Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15425-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15425-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Anbao Zhu
Key Laboratory of Meteorological Disaster/KLME/ILCEC/CIC-FEMD,
Nanjing University of Information Science & Technology, Nanjing 210044,
China
School of Atmospheric Sciences, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Haiming Xu
CORRESPONDING AUTHOR
Key Laboratory of Meteorological Disaster/KLME/ILCEC/CIC-FEMD,
Nanjing University of Information Science & Technology, Nanjing 210044,
China
School of Atmospheric Sciences, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Jiechun Deng
Key Laboratory of Meteorological Disaster/KLME/ILCEC/CIC-FEMD,
Nanjing University of Information Science & Technology, Nanjing 210044,
China
School of Atmospheric Sciences, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Jing Ma
Key Laboratory of Meteorological Disaster/KLME/ILCEC/CIC-FEMD,
Nanjing University of Information Science & Technology, Nanjing 210044,
China
School of Atmospheric Sciences, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Shaofeng Hua
CMA Weather Modification Centre (WMC), Beijing 100081, China
Related authors
Hongli Chen, Pang-Chi Hsu, Anbao Zhu, and Xiaoyan Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2013, https://doi.org/10.5194/egusphere-2025-2013, 2025
Short summary
Short summary
Persistent heavy rainfall in the Asian summer monsoon region, including South China, is closely linked to intraseasonal oscillations with periods of 8–30 days. This study shows that rising levels of air pollution particles can intensify such rainfall by altering cloud development and radiation. Using observations and model simulations, the findings improve understanding of rainfall variability and support advances in extended-range forecasting.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shuhui Li
Atmos. Chem. Phys., 21, 5919–5933, https://doi.org/10.5194/acp-21-5919-2021, https://doi.org/10.5194/acp-21-5919-2021, 2021
Shaofeng Hua, Gang Chen, Baojun Chen, Mingshan Li, and Xin Xu
Geosci. Model Dev., 18, 5291–5309, https://doi.org/10.5194/gmd-18-5291-2025, https://doi.org/10.5194/gmd-18-5291-2025, 2025
Short summary
Short summary
Hail forecasting using numerical models remains a challenge. In this study, we found that the commonly used graupel-to-hail conversion parameterization method led to hail overforecasting in heavy rainfall cases where no hail was observed. By incorporating the spongy wet growth process, we successfully mitigated hail overforecasting. The modified scheme also produced hail in real hail events. This research contributes to a better understanding of hail formation.
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025, https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in a mixed phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows that turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Hongli Chen, Pang-Chi Hsu, Anbao Zhu, and Xiaoyan Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2013, https://doi.org/10.5194/egusphere-2025-2013, 2025
Short summary
Short summary
Persistent heavy rainfall in the Asian summer monsoon region, including South China, is closely linked to intraseasonal oscillations with periods of 8–30 days. This study shows that rising levels of air pollution particles can intensify such rainfall by altering cloud development and radiation. Using observations and model simulations, the findings improve understanding of rainfall variability and support advances in extended-range forecasting.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shuhui Li
Atmos. Chem. Phys., 21, 5919–5933, https://doi.org/10.5194/acp-21-5919-2021, https://doi.org/10.5194/acp-21-5919-2021, 2021
Cited articles
Adam, M. G., Tran, P. T. M., Bolan, N., and Balasubramanian, R.: Biomass
burning-derived airborne particulate matter in Southeast Asia: A critical
review, J. Hazard. Mater., 407, 124760,
https://doi.org/10.1016/j.jhazmat.2020.124760, 2021.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Argüeso, D., Hidalgo-Muñoz, J. M., Gámiz-Fortis, S. R.,
Esteban-Parra, M. J., and Castro-Díez, Y.: High-resolution projections
of mean and extreme precipitation over Spain using the WRF model (2070–2099
versus 1970–1999), J. Geophys. Res.-Atmos, 117, D12108,
https://doi.org/10.1029/2011JD017399, 2012.
Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.: Dependence of climate
forcing and response on the altitude of black carbon aerosols, Clim. Dynam.,
38, 897–911, https://doi.org/10.1007/s00382-011-1052-y, 2012.
