Articles | Volume 22, issue 24
https://doi.org/10.5194/acp-22-15909-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15909-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Noah S. Hirshorn
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, United States
Lauren M. Zuromski
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, United States
Christopher Rapp
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, ID 47907, United States
Ian McCubbin
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, United States
Gerardo Carrillo-Cardenas
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, United States
Fangqun Yu
Atmospheric Sciences Research Center, State University of New York, Albany, NY 12203, United States
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, United States
Related authors
No articles found.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Christopher N. Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
Atmos. Chem. Phys., 25, 5519–5536, https://doi.org/10.5194/acp-25-5519-2025, https://doi.org/10.5194/acp-25-5519-2025, 2025
Short summary
Short summary
Atmospheric ice formation is initiated by particulate matter suspended in air and has profound impacts on Earth's climate. This study focuses on examining the effectiveness of ice formation by a subset of particles composed of organic matter and sulfate. We used experiments and computer modeling to obtain the result that these particles are not effective ice-nucleating particles, suggesting that molecular structure is important for ice formation on these types of particles.
Tyler R. Elgiar, Lynne Gratz, A. Gannet Hallar, Rainer Volkamer, and Seth N. Lyman
EGUsphere, https://doi.org/10.5194/egusphere-2025-977, https://doi.org/10.5194/egusphere-2025-977, 2025
Short summary
Short summary
This manuscript compares verified atmospheric mercury measurements against output from the GEOS-Chem 3D photochemical transport model. It shows that the model is unable to reproduce measured atmospheric oxidized mercury concentrations, even in several cases where oxidation rates in the model are enhanced.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys., 23, 4091–4104, https://doi.org/10.5194/acp-23-4091-2023, https://doi.org/10.5194/acp-23-4091-2023, 2023
Short summary
Short summary
From 12 March to 6 April 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days, and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing and then conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-216, https://doi.org/10.5194/amt-2022-216, 2022
Publication in AMT not foreseen
Short summary
Short summary
The new Continuous Flow Diffusion Chamber-Ice Activation Spectrometer collected 4 months of ice nucleating particle (INP) measurements at a 5-minute resolution at the mountainside Storm Peak Laboratory. Most long-term INP measurements are at a time resolution of a day or longer: our instrument is a promising advance towards high-resolution long-term INP measurements. We observe higher peak INP concentrations than previous mountain studies, possibly due to the higher time resolution of our data.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech., 15, 3213–3222, https://doi.org/10.5194/amt-15-3213-2022, https://doi.org/10.5194/amt-15-3213-2022, 2022
Short summary
Short summary
A new inlet for studying the small particles, droplets, and ice crystals that constitute mixed-phase clouds has been constructed and is described here. This new inlet was tested in the laboratory. We present the performance of the new inlet to demonstrate its capability of separating ice, droplets, and small particles.
Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-29, https://doi.org/10.5194/acp-2022-29, 2022
Preprint withdrawn
Short summary
Short summary
The new Continuous Flow Diffusion Chamber-Ice Activation Spectrometer collected 4 months of ice nucleating particle (INP) measurements at a 5-minute resolution at the mountainside Storm Peak Laboratory. Most long-term INP measurements are at a time resolution of a day or longer: our instrument is a promising advance towards high-resolution long-term INP measurements. We observe higher peak INP concentrations than previous mountain studies, possibly due to the higher time resolution of our data.
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021, https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Short summary
This paper explores the impacts of dust on summertime convective cloud and precipitation through a numerical experiment. The result indicates that the long-range-transported dust can notably affect the properties of convective cloud and precipitation by enhancing immersion freezing and invigorating convection. We also analyze the different dust effects predicted by the Morrison and SBM schemes, which are partially attributed to the saturation adjustment approach utilized in the bulk schemes.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021, https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary
Short summary
In this work, we revealed the changes of PNSD and NPF events during the COVID-19 lockdown period in Beijing, China, to illustrate the impact of reduced primary emission and elavated atmospheric oxidized capicity on the nucleation and growth processes. The subsequent growth of nucleated particles and their contribution to the aerosol pollution formation were also explored, to highlight the necessity of controlling the nanoparticles in the future air quality management.
