Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-1495-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1495-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Single-particle characterization of polycyclic aromatic hydrocarbons in background air in northern Europe
Johannes Passig
CORRESPONDING AUTHOR
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Julian Schade
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Institute of Chemical and Environmental Engineering, Bundeswehr University Munich, 85577 Neubiberg, Germany
Robert Irsig
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Photonion GmbH, 19061 Schwerin, Germany
Thomas Kröger-Badge
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Hendryk Czech
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Thomas Adam
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Institute of Chemical and Environmental Engineering, Bundeswehr University Munich, 85577 Neubiberg, Germany
Henrik Fallgren
IVL Swedish Environmental Research Institute, 411 33 Gothenburg, Sweden
Jana Moldanova
IVL Swedish Environmental Research Institute, 411 33 Gothenburg, Sweden
Martin Sklorz
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Thorsten Streibel
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Ralf Zimmermann
Joint Mass Spectrometry Centre, Chair for Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany
Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group, Helmholtz Zentrum München, 81379 Munich, Germany
Related authors
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
Atmos. Meas. Tech., 18, 2425–2437, https://doi.org/10.5194/amt-18-2425-2025, https://doi.org/10.5194/amt-18-2425-2025, 2025
Short summary
Short summary
Laser desorption of individual particles prior to ionization is the key to reveal their organic composition. The CO2 lasers required are bulky and maintenance-intensive, limiting their use in the field. We have developed a compact solid-state IR laser that is easily aligned with the particle beam. Mass spectra and hit rates are similar to those of the CO2 laser. For combined characterization of organic and inorganic particle compositions, both lasers are superior to conventional single UV pulses.
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024, https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary
Short summary
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
Atmos. Chem. Phys., 25, 9275–9294, https://doi.org/10.5194/acp-25-9275-2025, https://doi.org/10.5194/acp-25-9275-2025, 2025
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in a laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to have shifted from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
Atmos. Meas. Tech., 18, 2425–2437, https://doi.org/10.5194/amt-18-2425-2025, https://doi.org/10.5194/amt-18-2425-2025, 2025
Short summary
Short summary
Laser desorption of individual particles prior to ionization is the key to reveal their organic composition. The CO2 lasers required are bulky and maintenance-intensive, limiting their use in the field. We have developed a compact solid-state IR laser that is easily aligned with the particle beam. Mass spectra and hit rates are similar to those of the CO2 laser. For combined characterization of organic and inorganic particle compositions, both lasers are superior to conventional single UV pulses.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Martens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research, 3, 205–218, https://doi.org/10.5194/ar-3-205-2025, https://doi.org/10.5194/ar-3-205-2025, 2025
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies the OP of fresh and aged car and wood burning emission particles and explores how the OP changes over time, using novel high-temporal-resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per unit particle mass, especially as they age in the atmosphere. We also calculate emission factors for the OP, which could help to improve air pollution policies.
Elisabeth Eckenberger, Andreas Mittereder, Nadine Gawlitta, Jürgen Schnelle-Kreis, Martin Sklorz, Dieter Brüggemann, Ralf Zimmermann, and Anke C. Nölscher
Aerosol Research, 3, 45–64, https://doi.org/10.5194/ar-3-45-2025, https://doi.org/10.5194/ar-3-45-2025, 2025
Short summary
Short summary
We assessed the performance of four cascade impactors for collecting and analyzing organic markers in airborne ultrafine particles (UFPs) under lab and field conditions. The cutoff was influenced by the impactor design and aerosol mixture. Two key factors caused variations in mass concentrations: the evaporation of semi-volatile compounds and the "bounce-off" of larger particles and fragments. Our findings reveal the challenges of analyzing organic marker mass concentrations in airborne UFPs.
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024, https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary
Short summary
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.
Eric Schneider, Hendryk Czech, Olga Popovicheva, Marina Chichaeva, Vasily Kobelev, Nikolay Kasimov, Tatiana Minkina, Christopher Paul Rüger, and Ralf Zimmermann
Atmos. Chem. Phys., 24, 553–576, https://doi.org/10.5194/acp-24-553-2024, https://doi.org/10.5194/acp-24-553-2024, 2024
Short summary
Short summary
This study provides insights into the complex chemical composition of long-range-transported wildfire plumes from Yakutia, which underwent different levels of atmospheric processing. With complementary mass spectrometric techniques, we improve our understanding of the chemical processes and atmospheric fate of wildfire plumes. Unprecedented high levels of carbonaceous aerosols crossed the polar circle with implications for the Arctic ecosystem and consequently climate.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Dac-Loc Nguyen, Hendryk Czech, Simone M. Pieber, Jürgen Schnelle-Kreis, Martin Steinbacher, Jürgen Orasche, Stephan Henne, Olga B. Popovicheva, Gülcin Abbaszade, Guenter Engling, Nicolas Bukowiecki, Nhat-Anh Nguyen, Xuan-Anh Nguyen, and Ralf Zimmermann
Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, https://doi.org/10.5194/acp-21-8293-2021, 2021
Short summary
Short summary
Southeast Asia is well-known for emission-intense and recurring wildfires and after-harvest crop residue burning during the pre-monsoon season from February to April. We describe a biomass burning (BB) plume arriving at remote Pha Din meteorological station, outline its carbonaceous particulate matter (PM) constituents based on more than 50 target compounds and discuss possible BB sources. This study adds valuable information on chemical PM composition for a region with scarce data availability.