Bao, Z., Wen, Z., and Wu, R.: Variability of aerosol optical depth over east
Asia and its possible impacts, J. Geophys. Res.-Atmos., 114, D05203, https://doi.org/10.1029/2008jd010603, 2009.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley-VCH, Weinheim, Germany, https://doi.org/10.1002/9783527618156, 1998.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation
and case studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/jcli-d-16-0613.1, 2017.
Caldwell, P., Chin, H.-N. S., Bader, D. C., and Bala, G.: Evaluation of a
WRF dynamical downscaling simulation over California, Climatic Change, 95,
499–521, https://doi.org/10.1007/s10584-009-9583-5, 2009.
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.:
Satellite-derived direct radiative effect of aerosols dependent on cloud
cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/ngeo437, 2009.
Chavan, P., Fadnavis, S., Chakroborty, T., Sioris, C. E., Griessbach, S., and Müller, R.: The outflow of Asian biomass burning carbonaceous aerosol into the upper troposphere and lower stratosphere in spring: radiative effects seen in a global model, Atmos. Chem. Phys., 21, 14371–14384, https://doi.org/10.5194/acp-21-14371-2021, 2021.
Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah land
surface model in arid regions with an appropriate parameterization of the
thermal roughness length, J. Hydrol., 11, 995–1006, https://doi.org/10.1175/2010jhm1185.1,
2010.
de Graaf, M., Stammes, P., Torres, O., and Koelemeijer, R. B. A.: Absorbing
Aerosol Index: Sensitivity analysis, application to GOME and comparison with
TOMS, J. Geophys. Res.-Atmos., 110, D01201, https://doi.org/10.1029/2004JD005178,
2005.
Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., Li, F., Huang, X.,
Bi, X., and Deng, T.: Effects of Southeast Asia biomass burning on aerosols
and ozone concentrations over the Pearl River Delta (PRD) region, Atmos.
Environ., 42, 8493–8501, https://doi.org/10.1016/j.atmosenv.2008.08.013,
2008.
Ding, K., Huang, X., Ding, A., Wang, M., Su, H., Kerminen, V.-M.,
Petäjä, T., Tan, Z., Wang, Z., Zhou, D., Sun, J., Liao, H., Wang,
H., Carslaw, K., Wood, R., Zuidema, P., Rosenfeld, D., Kulmala, M., Fu, C.,
Pöschl, U., Cheng, Y., and Andreae, M. O.:
Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of
biomass smoke on low cloud formation in Southeast Asia, Nat. Commun., 12,
6416, https://doi.org/10.1038/s41467-021-26728-4, 2021.
Dong, X., Fu, J. S., Huang, K., Zhu, Q., and Tipton, M.: Regional climate
effects of biomass burning and dust in East Asia: Evidence from modeling and
observation, Geophys. Res. Lett., 46, 11490–11499, https://doi.org/10.1029/2019gl083894,
2019.
Feingold, G., Jiang, H., and Harrington, J. Y.: On smoke suppression of
clouds in Amazonia, Geophys. Res. Lett., 32, L02804,
https://doi.org/10.1029/2004GL021369, 2005.
Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach,
T., Tsay, S.-C., and Lau, W. K.: Characterization of aerosols over the
Indochina peninsula from satellite-surface observations during biomass
burning pre-monsoon season, Atmos. Environ., 78, 51–59,
https://doi.org/10.1016/j.atmosenv.2012.05.038, 2013.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly,Time-averaged,Single-Level,Assimilation, Aerosol Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/KLICLTZ8EM9D, 2015.
Gonçalves, W. A., Machado, L. A. T., and Kirstetter, P.-E.: Influence of biomass aerosol on precipitation over the Central Amazon: an observational study, Atmos. Chem. Phys., 15, 6789–6800, https://doi.org/10.5194/acp-15-6789-2015, 2015.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Munchak, L. A.: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm, Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, 2016.
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The pathfinder
atmospheres–extended AVHRR climate dataset, B. Am. Meteorol. Soc., 95,
909–922, https://doi.org/10.1175/bams-d-12-00246.1, 2014.
Herbert, R., Stier, P., and Dagan, G.: Isolating large-scale smoke impacts
on cloud and precipitation processes over the Amazon with convection
permitting resolution, J. Geophys. Res.-Atmos., 126, e2021JD034615,
https://doi.org/10.1029/2021JD034615, 2021.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
Newsletter, 147, 5–6, 2016.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Hodnebrog, Ø., Myhre, G., Forster, P. M., Sillmann, J., and Samset, B.