Ling Liu, Fangqun Yu, Kaipeng Tu, Zhi Yang, and Xiuhui Zhang
Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, https://doi.org/10.5194/acp-21-6221-2021, 2021
Short summary
Short summary
Trifluoroacetic acid (TFA) was previously proved to participate in sulfuric acid (SA)–dimethylamine (DMA) nucleation in Shanghai, China. However, complex atmospheric environments can influence the nucleation of aerosol significantly. We show the influence of different atmospheric conditions on the SA-DMA-TFA nucleation and find the enhancement by TFA can be significant in cold and polluted areas, which provides the perspective of the realistic role of TFA in different atmospheric environments.
Arshad Arjunan Nair and Fangqun Yu
Atmos. Chem. Phys., 20, 12853–12869, https://doi.org/10.5194/acp-20-12853-2020, https://doi.org/10.5194/acp-20-12853-2020, 2020
Short summary
Short summary
Small particles in the atmosphere can affect cloud formation and properties and thus Earth's energy budget. These cloud condensation nuclei (CCN) contribute the largest uncertainties in climate change modeling. To reduce these uncertainties, it is important to quantify CCN numbers accurately, measurements of which are sparse. We propose and evaluate a machine learning method to estimate CCN, in the absence of their direct measurements, using more common measurements of weather and air quality.
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989.
Amin, H., Atkins, P. T., Russo, R. S., Brown, A. W., Sive, B., Hallar, A.
G., and Huff Hartz, K. E.: Effect of Bark Beetle Infestation on Secondary
Organic Aerosol Precursor Emissions, Environ. Sci. Technol., 46, 5696–5703,
https://doi.org/10.1021/es204205m, 2012.
Bates, D. M. and Watts, D. G.: Nonlinear regression analysis and its
applications, Wiley, 1988.
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.
R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X.,
Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J.,
Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O.,
Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J.,
Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle
formation in the free troposphere: A question of chemistry and timing, Science, 352,
1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
Borys, R. D. and Wetzel, M. A.: Storm Peak Laboratory: A Research, Teaching,
and Service Facility for the Atmospheric Sciences, B. Am. Meteorol. Soc., 78, 2115–2124,
https://doi.org/10.1175/1520-0477(1997)078<2115:SPLART>2.0.CO;2, 1997.
Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., and Guenther, A.: New particle formation in the Front Range of the Colorado Rocky Mountains, Atmos. Chem. Phys., 8, 1577–1590, https://doi.org/10.5194/acp-8-1577-2008, 2008.
Carslaw, K. S., Gordon, H., Hamilton, D. S., Johnson, J. S., Regayre, L. A.,
Yoshioka, M., and Pringle, K. J.: Aerosols in the Pre-industrial Atmosphere,
Curr. Clim. Change Rep., 3, 1–15, https://doi.org/10.1007/s40641-017-0061-2,
2017.
Casquero-Vera, J. A., Lyamani, H., Dada, L., Hakala, S., Paasonen, P., Román, R., Fraile, R., Petäjä, T., Olmo-Reyes, F. J., and Alados-Arboledas, L.: New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula, Atmos. Chem. Phys., 20, 14253–14271, https://doi.org/10.5194/acp-20-14253-2020, 2020.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic
Aerosols, Science, 255, 423–430, 1992.
Dal Maso, M., Kulmala, M., Riipinen, I., and Wagner, R.: Formation and
growth of fresh atmospheric aerosols: Eight years of aerosol size
distribution data from SMEAR II, Hyytiälä, Finland, Boreal
Environ. Res., 10, 323–336, 2005.
Dameto de España, C., Wonaschütz, A., Steiner, G., Rosati, B.,
Demattio, A., Schuh, H., and Hitzenberger, R.: Long-term quantitative field
study of New Particle Formation (NPF) events as a source of Cloud
Condensation Nuclei (CCN) in the urban background of Vienna, Atmos.
Environ., 164, 289–298, https://doi.org/10.1016/j.atmosenv.2017.06.001,
2017.