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Cited articles
Abramson, E., Imre, D., Beránek, J., Wilson, J., and Zelenyuk, A.:
Experimental determination of chemical diffusion within secondary organic aerosol particles,
Phys. Chem. Chem. Phys.,
15, 2983–2991, https://doi.org/10.1039/c2cp44013j, 2013.
Agudelo-Castañeda, D. M., Teixeira, E. C., Schneider, I. L., Lara, S. R., and Silva, L. F.:
Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups,
Environ. Pollut.,
224, 158–170, https://doi.org/10.1016/j.envpol.2017.01.075, 2017.
Alpert, P. A., Dou, J., Corral Arroyo, P., Schneider, F., Xto, J., Luo, B., Peter, T., Huthwelker, T., Borca, C. N., Henzler, K. D., Schaefer, T., Herrmann, H., Raabe, J., Watts, B., Krieger, U. K., and Ammann, M.:
Photolytic radical persistence due to anoxia in viscous aerosol particles,
Nat. Commun.,
12, 1769, https://doi.org/10.1038/s41467-021-21913-x, 2021.
Arndt, J., Sciare, J., Mallet, M., Roberts, G. C., Marchand, N., Sartelet, K., Sellegri, K., Dulac, F., Healy, R. M., and Wenger, J. C.: Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin, Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, 2017.
Ault, A. P., Gaston, C. I., Wang, Y., Dominguez, G., Thiemens, M. H., and Prather, K. A.:
Characterization of the single particle mixing state of individual ship plume events measured at the Port of Los Angeles,
Environ. Sci. Technol.,
44, 1954–1961, https://doi.org/10.1021/es902985h, 2010.
Bente, M., Adam, T., Ferge, T., Gallavardin, S., Sklorz, M., Streibel, T., and Zimmermann, R.:
An on-line aerosol laser mass spectrometer with three, easily interchangeable laser based ionisation methods for characterisation of inorganic and aromatic compounds on particles,
Int. J. Mass Spectrom.,
258, 86–94, https://doi.org/10.1016/j.ijms.2006.08.015, 2006.
Bente, M., Sklorz, M., Streibel, T., and Zimmermann, R.:
Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources,
Anal. Chem.,
80, 8991–9004, https://doi.org/10.1021/ac801295f, 2008.
Bente, M., Sklorz, M., Streibel, T., and Zimmermann, R.:
Thermal desorption-multiphoton ionization time-of-flight mass spectrometry of individual aerosol particles: a simplified approach for online single-particle analysis of polycyclic aromatic hydrocarbons and their derivatives,
Anal. Chem.,
81, 2525–2536, https://doi.org/10.1021/ac802296f, 2009.
Boesl, U.:
Laser mass spectrometry for environmental and industrial chemical trace analysis,
J. Mass Spectrom.,
35, 289–304, https://doi.org/10.1002/(SICI)1096-9888(200003)35:3<289:AID-JMS960>3.0.CO;2-Y, 2000.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.:
Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer,
Mass Spectrom. Rev.,
26, 185–222, https://doi.org/10.1002/mas.20115, 2007.
Carpenter, G. A., Grossberg, S., and Rosen, D.: ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition, Neural Netw., 4, 493–504, https://doi.org/10.1016/0893-6080(91)90045-7, 1991.
Czech, H., Stengel, B., Adam, T., Sklorz, M., Streibel, T., and Zimmermann, R.:
A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control areas,
Atmos. Environ.,
167, 212–222, https://doi.org/10.1016/j.atmosenv.2017.08.022, 2017.
Czech, H., Miersch, T., Orasche, J., Abbaszade, G., Sippula, O., Tissari, J., Michalke, B., Schnelle-Kreis, J., Streibel, T., Jokiniemi, J., and Zimmermann, R.:
Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances,
Sci. Total Environ.,
612, 636–648, https://doi.org/10.1016/j.scitotenv.2017.08.263, 2018.
Dall'Osto, M. and Harrison, R. M.:
Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS,
Atmos. Environ.,
40, 7614–7631, https://doi.org/10.1016/j.atmosenv.2006.06.053, 2006.
Dall'Osto, M., Beddows, D. C. S., Kinnersley, R. P., Harrison, R. M., Donovan, R. J., and Heal, M. R.:
Characterization of individual airborne particles by using aerosol time-of-flight mass spectrometry at Mace Head, Ireland,
J. Geophys. Res.,
109, n/a–n/a, https://doi.org/10.1029/2004JD004747, 2004.