H.: Local biomass burning is a dominant cause of the observed precipitation
reduction in southern Africa, Nat. Commun., 7, 11236, https://doi.org/10.1038/ncomms11236,
2016.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote. Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hoskins, B. J.: Towards a PV-θ view of the general circulation,
Tellus A, 43, 27–36, https://doi.org/10.3402/tellusa.v43i4.11936, 1991.
Huang, H.-Y., Wang, S.-H., Huang, W.-X., Lin, N.-H., Chuang, M.-T., da
Silva, A. M., and Peng, C.-M.: Influence of synoptic-dynamic meteorology on
the long-range transport of Indochina biomass burning aerosols, J. Geophys.
Res.-Atmos., 125, e2019JD031260, https://doi.org/10.1029/2019JD031260, 2020.
Huang, K., Fu, J. S., Hsu, N. C., Gao, Y., Dong, X., Tsay, S.-C., and Lam,
Y. F.: Impact assessment of biomass burning on air quality in Southeast and
East Asia during BASE-ASIA, Atmos. Environ., 78, 291–302,
https://doi.org/10.1016/j.atmosenv.2012.03.048, 2013.
Huang, W.-R., Wang, S.-H., Yen, M.-C., Lin, N.-H., and Promchote, P.:
Interannual variation of springtime biomass burning in Indochina: Regional
differences, associated atmospheric dynamical changes, and downwind impacts,
J. Geophys. Res.-Atmos., 121, 10016–10028, https://doi.org/10.1002/2016jd025286, 2016.
Huang, X., Ding, A., Liu, L., Liu, Q., Ding, K., Niu, X., Nie, W., Xu, Z., Chi, X., Wang, M., Sun, J., Guo, W., and Fu, C.: Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China, Atmos. Chem. Phys., 16, 10063–10082, https://doi.org/10.5194/acp-16-10063-2016, 2016.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM multisatellite
precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrol., 8, 38–55, https://doi.org/10.1175/jhm560.1, 2007.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., and Adler, R. F.: TRMM (TMPA) Precipitation L3 1 day 0.25 degree x 0.25 degree V7, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/DAY/7, 2016.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat
and moisture fluxes, black and brown carbon, and cloud absorption effects,
J. Geophys. Res.-Atmos., 119, 8980–9002,
https://doi.org/10.1002/2014JD021861, 2014.
Janjić, Z. I.: The step-mountain eta coordinate model: Further
developments of the convection, viscous sublayer, and turbulence closure
schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:tsmecm>2.0.co;2, 1994.
Jiang, Y., Yang, X.-Q., Liu, X., Qian, Y., Zhang, K., Wang, M., Li, F.,
Wang, Y., and Lu, Z.: Impacts of wildfire aerosols on global energy budget
and climate: The role of climate feedbacks, J. Climate, 33, 3351–3366, https://doi.org/10.1175/jcli-d-19-0572.1, 2020.
Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A.,
and Holben, B.: Multiangle Imaging Spectroradiometer (MISR) global aerosol
optical depth validation based on 2 years of coincident Aerosol Robotic
Network (AERONET) observations, J. Geophys. Res.-Atmos., 110, D10S04,
https://doi.org/10.1029/2004JD004706, 2005.
Kaskaoutis, D. G., Nastos, P. T., Kosmopoulos, P. G., Kambezidis, H. D.,
Kharol, S. K., and Badarinath, K. V. S.: The Aura–OMI Aerosol Index
distribution over Greece, Atmos. Res., 98, 28–39,
https://doi.org/10.1016/j.atmosres.2010.03.018, 2010.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of
the effect of Amazon smoke on inhibition of cloud formation, Science, 303,
1342–1345, https://doi.org/10.1126/science.1089424, 2004.
Lau, K. M., Kim, M. K., and Kim, K. M.: Asian summer monsoon anomalies
induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim.
Dynam., 26, 855–864, https://doi.org/10.1007/s00382-006-0114-z, 2006.