Duplissy, J., Merikanto, J., Franchin, A., Tsagkogeorgas, G., Kangasluoma,
J., Wimmer, D., Vuollekoski, H., Schobesberger, S., Lehtipalo, K., Flagan,
R. C., Brus, D., Donahue, N. M., Vehkamäki, H., Almeida, J., Amorim, A.,
Barmet, P., Bianchi, F., Breitenlechner, M., Dunne, E. M., Guida, R.,
Henschel, H., Junninen, H., Kirkby, J., Kürten, A., Kupc, A.,
Määttänen, A., Makhmutov, V., Mathot, S., Nieminen, T., Onnela,
A., Praplan, A. P., Riccobono, F., Rondo, L., Steiner, G., Tome, A.,
Walther, H., Baltensperger, U., Carslaw, K. S., Dommen, J., Hansel, A.,
Petäjä, T., Sipilä, M., Stratmann, F., Vrtala, A., Wagner, P.
E., Worsnop, D. R., Curtius, J., and Kulmala, M.: Effect of ions on sulfuric
acid-water binary particle formation: 2. Experimental data and comparison
with QC-normalized classical nucleation theory, J. Geophys. Res.-Atmos., 121, 1752–1775,
https://doi.org/10.1002/2015JD023539, 2016.
Fu, P., Kawamura, K., Okuzawa, K., Aggarwal, S. G., Wang, G., Kanaya, Y.,
and Wang, Z.: Organic molecular compositions and temporal variations of
summertime mountain aerosols over Mt. Tai, North China Plain, J. Geophys. Res.-Atmos., 113, D19107,
https://doi.org/10.1029/2008JD009900, 2008.
Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,
Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C.
R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni, U.,
Rissanen, M. P., Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner,
R., Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:
Causes and importance of new particle formation in the present-day and
preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
https://doi.org/10.1002/2017JD026844, 2017.
Hallar, A. G., Lowenthal, D. H., Chirokova, G., Borys, R. D., and
Wiedinmyer, C.: Persistent daily new particle formation at a mountain-top
location, Atmos. Environ., 45, 4111–4115,
https://doi.org/10.1016/j.atmosenv.2011.04.044, 2011.
Hallar, A. G., Lowenthal, D. H., Clegg, S. L., Samburova, V., Taylor, N.,
Mazzoleni, L. R., Zielinska, B. K., Kristensen, T. B., Chirokova, G.,
McCubbin, I. B., Dodson, C., and Collins, D.: Chemical and hygroscopic
properties of aerosol organics at Storm Peak Laboratory, J. Geophys. Res.-Atmos., 118, 4767–4779,
https://doi.org/10.1002/jgrd.50373, 2013.
Hallar, A. G., Petersen, R., McCubbin, I. B., Lowenthal, D., Lee, S.,
Andrews, E., and Yu, F.: Climatology of New Particle Formation and
Corresponding Precursors at Storm Peak Laboratory, Aerosol Air Qual. Res.,
16, 816–826, https://doi.org/10.4209/aaqr.2015.05.0341, 2016.
Hallar, A. G., Molotch, N. P., Hand, J. L., Livneh, B., McCubbin, I. B.,
Petersen, R., Michalsky, J., Lowenthal, D., and Kunkel, K. E.: Impacts of
increasing aridity and wildfires on aerosol loading in the intermountain
Western US, Environ. Res. Lett., 12, 014006,
https://doi.org/10.1088/1748-9326/aa510a, 2017.
Hanson, D. R. and Eisele, F.: Diffusion of H2SO4 in Humidified
Nitrogen: Hydrated H2SO4, J. Phys. Chem. A, 104, 1715–1719,
https://doi.org/10.1021/jp993622j, 2000.
Hirsikko, A., Bergman, T., Laakso, L., Dal Maso, M., Riipinen, I., Hõrrak, U., and Kulmala, M.: Identification and classification of the formation of intermediate ions measured in boreal forest, Atmos. Chem. Phys., 7, 201–210, https://doi.org/10.5194/acp-7-201-2007, 2007.
Joutsensaari, J., Ozon, M., Nieminen, T., Mikkonen, S., Lähivaara, T., Decesari, S., Facchini, M. C., Laaksonen, A., and Lehtinen, K. E. J.: Identification of new particle formation events with deep learning, Atmos. Chem. Phys., 18, 9597–9615, https://doi.org/10.5194/acp-18-9597-2018, 2018.
Junninen, H., Hulkkonen, M., Riipinen, I., Nieminen, T., Hirsikko, A., Suni,
T., Boy, M., Lee, S.-H., Vana, M., Tammet, H., Kerminen, V.-M., and Kulmala,
M.: Observations on nocturnal growth of atmospheric clusters, Tellus B, 60, 365–371,
https://doi.org/10.1111/j.1600-0889.2008.00356.x, 2008.