Dall'Osto, M., Beddows, D. C. S., McGillicuddy, E. J., Esser-Gietl, J. K., Harrison, R. M., and Wenger, J. C.: On the simultaneous deployment of two single-particle mass spectrometers at an urban background and a roadside site during SAPUSS, Atmos. Chem. Phys., 16, 9693–9710, https://doi.org/10.5194/acp-16-9693-2016, 2016a.
Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., and Onat, B.:
Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere,
Environ. Sci. Technol.,
50, 4212–4220, https://doi.org/10.1021/acs.est.6b01127, 2016b.
Dat, N.-D. and Chang, M. B.:
Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies,
Sci. Total Environ.,
609, 682–693, https://doi.org/10.1016/j.scitotenv.2017.07.204, 2017.
Decesari, S., Allan, J., Plass-Duelmer, C., Williams, B. J., Paglione, M., Facchini, M. C., O'Dowd, C., Harrison, R. M., Gietl, J. K., Coe, H., Giulianelli, L., Gobbi, G. P., Lanconelli, C., Carbone, C., Worsnop, D., Lambe, A. T., Ahern, A. T., Moretti, F., Tagliavini, E., Elste, T., Gilge, S., Zhang, Y., and Dall'Osto, M.: Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques, Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014, 2014.
Denkenberger, K. A., Moffet, R. C., Holecek, J. C., Rebotier, T. P., and Prather, K. A.:
Real-time, single-particle measurements of oligomers in aged ambient aerosol particles,
Environ. Sci. Technol.,
41, 5439–5446, 2007.
Ferge, T., Karg, E., Schröppel, A., Coffee, K. R., Tobias, H. J., Frank, M., Gard, E. E., and Zimmermann, R.:
Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry,
Environ. Sci. Technol.,
40, 3327–3335, https://doi.org/10.1021/es050799k, 2006.
Furutani, H., Jung, J., Miura, K., Takami, A., Kato, S., Kajii, Y., and Uematsu, M.:
Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow,
J. Geophys. Res.,
116, 5504, https://doi.org/10.1029/2011JD015867, 2011.
Garrett, R., Pickering, I., Haith, C., and Prince, R.:
Photooxidation of Crude Oils,
Environ. Sci. Technol.,
32, 3719–3723, https://doi.org/10.1021/es980201r, 1998.
Gehm, C., Streibel, T., Passig, J., and Zimmermann, R.:
Determination of Relative Ionization Cross Sections for Resonance Enhanced Multiphoton Ionization of Polycyclic Aromatic Hydrocarbons,
Appl. Sci., 8, 1617, https://doi.org/10.3390/app8091617, 2018.
Gemayel, R., Temime-Roussel, B., Hayeck, N., Gandolfo, A., Hellebust, S., Gligorovski, S., and Wortham, H.:
Development of an analytical methodology for obtaining quantitative mass concentrations from LAAP-ToF-MS measurements,
Talanta,
174, 715–724, https://doi.org/10.1016/j.talanta.2017.06.050, 2017.
Giorio, C., Tapparo, A., Dall'Osto, M., Beddows, D. C. S., Esser-Gietl, J. K., Healy, R. M., and Harrison, R. M.:
Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra,
Environ. Sci. Technol.,
49, 3330–3340, https://doi.org/10.1021/es506249z, 2015.
Gross, D. S., Gälli, M. E., Kalberer, M., Prevot, A. S. H., Dommen, J., Alfarra, M. R., Duplissy, J., Gaeggeler, K., Gascho, A., Metzger, A., and Baltensperger, U.:
Real-time measurement of oligomeric species in secondary organic aerosol with the aerosol time-of-flight mass spectrometer,
Anal. Chem.,
78, 2130–2137, https://doi.org/10.1021/ac060138l, 2006.
Gunzer, F., Krüger, S., and Grotemeyer, J.:
Photoionization and photofragmentation in mass spectrometry with visible and UV lasers,
Mass Spectrom. Rev.,
38, 202–217, https://doi.org/10.1002/mas.21579, 2019.
Hanna, S. J., Campuzano-Jost, P., Simpson, E. A., Robb, D. B., Burak, I., Blades, M. W., Hepburn, J. W., and Bertram, A. K.:
A new broadly tunable (7.4–10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry,
Int. J. Mass Spectrom.,
279, 134–146, https://doi.org/10.1016/j.ijms.2008.10.024, 2009.
Harrison, R. M., Smith, D. J. T., and Luhana, L.:
Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, UK,
Environ. Sci. Technol.,
30, 825–832, https://doi.org/10.1021/es950252d, 1996.
Hatch, L. E., Creamean, J. M., Ault, A. P., Surratt, J. D., Chan, M. N., Seinfeld, J. H., Edgerton, E. S., Su, Y., and Prather, K. A.:
Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – part 1: single particle atmospheric observations in Atlanta,
Environ. Sci. Technol.,
45, 5105–5111, https://doi.org/10.1021/es103944a, 2011.