Lau, W. K. M.: The aerosol-monsoon climate system of Asia: A new paradigm,
J. Meteorol. Res.-PRC., 30, 1–11, https://doi.org/10.1007/s13351-015-5999-1, 2016.
Lee, D., Sud, Y. C., Oreopoulos, L., Kim, K.-M., Lau, W. K., and Kang, I.-S.: Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmos. Chem. Phys., 14, 6853–6866, https://doi.org/10.5194/acp-14-6853-2014, 2014.
Lee, H.-H. and Wang, C.: The impacts of biomass burning activities on convective systems over the Maritime Continent, Atmos. Chem. Phys., 20, 2533–2548, https://doi.org/10.5194/acp-20-2533-2020, 2020.
Lee, W.-S. and Kim, M.-K.: Effects of radiative forcing by black carbon
aerosol on spring rainfall decrease over Southeast Asia, Atmos. Environ.,
44, 3739–3744, https://doi.org/10.1016/j.atmosenv.2010.06.058, 2010.
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., and Cetola, J. D.: The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1, Geosci. Model Dev., 12, 131–166, https://doi.org/10.5194/gmd-12-131-2019, 2019.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Li, G., Chen, H., Xu, M., Zhao, C., Zhong, L., Li, R., Fu, Y., and Gao, Y.:
Impacts of topographic complexity on modeling moisture transport and
precipitation over the Tibetan Plateau in summer, Adv. Atmos. Sci., 39, 1151–1166, https://doi.org/10.1007/s00376-022-1409-7, 2022.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150, 2017a.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017b.
Li, Z., Lau, W. K.-M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophy., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Lin, C.-Y., Hsu, H.-m., Lee, Y. H., Kuo, C. H., Sheng, Y.-F., and Chu, D. A.: A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmos. Chem. Phys., 9, 7901–7911, https://doi.org/10.5194/acp-9-7901-2009, 2009.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H., and Chen, W.-N.: Modelling of
long-range transport of Southeast Asia biomass-burning aerosols to Taiwan
and their radiative forcings over East Asia, Tellus B, 66, 23733, https://doi.org/10.3402/tellusb.v66.23733, 2014.
Liu, L., Cheng, Y., Wang, S., Wei, C., Pöhlker, M. L., Pöhlker, C., Artaxo, P., Shrivastava, M., Andreae, M. O., Pöschl, U., and Su, H.: Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions, Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, 2020.
Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif,
M. T., and Karambelas, A.: Diagnosing spatial biases and uncertainties in
global fire emissions inventories: Indonesia as regional case study, Remote
Sens. Environ., 237, 111557, https://doi.org/10.1016/j.rse.2019.111557,
2020.
Liu, Y., Wu, G., Yu, R., and Liu, X.: Thermal adaptation, overshooting,
dispersion, and subtropical anticyclone part II: Horizontal inhomogeneous
heating and energy dispersion, Chinese J. Atmos. Sci., 25,
317–328, https://doi.org/10.3878/j.issn.1006-9895.2001.03.03, 2001 (in Chinese).
Lu, Z., Liu, X., Zhang, Z., Zhao, C., Meyer, K., Rajapakshe, C., Wu, C.,
Yang, Z., and Penner, J. E.: Biomass smoke from southern Africa can
significantly enhance the brightness of stratocumulus over the southeastern
Atlantic Ocean, P. Natl. Acad. Sci. USA, 115, 2924–2929, https://doi.org/10.1073/pnas.1713703115, 2018.
Ma, L.-M. and Tan, Z.-M.: Improving the behavior of the cumulus
parameterization for tropical cyclone prediction: Convection trigger, Atmos.
Res., 92, 190–211, https://doi.org/10.1016/j.atmosres.2008.09.022, 2009.
Mapes, B. E.: Convective inhibition, subgrid-scale triggering energy, and
stratiform instability in a toy tropical wave model, J. Atmos. Sci., 57,
1515–1535, https://doi.org/10.1175/1520-0469(2000)057<1515:cisste>2.0.co;2, 2000.
Martins, J. A., Silva Dias, M. A. F., and Gonçalves, F. L. T.: Impact of
biomass burning aerosols on precipitation in the Amazon: A modeling case
study, J. Geophys. Res.-Atmos., 114, D02207, https://doi.org/10.1029/2007JD009587,
2009.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated
squall line: Comparison of one- and two-moment schemes, Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2009.
Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y. J., Rosenfeld, D., Storelvmo, T., Kristjansson, J. E., Berntsen, T. K., Myhre, A., and Isaksen, I. S. A.: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmos. Chem. Phys., 7, 3081–3101, https://doi.org/10.5194/acp-7-3081-2007, 2007.
National Centers for Environmental Prediction (NCEP), National Weather Service (NWS), NOAA, U.S. Department of Commerce (DOC): NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the NCEP, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J.:
Characteristics of air pollution in different zones of Sichuan Basin, China,
Sci. Total Environ., 612, 975–984,
https://doi.org/10.1016/j.scitotenv.2017.08.205, 2018.
Pahlow, M., Parlange, M. B., and Porté-Agel, F.: On Monin–Obukhov
similarity in the stable atmospheric boundary layer, Bound.-Lay. Meteorol.,
99, 225–248, https://doi.org/10.1023/A:1018909000098, 2001.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, 2020.
Pani, S. K., Wang, S.-H., Lin, N.-H., Lee, C.-T., Tsay, S.-C., Holben, B.
N., Janjai, S., Hsiao, T.-C., Chuang, M.-T., and Chantara, S.: Radiative
effect of springtime biomass-burning aerosols over northern Indochina during
7-SEAS/BASELInE 2013 campaign, Aerosol Air Qual. Res., 16, 2802–2817, https://doi.org/10.4209/aaqr.2016.03.0130, 2016.
Pani, S. K., Lin, N.-H., Chantara, S., Wang, S.-H., Khamkaew, C.,
Prapamontol, T., and Janjai, S.: Radiative response of biomass-burning
aerosols over an urban atmosphere in northern peninsular Southeast Asia,
Sci. Total Environ., 633, 892–911,
https://doi.org/10.1016/j.scitotenv.2018.03.204, 2018.
Platnick, S., Hubanks, P., Meyer, K., and King, M. D.: MODIS Atmosphere L3 Monthly Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, U.S.A. [data set], https://doi.org/10.5067/MODIS/MOD08_M3.061, 2015.
Qin, Y. and Xie, S. D.: Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980–2009, Atmos. Chem. Phys., 12, 4825–4841, https://doi.org/10.5194/acp-12-4825-2012, 2012.
Randerson, J. T., Van Der Werf, G. R., Giglio, L., Collatz, G. J., and
Kasibhatla, P. S.: Global fire emissions database, version 4.1 (GFEDv4),
ORNL Distributed Active Archive Center [data set], https://doi.org/10.3334/ORNLDAAC/1293, 2017.
Randerson, J. T., van der Werf, G. R., Giglio, L.,Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 4.1 (GFEDv4), ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1293, 2018.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Requia, W. J., Amini, H., Mukherjee, R., Gold, D. R., and Schwartz, J. D.:
Health impacts of wildfire-related air pollution in Brazil: a nationwide
study of more than 2 million hospital admissions between 2008 and 2018, Nat.
Commun., 12, 6555, https://doi.org/10.1038/s41467-021-26822-7, 2021.
Sakaeda, N., Wood, R., and Rasch, P. J.: Direct and semidirect aerosol
effects of southern African biomass burning aerosol, J. Geophys.
Res.-Atmos., 116, D12205, https://doi.org/10.1029/2010JD015540, 2011.
Shi, Y., Sasai, T., and Yamaguchi, Y.: Spatio-temporal evaluation of carbon
emissions from biomass burning in Southeast Asia during the period
2001–2010, Ecol. Model., 272, 98–115,
https://doi.org/10.1016/j.ecolmodel.2013.09.021, 2014.
Takeishi, A. and Wang, C.: Radiative and microphysical responses of clouds to an anomalous increase in fire particles over the Maritime Continent in 2015, Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022, 2022.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from
Ozone Monitoring Instrument observations: An overview, J. Geophys.
Res.-Atmos., 112, D24S47, https://doi.org/10.1029/2007JD008809, 2007.
Torres, O. O.: OMI/Aura Near UV Aerosol Optical Depth and Single Scattering Albedo L3 1 day 1.0 degree x 1.0 degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Aura/OMI/DATA3003, 2008.
Tropical Rainfall Measuring Mission (TRMM): TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TRMM/TMPA/MONTH/7, 2011.