Kalivitis, N., Kerminen, V.-M., Kouvarakis, G., Stavroulas, I., Bougiatioti, A., Nenes, A., Manninen, H. E., Petäjä, T., Kulmala, M., and Mihalopoulos, N.: Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer, Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, 2015.
Kalkavouras, P., Bossioli, E., Biskos, G., Mihalopoulos, N., Nenes, A., and
Tombrou, M.: Impact of Chemical Composition on NPF, CCN and Droplet
Formation at South Aegean Sea During Summertime Etesians, in: Perspectives
on Atmospheric Sciences, Springer, Cham, 875–881,
https://doi.org/10.1007/978-3-319-35095-0_125, 2017.
Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., and Mihalopoulos, N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean, Atmos. Chem. Phys., 19, 6185–6203, https://doi.org/10.5194/acp-19-6185-2019, 2019.
Kecorius, S., Vogl, T., Paasonen, P., Lampilahti, J., Rothenberg, D., Wex, H., Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Henning, S., Gong, X., Welti, A., Kulmala, M., Stratmann, F., Herrmann, H., and Wiedensohler, A.: New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea, Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, 2019.
Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12, 12037–12059, https://doi.org/10.5194/acp-12-12037-2012, 2012.
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and
Bianchi, F.: Atmospheric new particle formation and growth: review of field
observations, Environ. Res. Lett., 13, 103003,
https://doi.org/10.1088/1748-9326/aadf3c, 2018.
Kulmala, M., Maso, M. D., Mäkelä, J. M., Pirjola, L.,
Väkevä, M., Aalto, P., Miikkulainen, P., Hämeri, K., and O'Dowd,
C. D.: On the formation, growth and composition of nucleation mode
particles, Tellus B, 53, 479–490, https://doi.org/10.1034/j.1600-0889.2001.530411.x,
2001.
Kulmala, M., Laakso, L., Lehtinen, K. E. J., Riipinen, I., Dal Maso, M., Anttila, T., Kerminen, V.-M., Hõrrak, U., Vana, M., and Tammet, H.: Initial steps of aerosol growth, Atmos. Chem. Phys., 4, 2553–2560, https://doi.org/10.5194/acp-4-2553-2004, 2004.
Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.
E., Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P.,
Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.:
Measurement of the nucleation of atmospheric aerosol particles, Nat. Protoc.,
7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012.
Lance, S., Nenes, A., Medina, J., and Smith, J. N.: Mapping the Operation of
the DMT Continuous Flow CCN Counter, Aerosol Sci. Tech., 40,
242–254, https://doi.org/10.1080/02786820500543290, 2006.
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang,
R.: New Particle Formation in the Atmosphere: From Molecular Clusters to
Global Climate, J. Geophys. Res.-Atmos., 124, 7098–7146, https://doi.org/10.1029/2018JD029356, 2019.
Lehtinen, K. E. J. and Kulmala, M.: A model for particle formation and growth in the atmosphere with molecular resolution in size, Atmos. Chem. Phys., 3, 251–257, https://doi.org/10.5194/acp-3-251-2003, 2003.
Lowenthal, D. H., Borys, R. D., and Wetzel, M. A.: Aerosol distributions and
cloud interactions at a mountaintop laboratory, J. Geophys. Res.-Atmos., 107, AAC 1-1–AAC 1-6,
https://doi.org/10.1029/2001JD002046, 2002.
Lowenthal, D. H., Hallar, A. G., David, R. O., McCubbin, I. B., Borys, R. D., and Mace, G. G.: Mixed-phase orographic cloud microphysics during StormVEx and IFRACS, Atmos. Chem. Phys., 19, 5387–5401, https://doi.org/10.5194/acp-19-5387-2019, 2019.
Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009.
Nishita, C., Osada, K., Kido, M., Matsunaga, K., and Iwasaka, Y.: Nucleation
mode particles in upslope valley winds at Mount Norikura, Japan:
Implications for the vertical extent of new particle formation events in the
lower troposphere, J. Geophys. Res.-Atmos., 113, D06202,
https://doi.org/10.1029/2007JD009302, 2008.