Hatch, L. E., Pratt, K. A., Huffman J. Alex, Jimenez, J. L., and Prather, K. A.:
Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers,
Aerosol Sci. Technol.,
48, 1050–1058, https://doi.org/10.1080/02786826.2014.955907, 2014.
Healy, R. M., O'Connor, I. P., Hellebust, S., Allanic, A., Sodeau, J. R., and Wenger, J. C.:
Characterisation of single particles from in-port ship emissions,
Atmos. Environ.,
43, 6408–6414, https://doi.org/10.1016/j.atmosenv.2009.07.039, 2009.
Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M., Müller, T., Wiedensohler, A., Eckhardt, S., Stohl, A., Sarda-Estève, R., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R., and Wenger, J. C.: Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris, Atmos. Chem. Phys., 12, 1681–1700, https://doi.org/10.5194/acp-12-1681-2012, 2012.
Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prévôt, A. S. H., Baltensperger, U., Sarda-Estève, R., McGuire, M. L., Jeong, C.-H., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements, Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, 2013.
Hinz, K.-P. and Spengler, B.:
Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry,
J. Mass Spectrom.,
42, 843–860, https://doi.org/10.1002/jms.1262, 2007.
Hinz, K.-P., Kaufmann, R., and Spengler, B.:
Laser-Induced Mass Analysis of Single Particles in the Airborne State,
Anal. Chem.,
66, 2071–2076, https://doi.org/10.1021/ac00085a023, 1994.
Huang, W., Saathoff, H., Shen, X., Ramisetty, R., Leisner, T., and Mohr, C.:
Chemical Characterization of Highly Functionalized Organonitrates Contributing to Night-Time Organic Aerosol Mass Loadings and Particle Growth,
Environ. Sci. Technol.,
53, 1165–1174, https://doi.org/10.1021/acs.est.8b05826, 2019.
Jaward, F. M., Farrar, N. J., Harner, T., Sweetman, A. J., and Jones, K. C.:
Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated naphthalenes across Europe,
Environ. Toxicol. Chem.,
23, 1355–1364, https://doi.org/10.1897/03-420, 2004.
Keyte, I. J., Harrison, R. M., and Lammel, G.:
Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review,
Chem. Soc. Rev.,
42, 9333–9391, https://doi.org/10.1039/C3CS60147A, 2013.
Kim, K.-H., Jahan, S. A., Kabir, E., and Brown, R. J. C.:
A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects,
Environ. Int.,
60, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013.
Köllner, F., Schneider, J., Willis, M. D., Klimach, T., Helleis, F., Bozem, H., Kunkel, D., Hoor, P., Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and Borrmann, S.: Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere, Atmos. Chem. Phys., 17, 13747–13766, https://doi.org/10.5194/acp-17-13747-2017, 2017.
Kruth, C., Czech, H., Sklorz, M., Passig, J., Ehlert, S., Cappiello, A., and Zimmermann, R.:
Direct Infusion Resonance-Enhanced Multiphoton Ionization Mass Spectrometry of Liquid Samples under Vacuum Conditions,
Anal. Chem.,
89, 10917–10923, https://doi.org/10.1021/acs.analchem.7b02633, 2017.
Lacher, L., Clemen, H.-C., Shen, X., Mertes, S., Gysel-Beer, M., Moallemi, A., Steinbacher, M., Henne, S., Saathoff, H., Möhler, O., Höhler, K., Schiebel, T., Weber, D., Schrod, J., Schneider, J., and Kanji, Z. A.: Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017, Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, 2021.
Lähteenmäki-Uutela, A., Yliskylä-Peuralahti, J., Repka, S., and Mellqvist, J.:
What explains SECA compliance: rational calculation or moral judgment?,
WMU Journal of Maritime Affairs,
18, 61–78, https://doi.org/10.1007/s13437-019-00163-1, 2019.
Laskin, J., Laskin, A., and Nizkorodov, S. A.:
Mass Spectrometry Analysis in Atmospheric Chemistry,
Anal. Chem.,
90, 166–189, https://doi.org/10.1021/acs.analchem.7b04249, 2018.
Lee, A. K. Y., Willis, M. D., Healy, R. M., Wang, J. M., Jeong, C.-H., Wenger, J. C., Evans, G. J., and Abbatt, J. P. D.: Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium, Atmos. Chem. Phys., 16, 5561–5572, https://doi.org/10.5194/acp-16-5561-2016, 2016.
Li, C., He, Q., Schade, J., Passig, J., Zimmermann, R., Meidan, D., Laskin, A., and Rudich, Y.: Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging, Atmos. Chem. Phys., 19, 139–163, https://doi.org/10.5194/acp-19-139-2019, 2019.
Li, L., Liu, L., Xu, L., Li, M., Li, X., Gao, W., Huang, Z., and Cheng, P.:
Improvement in the Mass Resolution of Single Particle Mass Spectrometry Using Delayed Ion Extraction,
J. Am. Soc. Mass Spectr.,
29, 2105–2109, https://doi.org/10.1007/s13361-018-2037-4, 2018.