Tsinghua University, China Carbon Emission Accounts and Datasets (CEADs) team, Chinese Academy of Environmental Planning of the Ministry of Ecology and Environment (CAEP): Multi-resolution Emission Inventory for China and MIX-Asia dataset, MEIC Data Platform [data set], http://meicmodel.org.cn/, last access: 2 December 2022.
Tummon, F., Solmon, F., Liousse, C., and Tadross, M.: Simulation of the
direct and semidirect aerosol effects on the southern Africa regional
climate during the biomass burning season, J. Geophys. Res.-Atmos., 115, D19206,
https://doi.org/10.1029/2009JD013738, 2010.
University Corporation for Atmospheric Research (UCAR): WRF Source Codes and Graphics Software Downloads, UCAR [code], https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 2 December 2022a.
University Corporation for Atmospheric Research (UCAR): Fire Emission Factors and Emission Inventories, UCAR [data set], https://www.acom.ucar.edu/Data/fire/, last access: 2 December 2022b.
Wang, J., jiang, Q., You, Y., Rao, X., Sheng, L., Gui, H., Hua, C., and
Zhang, B.: Effects of biomass burning aerosol in Southeast Asia on haze and
precipitation over China, Meteor. Mon., 47, 348–358, 2021 (in Chinese).
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Wu, G. and Liu, Y.: Thermal adaptation, overshooting, dispersion, and
subtropical anticyclone part I: Thermal adaptation and overshooting, Chinese
J. Atmos. Sci., 24, 433–446, https://doi.org/10.3878/j.issn.1006-9895.2000.04.01, 2000 (in Chinese).
Wu, G., Li, Z., Fu, C., Zhang, X., Zhang, R., Zhang, R., Zhou, T., Li, J.,
Li, J., Zhou, D., Wu, L., Zhou, L., He, B., and Huang, R.: Advances in
studying interactions between aerosols and monsoon in China, Sci. China
Earth Sci., 59, 1–16, https://doi.org/10.1007/s11430-015-5198-z, 2016.
Yadav, I. C., Linthoingambi Devi, N., Li, J., Syed, J. H., Zhang, G., and
Watanabe, H.: Biomass burning in Indo-China peninsula and its impacts on
regional air quality and global climate change-a review, Environ. Pollut.,
227, 414–427, https://doi.org/10.1016/j.envpol.2017.04.085, 2017.
Yang, Q., Zhao, T., Tian, Z., Kumar, K. R., Chang, J., Hu, W., Shu, Z., and
Hu, J.: The cross-border transport of PM2.5 from the Southeast Asian
biomass burning emissions and its impact on air pollution in Yunnan Plateau,
Southwest China, Remote Sens.-Basel, 14, 1886, https://doi.org/10.3390/rs14081886, 2022.
Yang, S., Lau, W. K. M., Ji, Z., Dong, W., and Yang, S.: Impacts of
radiative effect of pre-monsoon biomass burning aerosols on atmospheric
circulation and rainfall over Southeast Asia and southern China, Clim.
Dynam., 59, 417–432, https://doi.org/10.1007/s00382-021-06135-7, 2022.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104,
30387–30415, https://doi.org/10.1029/1999JD900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
simulating aerosol interactions and chemistry (MOSAIC), J. Geophys.
Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, Y., Fu, R., Yu, H., Qian, Y., Dickinson, R., Silva Dias, M. A. F., da
Silva Dias, P. L., and Fernandes, K.: Impact of biomass burning aerosol on
the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814,
https://doi.org/10.1029/2009GL037180, 2009.
Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in
Northwest China: WRF-Chem simulation and comparisons with multi-sensor
observations, Atmos. Res., 241, 104978,
https://doi.org/10.1016/j.atmosres.2020.104978, 2020.
Zhou, Y., Yan, H., and Luo, J.-J.: Impacts of amazon fire aerosols on the
subseasonal circulations of the mid-high latitudes, Front. Earth Sci., 8, 609554, https://doi.org/10.3389/feart.2020.597865, 2021.
Zhu, A., Xu, H., Deng, J., Ma, J., and Li, S.: El Niño–Southern Oscillation (ENSO) effect on interannual variability in spring aerosols over East Asia, Atmos. Chem. Phys., 21, 5919–5933, https://doi.org/10.5194/acp-21-5919-2021, 2021.
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on...
Altmetrics
Final-revised paper
Preprint