Obrist, D., Hallar, A. G., McCubbin, I., Stephens, B. B., and Rahn, T.:
Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky
Mountains: Evidence for long-range transport from Asia, boundary layer
contributions, and plant mercury uptake, Atmos. Environ., 42,
7579–7589, https://doi.org/10.1016/j.atmosenv.2008.06.051, 2008.
Pierce, J. R. and Adams, P. J.: Efficiency of cloud condensation nuclei formation from ultrafine particles, Atmos. Chem. Phys., 7, 1367–1379, https://doi.org/10.5194/acp-7-1367-2007, 2007.
Pierce, J. R., Leaitch, W. R., Liggio, J., Westervelt, D. M., Wainwright, C. D., Abbatt, J. P. D., Ahlm, L., Al-Basheer, W., Cziczo, D. J., Hayden, K. L., Lee, A. K. Y., Li, S.-M., Russell, L. M., Sjostedt, S. J., Strawbridge, K. B., Travis, M., Vlasenko, A., Wentzell, J. J. B., Wiebe, H. A., Wong, J. P. S., and Macdonald, A. M.: Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley, Atmos. Chem. Phys., 12, 3147–3163, https://doi.org/10.5194/acp-12-3147-2012, 2012.
Pirjola, L., Kulmala, M., Wilck, M., Bischoff, A., Stratmann, F., and Otto,
E.: Formation of Sulphuric Acid Aerosols and Cloud Condensation Nuclei: an
Expression for Significant Nucleation and Model Comparison, J.
Aerosol Sci., 30, 1079–1094,
https://doi.org/10.1016/S0021-8502(98)00776-9, 1999.
Rejano, F., Titos, G., Casquero-Vera, J. A., Lyamani, H., Andrews, E.,
Sheridan, P., Cazorla, A., Castillo, S., Alados-Arboledas, L., and Olmo, F.
J.: Activation properties of aerosol particles as cloud condensation nuclei
at urban and high-altitude remote sites in southern Europe, Sci.
Total Environ., 762, 143100,
https://doi.org/10.1016/j.scitotenv.2020.143100, 2021.
Ren, J., Chen, L., Fan, T., Liu, J., Jiang, S., and Zhang, F.: The NPF
Effect on CCN Number Concentrations: A Review and Re-Evaluation of
Observations From 35 Sites Worldwide, Geophys. Res. Lett., 48, e2021GL095190,
https://doi.org/10.1029/2021GL095190, 2021.
Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient
CCN Chamber for Atmospheric Measurements, Aerosol Sci. Tech.,
39, 206–221, https://doi.org/10.1080/027868290913988, 2005.
Rose, C., Sellegri, K., Moreno, I., Velarde, F., Ramonet, M., Weinhold, K., Krejci, R., Andrade, M., Wiedensohler, A., Ginot, P., and Laj, P.: CCN production by new particle formation in the free troposphere, Atmos. Chem. Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, 2017.
Sebastian, M., Kanawade, V. P., Soni, V. K., Asmi, E., Westervelt, Daniel.
M., Vakkari, V., Hyvärinen, A.-P., Pierce, J. R., and Hooda, R. K.: New
Particle Formation and Growth to Climate-Relevant Aerosols at a Background
Remote Site in the Western Himalaya, J. Geophys. Res.-Atmos., 126, e2020JD033267,
https://doi.org/10.1029/2020JD033267, 2021.
Sellegri, K., Rose, C., Marinoni, A., Lupi, A., Wiedensohler, A., Andrade,
M., Bonasoni, P., and Laj, P.: New Particle Formation: A Review of
Ground-Based Observations at Mountain Research Stations, Atmosphere, 10, 493,
https://doi.org/10.3390/atmos10090493, 2019.
Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F.,
Patokoski, J., Mauldin, R. L., Hyvarinen, A.-P., Lihavainen, H., and
Kulmala, M.: The Role of Sulfuric Acid in Atmospheric Nucleation, Science,
327, 1243–1246, https://doi.org/10.1126/science.1180315, 2010.
Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775–4793, https://doi.org/10.5194/acp-10-4775-2010, 2010.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Summary for
Policymakers, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P., Cambridge University Press, Cambridge, UK, and New
York, NY, USA, 3–29, 2014.
Su, P., Joutsensaari, J., Dada, L., Zaidan, M. A., Nieminen, T., Li, X., Wu, Y., Decesari, S., Tarkoma, S., Petäjä, T., Kulmala, M., and Pellikka, P.: New particle formation event detection with Mask R-CNN, Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, 2022.