Lima, A. L. C., Farrington, J. W., and Reddy, C. M.:
Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review,
Environ. Forensics,
6, 109–131, https://doi.org/10.1080/15275920590952739, 2005.
Ma, L., Li, M., Zhang, H., Li, L., Huang, Z., Gao, W., Chen, D., Fu, Z., Nian, H., Zou, L., Gao, J., Chai, F., and Zhou, Z.:
Comparative analysis of chemical composition and sources of aerosol particles in urban Beijing during clear, hazy, and dusty days using single particle aerosol mass spectrometry,
J. Clean. Prod.,
112, 1319–1329, https://doi.org/10.1016/j.jclepro.2015.04.054, 2016.
Marsden, N. A., Flynn, M. J., Allan, J. D., and Coe, H.: Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer, Atmos. Meas. Tech., 11, 195–213, https://doi.org/10.5194/amt-11-195-2018, 2018.
Middlebrook, A. M., Murphy, D. M., and Thomson, D. S.:
Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1),
J. Geophys. Res.,
103, 16475–16483, https://doi.org/10.1029/97JD03719, 1998.
Miersch, T., Czech, H., Stengel, B., Abbaszade, G., Orasche, J., Sklorz, M., Streibel, T., and Zimmermann, R.:
Composition of carbonaceous fine particulate emissions of a flexible fuel DISI engine under high velocity and municipal conditions,
Fuel,
236, 1465–1473, https://doi.org/10.1016/j.fuel.2018.09.136, 2019.
Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., and Focsa, C.:
Characterisation of particulate matter and gaseous emissions from a large ship diesel engine,
Atmos. Environ.,
43, 2632–2641, https://doi.org/10.1016/j.atmosenv.2009.02.008, 2009.
Morrical, B. D., Fergenson, D. P., and Prather, K. A.:
Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spectrometry for the analysis of individual organic particles,
J. Am. Soc. Mass Spectr.,
9, 1068–1073, https://doi.org/10.1016/S1044-0305(98)00074-9, 1998.
Murphy, D. M.:
The design of single particle laser mass spectrometers,
Mass Spectrom. Rev.,
26, 150–165, https://doi.org/10.1002/mas.20113, 2007.
Murphy, D. M., Froyd, K. D., Bian, H., Brock, C. A., Dibb, J. E., DiGangi, J. P., Diskin, G., Dollner, M., Kupc, A., Scheuer, E. M., Schill, G. P., Weinzierl, B., Williamson, C. J., and Yu, P.: The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093–4104, https://doi.org/10.5194/acp-19-4093-2019, 2019.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M., Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber, R. J.:
Single-particle mass spectrometry of tropospheric aerosol particles,
J. Geophys. Res.,
111, n/a–n/a, https://doi.org/10.1029/2006JD007340, 2006.
Nash, D. G., Liu, X. F., Mysak, E. R., and Baer, T.:
Aerosol particle mass spectrometry with low photon energy laser ionization,
Int. J. Mass Spectrom.,
241, 89–97, https://doi.org/10.1016/j.ijms.2004.12.016, 2005.
Neubauer, K. R., Johnston, M. V., and Wexler, A. S.:
Humidity effects on the mass spectra of single aerosol particles,
Atmos. Environ.,
32, 2521–2529, https://doi.org/10.1016/S1352-2310(98)00005-3, 1998.
Nguyen, D.-L., Czech, H., Pieber, S. M., Schnelle-Kreis, J., Steinbacher, M., Orasche, J., Henne, S., Popovicheva, O. B., Abbaszade, G., Engling, G., Bukowiecki, N., Nguyen, N.-A., Nguyen, X.-A., and Zimmermann, R.: Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case study in northwestern Vietnam, Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, 2021.
Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgić, I., Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R., and Wisthaler, A.:
The molecular identification of organic compounds in the atmosphere: state of the art and challenges,
Chem. Rev.,
115, 3919–3983, https://doi.org/10.1021/cr5003485, 2015.
Oster, M., Elsasser, M., Schnelle-Kreis, J., and Zimmermann, R.:
First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons,
Anal. Bioanal. Chem.,
401, 3173–3182, https://doi.org/10.1007/s00216-011-5438-9, 2011.
Pandey, S. K., Kim, K.-H., and Brown, R. J.:
A review of techniques for the determination of polycyclic aromatic hydrocarbons in air,
TrAC-Trend. Anal. Chem.,
30, 1716–1739, https://doi.org/10.1016/j.trac.2011.06.017, 2011.
Passig, J. and Zimmermann, R.:
Laser Ionization in Single-Particle Mass Spectrometry,
in: Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications,
edited by: Zimmermann, R. and Hanley, L.,
Wiley-VCH, Weinheim, https://doi.org/10.1002/9783527682201.ch11, 2020.
