Šala, M., Kroflič,
A., and Grgić, I.: Nighttime aqueous-phase formation of nitrocatechols
in the atmospheric condensed phase, Environ. Sci. Technol., 52, 9722–9730,
https://doi.org/10.1021/acs.est.8b01161, 2018.
Volkamer, R., Klotz, B., Barnes, I., Imamura, T., Wirtz, K., Washida, N.,
Becker, K. H., and Platt, U.: OH-initiated oxidation of benzene, Phys. Chem.
Chem. Phys., 4, 1598–1610, https://doi.org/10.1039/b108747a, 2002.
Vozňáková, Z., Podehradská, J., and Kohlíčková,
M.: Determination of nitrophenols in soil, Chemosphere, 33, 285–291,
https://doi.org/10.1016/0045-6535(96)00171-3, 1996.
Wang, Z., Zhang, J., Zhang, L., Liang, Y., and Shi, Q.: Characterization of
nitroaromatic compounds in atmospheric particulate matter from Beijing,
Atmos. Environ., 246, 118046,
https://doi.org/10.1016/j.atmosenv.2020.118046, 2021.
Warneck, P. (Ed.): Chemistry of the natural atmosphere, second edition, Academic Press, https://doi.org/10.1016/S0074-6142(00)80028-5, 2000.
Wilson, E. W., Hamilton, W. A., Kennington, H. R., Evans, B., Scott, N. W.,
and Demore, W. B.: Measurement and estimation of rate constants for the
reactions of hydroxyl radical with several alkanes and cycloalkanes, J.
Phys. Chem. A, 110, 3593–3604, https://doi.org/10.1021/jp055841c, 2006.
Witte, F., Urbanik, E., and Zetzsch, C.: Temperature dependence of the rate
constants for the addition of OH to benzene and to some monosubstituted
aromatics (aniline, bromobenzene, and nitrobenzene) and the unimolecular
decay of the adducts. Kinetics into a quasi-equilibrium, J. Phys. Chem., 90,
3251–3259, https://doi.org/10.1021/j100405a040, 1986.
Zetzsch, C.: Predicting the rate of OH-addition to aromatics using σ+-electrophilic substituents constants for mono- and polysubstituted
benzene, in: XIth Informal Conference on Photochemistry, 27 June–1 July 1982, Stanford, California, USA, 1982.
Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P.,
Perring, A. E., Jimenez, J. L., Campuzano-Jost, P., Wang, Y., Nenes, A., and
Weber, R. J.: Top-of-atmosphere radiative forcing affected by brown carbon
in the upper troposphere, Nat. Geosci., 10, 486–489,
https://doi.org/10.1038/ngeo2960, 2017.
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been...
Altmetrics
Final-revised paper
Preprint