Sullivan, R. C., Crippa, P., Matsui, H., Leung, L. R., Zhao, C., Thota, A.,
and Pryor, S. C.: New particle formation leads to cloud dimming, npj Clim
Atmos. Sci., 1, 9, https://doi.org/10.1038/s41612-018-0019-7, 2018.
Svenningsson, B., Arneth, A., Hayward, S., Holst, T., Massling, A.,
Swietlicki, E., Hirsikko, A., Junninen, H., Riipinen, I., Vana, M., Maso, M.
D., Hussein, T., and Kulmala, M.: Aerosol particle formation events and
analysis of high growth rates observed above a subarctic wetland–forest
mosaic, Tellus B, 60, 353–364, https://doi.org/10.1111/j.1600-0889.2008.00351.x,
2008.
Tröstl, J., Herrmann, E., Frege, C., Bianchi, F., Molteni, U.,
Bukowiecki, N., Hoyle, C. R., Steinbacher, M., Weingartner, E., Dommen, J.,
Gysel, M., and Baltensperger, U.: Contribution of new particle formation to
the total aerosol concentration at the high-altitude site Jungfraujoch (3580 m asl, Switzerland), 121, 11692–11711,
https://doi.org/10.1002/2015JD024637, 2016.
Tuovinen, S., Kontkanen, J., Jiang, J., and Kulmala, M.: Investigating the
effectiveness of condensation sink based on heterogeneous nucleation theory,
J. Aerosol Sci., 149, 105613,
https://doi.org/10.1016/j.jaerosci.2020.105613, 2020.
Tuovinen, S., Kontkanen, J., Cai, R., and Kulmala, M.: Condensation sink of
atmospheric vapors: the effect of vapor properties and the resulting
uncertainties, Environ. Sci.-Atmos., 1, 543–557,
https://doi.org/10.1039/D1EA00032B, 2021.
Twohy, C. H., Toohey, D. W., Levin, E. J. T., DeMott, P. J., Rainwater, B.,
Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., Pokhrel,
R. P., Murphy, S. M., Reeves, J. M., Moore, K. A., and Fischer, E. V.:
Biomass Burning Smoke and Its Influence on Clouds Over the Western U. S., Geophys. Res. Lett.,
48, e2021GL094224, https://doi.org/10.1029/2021GL094224, 2021.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.,
8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Twomey, S. A., Piepgrass, M., and Wolfe, T. L.: An assessment of the impact
of pollution on global cloud albedo, Tellus B, 36, 356–366,
https://doi.org/10.1111/j.1600-0889.1984.tb00254.x, 1984.
Welty, J., Rorrer, G. L., and Foster, D. G.: Fundamentals of Momentum, Heat,
and Mass Transfer, John Wiley & Sons, 783 pp., ISBN 978-1-119-72354-7, 2020.
Yu, F.: Ion-mediated nucleation in the atmosphere: Key controlling
parameters, implications, and look-up table, J. Geophys. Res.-Atmos., 115, D03206,
https://doi.org/10.1029/2009JD012630, 2010.
Yu, F. and Hallar, A. G.: Difference in particle formation at a mountaintop
location during spring and summer: Implications for the role of sulfuric
acid and organics in nucleation, J. Geophys. Res.-Atmos., 119, 12246–12255,
https://doi.org/10.1002/2014JD022136, 2014.
Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations, Atmos. Chem. Phys., 9, 7691–7710, https://doi.org/10.5194/acp-9-7691-2009, 2009.
Yu, F., Luo, G., Pryor, S. C., Pillai, P. R., Lee, S. H., Ortega, J., Schwab, J. J., Hallar, A. G., Leaitch, W. R., Aneja, V. P., Smith, J. N., Walker, J. T., Hogrefe, O., and Demerjian, K. L.: Spring and summer contrast in new particle formation over nine forest areas in North America, Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, 2015.
Zhu, Y., Xue, L., Gao, J., Chen, J., Li, H., Zhao, Y., Guo, Z., Chen, T., Wen, L., Zheng, P., Shan, Y., Wang, X., Wang, T., Yao, X., and Wang, W.: Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO2 emissions, Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, 2021.
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can...
Altmetrics
Final-revised paper
Preprint