Passig, J., Schade, J., Oster, M., Fuchs, M., Ehlert, S., Jäger, C., Sklorz, M., and Zimmermann, R.:
Aerosol Mass Spectrometer for Simultaneous Detection of Polyaromatic Hydrocarbons and Inorganic Components from Individual Particles,
Anal. Chem.,
89, 6341–6345, https://doi.org/10.1021/acs.analchem.7b01207, 2017.
Passig, J., Schade, J., Rosewig, E. I., Irsig, R., Kröger-Badge, T., Czech, H., Sklorz, M., Streibel, T., Li, L., Li, X., Zhou, Z., Fallgren, H., Moldanova, J., and Zimmermann, R.: Resonance-enhanced detection of metals in aerosols using single-particle mass spectrometry, Atmos. Chem. Phys., 20, 7139–7152, https://doi.org/10.5194/acp-20-7139-2020, 2020.
Passig, J., Schade, J., Irsig, R., Li, L., Li, X., Zhou, Z., Adam, T., and Zimmermann, R.: Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry, Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, 2021a.
Passig, J., Schade, J., Irsig, R., Kröger-Badge, T., Czech, H., Adam, T., Fallgren, H., Moldanova, J., Sklorz, M., Streibel, T., and Zimmermann, R.: Data Repository for “Single-particle characterization of polycyclic aromatic hydrocarbons in background air in Northern Europe”, Atmos. Chem. Phys., Zenodo [data set], https://doi.org/10.5281/zenodo.5794078, 2021b.
Phousongphouang, P. T. and Arey, J.:
Rate Constants for the Gas-Phase Reactions of a Series of Alkylnaphthalenes with the OH Radical,
Environ. Sci. Technol.,
36, 1947–1952, https://doi.org/10.1021/es011434c, 2002.
Pöschl, U. and Shiraiwa, M.:
Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene,
Chem. Rev.,
115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015.
Prather, K. A., Nordmeyer, T., and Salt, K.:
Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,
Anal. Chem.,
66, 1403–1407, https://doi.org/10.1021/ac00081a007, 1994.
Pratt, K. A. and Prather, K. A.:
Mass spectrometry of atmospheric aerosols–recent developments and applications. Part II: On-line mass spectrometry techniques,
Mass Spectrom. Rev.,
31, 17–48, https://doi.org/10.1002/mas.20330, 2012.
Ravindra, K., Sokhi, R., and van Grieken, R.:
Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation,
Atmos. Environ.,
42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Reinard, M. S. and Johnston, M. V.:
Ion formation mechanism in laser desorption ionization of individual nanoparticles,
J. Am. Soc. Mass Spectr.,
19, 389–399, https://doi.org/10.1016/j.jasms.2007.11.017, 2008.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.:
Aerosol Mixing State: Measurements, Modeling, and Impacts,
Rev. Geophys.,
57, 187–249, https://doi.org/10.1029/2018RG000615, 2019.
Riva, M., Heikkinen, L., Bell, D. M., Peräkylä, O., Zha, Q., Schallhart, S., Rissanen, M. P., Imre, D., Petäjä, T., Thornton, J. A., Zelenyuk, A., and Ehn, M.:
Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition,
npj Climate and Atmospheric Science,
2, 2, https://doi.org/10.1038/s41612-018-0058-0, 2019.
Romay, F. J., Roberts, D. L., Marple, V. A., Liu, B. Y. H., and Olson, B. A.:
A High-Performance Aerosol Concentrator for Biological Agent Detection,
Aerosol Sci. Technol.,
36, 217–226, https://doi.org/10.1080/027868202753504074, 2002.
Sakurai, H., Tobias, H. J., Park, K., Zarling, D., Docherty, K. S., Kittelson, D. B., McMurry, P. H., and Ziemann, P. J.:
On-line measurements of diesel nanoparticle composition and volatility,
Atmos. Environ.,
37, 1199–1210, https://doi.org/10.1016/S1352-2310(02)01017-8, 2003.
Schade, J., Passig, J., Irsig, R., Ehlert, S., Sklorz, M., Adam, T., Li, C., Rudich, Y., and Zimmermann, R.:
Spatially Shaped Laser Pulses for the Simultaneous Detection of Polycyclic Aromatic Hydrocarbons as well as Positive and Negative Inorganic Ions in Single Particle Mass Spectrometry,
Anal. Chem.,
91, 10282–10288, https://doi.org/10.1021/acs.analchem.9b02477, 2019.
Schmidt, S., Schneider, J., Klimach, T., Mertes, S., Schenk, L. P., Kupiszewski, P., Curtius, J., and Borrmann, S.: Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment, Atmos. Chem. Phys., 17, 575–594, https://doi.org/10.5194/acp-17-575-2017, 2017.
Shen, X., Ramisetty, R., Mohr, C., Huang, W., Leisner, T., and Saathoff, H.: Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples, Atmos. Meas. Tech., 11, 2325–2343, https://doi.org/10.5194/amt-11-2325-2018, 2018.
Shen, X., Saathoff, H., Huang, W., Mohr, C., Ramisetty, R., and Leisner, T.: Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry, Atmos. Meas. Tech., 12, 2219–2240, https://doi.org/10.5194/amt-12-2219-2019, 2019a.
Shen, X., Vogel, H., Vogel, B., Huang, W., Mohr, C., Ramisetty, R., Leisner, T., Prévôt, A. S. H., and Saathoff, H.: Composition and origin of PM2.5 aerosol particles in the upper Rhine valley in summer, Atmos. Chem. Phys., 19, 13189–13208, https://doi.org/10.5194/acp-19-13189-2019, 2019b.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A., Thrall, B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H., and Tao, S.:
Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol,
P. Natl. Acad. Sci. USA,
114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017.
Silva, P. J. and Prather, K. A.:
Interpretation of Mass Spectra from Organic Compounds in Aerosol Time-of-Flight Mass Spectrometry,
Anal. Chem.,
72, 3553–3562, https://doi.org/10.1021/ac9910132, 2000.
Silva, P. J., Liu, D.-Y., Noble, C. A., and Prather, K. A.:
Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species,
Environ. Sci. Technol.,
33, 3068–3076, https://doi.org/10.1021/es980544p, 1999.
SMHI:
Sveriges meteorologiska och hydrologiska institut,
available at: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=71190, last access: 14 January 2021.
Sodeman, D. A., Toner, S. M., and Prather, K. A.:
Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions,
Environ. Sci. Technol.,
39, 4569–4580, https://doi.org/10.1021/es0489947, 2005.
Song, X.-H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.:
Classification of Single Particles Analyzed by ATOFMS Using an Artificial Neural Network, ART-2A,
Anal. Chem.,
71, 860–865, https://doi.org/10.1021/ac9809682, 1999.
Spencer, M. T. and Prather, K. A.:
Using ATOFMS to Determine OC/EC Mass Fractions in Particles,
Aerosol Sci. Technol.,
40, 585–594, https://doi.org/10.1080/02786820600729138, 2006.
Spencer, M. T., Shields, L. G., Sodeman, D. A., Toner, S. M., and Prather, K. A.:
Comparison of oil and fuel particle chemical signatures with particle emissions from heavy and light duty vehicles,
Atmos. Environ.,
40, 5224–5235, https://doi.org/10.1016/j.atmosenv.2006.04.011, 2006.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,
B. Am. Meteorol. Soc.,
96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G., Michalke, B., Müller, L., Orasche, J., Passig, J., Radischat, C., Rabe, R., Reda, A., Rüger, C., Schwemer, T., Sippula, O., Stengel, B., Sklorz, M., Torvela, T., Weggler, B., and Zimmermann, R.:
Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil,
Environ. Sci. Pollut. R.,
24, 10976–10991, https://doi.org/10.1007/s11356-016-6724-z, 2017.
Su, Y., Sipin, M. F., Furutani, H., and Prather, K. A.:
Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency,
Anal. Chem.,
76, 712–719, https://doi.org/10.1021/ac034797z, 2004.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Sultana, C. M., Cornwell, G. C., Rodriguez, P., and Prather, K. A.: FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data, Atmos. Meas. Tech., 10, 1323–1334, https://doi.org/10.5194/amt-10-1323-2017, 2017.
Sykes, D. C., Woods, E., Smith, G. D., Baer, T., and Miller, R. E.:
Thermal Vaporization-Vacuum Ultraviolet Laser Ionization Time-of-Flight Mass Spectrometry of Single Aerosol Particles,
Anal. Chem.,
74, 2048–2052, https://doi.org/10.1021/ac011225a, 2002.
Tobiszewski, M. and Namieśnik, J.:
PAH diagnostic ratios for the identification of pollution emission sources,
Environ. Pollut.,
162, 110–119, https://doi.org/10.1016/j.envpol.2011.10.025, 2012.
Toner, S. M., Sodeman, D. A., and Prather, K. A.:
Single Particle Characterization of Ultrafine and Accumulation Mode Particles from Heavy Duty Diesel Vehicles Using Aerosol Time-of-Flight Mass Spectrometry,
Environ. Sci. Technol.,
40, 3912–3921, https://doi.org/10.1021/es051455x, 2006.
Toner, S. M., Shields, L. G., Sodeman, D. A., and Prather, K. A.:
Using mass spectral source signatures to apportion exhaust particles from gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS,
Atmos. Environ.,
42, 568–581, https://doi.org/10.1016/j.atmosenv.2007.08.005, 2008.
Vera, C. C., Trimborn, A., Hinz, K.-P., and Spengler, B.:
Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method,
Rapid Commun. Mass Sp.,
19, 133–146, https://doi.org/10.1002/rcm.1753, 2005.
Vereecken, L.:
Reaction Mechanisms for the Atmospheric Oxidation of Monocyclic Aromatic Compounds,
in: Advances in Atmospheric Chemistry,
edited by: Barker, J. R. and Steiner, A. L.,
World Scientific, 377–527, https://doi.org/10.1142/9789813271838_0006, 2018.
Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M. A. J., Olariu, R.-I., and Arsene, C.:
Photochemical reactions in the tropospheric aqueous phase and on particulate matter,
Chem. Soc. Rev.,
35, 441–453, https://doi.org/10.1039/B510796M, 2006.
Wang, S., Zordan, C. A., and Johnston, M. V.:
Chemical characterization of individual, airborne sub-10-nm particles and molecules,
Anal. Chem.,
78, 1750–1754, https://doi.org/10.1021/ac052243l, 2006.
Wang, X., Gao, S., Yang, X., Chen, H., Chen, J., Zhuang, G., Surratt, J. D., Chan, M. N., and Seinfeld, J. H.:
Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols,
Environ. Sci. Technol.,
44, 4441–4446, https://doi.org/10.1021/es1001117, 2010.
Wang, X., Shen, Y., Lin, Y., Pan, J., Zhang, Y., Louie, P. K. K., Li, M., and Fu, Q.: Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai, Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019, 2019.
Wilkerson, C. W., Colby, S. M., and Reilly, J. P.:
Determination of polycyclic aromatic hydrocarbons using gas chromatography/laser ionization mass spectrometry with picosecond and nanosecond light pulses,
Anal. Chem.,
61, 2669–2673, https://doi.org/10.1021/ac00198a016, 1989.
Woods, E., Smith, G. D., Dessiaterik, Y., Baer, T., and Miller, R. E.:
Quantitative Detection of Aromatic Compounds in Single Aerosol Particle Mass Spectrometry,
Anal. Chem.,
73, 2317–2322, https://doi.org/10.1021/ac001166l, 2001.
Xu, J., Wang, H., Li, X., Li, Y., Wen, J., Zhang, J., Shi, X., Li, M., Wang, W., Shi, G., and Feng, Y.:
Refined source apportionment of coal combustion sources by using single particle mass spectrometry,
Sci. Total Environ.,
627, 633–646, https://doi.org/10.1016/j.scitotenv.2018.01.269, 2018.
Zelenyuk, A. and Imre, D.:
Single Particle Laser Ablation Time-of-Flight Mass Spectrometer: An Introduction to SPLAT,
Aerosol Sci. Technol.,
39, 554–568, https://doi.org/10.1080/027868291009242, 2005.
Zelenyuk, A., Yang, J., Choi, E., and Imre, D.:
SPLAT II: An Aircraft Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ Characterization of the Size and Composition of Fine and Ultrafine Particles,
Aerosol Sci. Technol.,
43, 411–424, https://doi.org/10.1080/02786820802709243, 2009.
Zelenyuk, A., Imre, D., Beránek, J., Abramson, E., Wilson, J., and Shrivastava, M.:
Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons,
Environ. Sci. Technol.,
46, 12459–12466, https://doi.org/10.1021/es302743z, 2012.
Zelenyuk, A., Imre, D. G., Wilson, J., Bell, D. M., Suski, K. J., Shrivastava, M., Beránek, J., Alexander, M. L., Kramer, A. L., and Massey Simonich, S. L.:
The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles,
Faraday Discuss.,
200, 143–164, https://doi.org/10.1039/c7fd00032d, 2017.
Zhang, G., Bi, X., Li, L., Chan, L. Y., Li, M., Wang, X., Sheng, G., Fu, J., and Zhou, Z.: Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: a case study, Atmos. Chem. Phys., 13, 4723–4735, https://doi.org/10.5194/acp-13-4723-2013, 2013.
Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., and Wang, X.:
Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall,
Environ. Pollut.,
153, 594–601, https://doi.org/10.1016/j.envpol.2007.09.004, 2008.
Zhou, L., Hopke, P. K., and Venkatachari, P.:
Cluster analysis of single particle mass spectra measured at Flushing, NY,
Anal. Chim. Acta,
555, 47–56, https://doi.org/10.1016/j.aca.2005.08.061, 2006.
Zhou, Y., Huang, X. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., Wu, C., Meng, J., Chan, C. K., Louie, P. K., and Yu, J. Z.:
A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer,
Atmos. Environ.,
143, 300–312, https://doi.org/10.1016/j.atmosenv.2016.08.054, 2016.
Zhuo, Z., Su, B., Xie, Q., Li, L., Huang, Z., Zhou, Z., Mai, Z., and Tan, G.:
Improved Aerodynamic Particle Concentrator for Single Particle Aerosol Mass Spectrometry: A Simulation and Characterization Study,
Chinese Journal of Vacuum Science and Technology,
443–449, https://doi.org/10.13922/j.cnki.cjvst.202008026, 2021.
Zimmermann, R. and Hanley, L. (Eds.):
Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications,
Wiley-VCH, Weinheim, ISBN 978-3-527-33510-7, 2020.
Zimmermann, R., Ferge, T., Gälli, M., and Karlsson, R.:
Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process,
Rapid Commun. Mass Sp.,
17, 851–859, https://doi.org/10.1002/rcm.979, 2003.
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was...
Altmetrics
Final-revised paper
Preprint