Articles | Volume 22, issue 21
https://doi.org/10.5194/acp-22-13949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Louise Bøge Frederickson
Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
AirLabs Denmark, Nannasgade 28, 2200 Copenhagen N, Denmark
Ruta Sidaraviciute
AirLabs Denmark, Nannasgade 28, 2200 Copenhagen N, Denmark
Johan Albrecht Schmidt
AirLabs Denmark, Nannasgade 28, 2200 Copenhagen N, Denmark
Ole Hertel
Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
AirLabs Denmark, Nannasgade 28, 2200 Copenhagen N, Denmark
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
Related authors
No articles found.
Svend L. Bager, Luna Zamok, Stephan P. A. Sauer, and Matthew S. Johnson
EGUsphere, https://doi.org/10.48550/arXiv.2401.10053, https://doi.org/10.48550/arXiv.2401.10053, 2025
Preprint archived
Short summary
Short summary
In this work we have studied by means of quantum chemical calculations at the CCSD(T) or CASPT2 level the kinetics of reactions of both bromine and iodine compounds with Hg, which are discussed to lead to the atmospheric oxidation of Hg. The particular interest is in the question whether the reactions with iodine compounds are as fast as the corresponding reactions with bromine compounds and therefore could also contribute to mercury depletion events.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Marie K. Mikkelsen, Jesper B. Liisberg, Maarten M. J. W. van Herpen, Kurt V. Mikkelsen, and Matthew S. Johnson
Aerosol Research, 2, 31–47, https://doi.org/10.5194/ar-2-31-2024, https://doi.org/10.5194/ar-2-31-2024, 2024
Short summary
Short summary
We analyze the mechanism whereby sunlight and iron catalyze the production of chlorine from chloride in sea spray aerosol. This process occurs naturally over the North Atlantic and is the single most important source of chlorine. We investigate the mechanism using quantum chemistry, laboratory experiments, and aqueous chemistry modelling. The process will change depending on competing ions, light distribution, acidity, and chloride concentration.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Cited articles
Abdo, N., Khader, Y. S., Abdelrahman, M., Graboski-Bauer, A., Malkawi, M., Al-Sharif, M., and Elbetieha, A. M.: Respiratory health outcomes and air pollution in the Eastern Mediterranean Region: a systematic review, Environ. Health Rev., 31, 259–280, https://doi.org/10.1515/reveh-2015-0076, 2016.
a
Ai, S., Wang, C., Qian, Z.M., Cui, Y., Liu, Y., Acharya, B. K., Sun, X., Hinyard, L., Jansson, D. R., Qin, L., and Lin, H.: Hourly associations between ambient air pollution and emergency ambulance calls in one central Chinese city: Implications for hourly air quality standards, Sci. Total Environ., 696, 133956, https://doi.org/10.1016/j.scitotenv.2019.133956, 2019. a
Alphasense: Alphasense application note 803: Correcting for background currents in four electrode toxic gas sensors, Technical report AAN 803-01, Alphasense Ltd, https://zueriluft.ch/makezurich/AAN803.pdf (last access: 4 September 2022), 2014. a
Berkowicz, R., Palmgren, F., Hertel, O., and Vignati, E.: Using measurements of air pollution in streets for evaluation of urban air quality – meteorological analysis and model calculations, Sci. Total Environ., 189/190, 259–265, https://doi.org/10.1016/0048-9697(96)05217-5, 1996. a, b
Borrego, C., Costa, A. M., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, A. N., Gérard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillón, M. C., Reimringer, W., Otjes, R. P., von Sicard, O., Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., and Penza, M.: Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise, Atmos. Environ., 147, 246–263, https://doi.org/10.1016/j.atmosenv.2016.09.050, 2016. a
Brasseur, G. and Jacob, D.: Modeling of Atmospheric Chemistry, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316544754, 2017. a
Budde, M., Schwarz, A. D., Müller, T., Laquai, B., Streibl, N., Schindler, G., Köpke, M., Riedel, T., Dittler, A., and Beigl, M.: Potential and limitations of the low-cost SDS-011 particle sensor for monitoring urban air quality, ProScience, 5, 6–12, https://doi.org/10.14644/dust.2018.002, 2018. a
Bulot, F. M. J., Russell, H. S., Rezaei, M., Johnson, M. S., Ossont, S. J. J., Morris, A. K. R., Basford, P. J., Easton, N. H. C., Foster, G. L., Loxham, M., and Cox, S. J.: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution, Sensors, 20, 2219, https://doi.org/10.3390/s20082219, 2020. a, b
Cao, J., Zhou, W., Zheng, Z., Ren, T., and Wang, W.: Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature, Landsc. Urban Plan., 206, 103979, https://doi.org/10.1016/j.landurbplan.2020.103979, 2021. a
Carslaw, D. C. and Beevers, S. D.: Characterising and understanding emission sources using bivariate polar plots and k-means clustering, Environ. Model. Softw., 40, 325–329, https://doi.org/10.1016/j.envsoft.2012.09.005, 2013. a
Carslaw, D. C., Beevers, S. D., Ropkins, K., and Bell, M. C. Detecting and quantifying the contribution made by aircraft emissions to ambient concentrations of nitrogen oxides in the vicinity of a large international airport, Atmos. Environ., 40, 28, 5424–5434, https://doi.org/10.1016/j.atmosenv.2006.04.062, 2006. a, b
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017. a
Chen, G., Guo, Y., Abramson, M. J., Williams, G., and Li, S.: Exposure to low concentrations of air pollutants and adverse birth outcomes in Brisbane, Australia, 2003–2013, Sci. Total Environ., 622, 721–726, https://doi.org/10.1016/j.scitotenv.2017.12.050, 2018. a
Choi, Y.-S., Ho, C.-H., Chenb, D., Noha, Y.-H., and Song, C.-K.: Spectral analysis of weekly variation in PM10 mass concentration and meteorological conditions over China, Atmos. Environ., 42, 655–666, https://doi.org/10.1016/j.atmosenv.2007.09.075, 2008. a
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017. a
Ellermann, T., Nygaard, J., Nøjgaard, J. K., Nordstrøm, C., Brandt, J., Christensen, J. H., Ketzel, M., Massling, A., Bossi, R., Frohn, L. M., Geels, C., and Jensen, S. S.: The Danish Air Quality Monitoring Programme: Annual Summary for 2018, Scientific Report from DCE – Danish Centre for Environment and Energy No. 360, Aarhus Universitet, Aarhus, p. 83, http://dce2.au.dk/pub/SR360.pdf (last access: 24 October 2022), 2020. a
EEA – The European Environment Agency: Europe's Environment – The Dobris Assessment, in: chap. 4: Air, https://www.eea.europa.eu/publications/92-826-5409-5/page004new.html (last access: 24 October 2022), 2008. a
Eskridge, R., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.: Separating different time scales of motion in time series of meteorological variables, B. Am. Meteorol. Soc., 78, 1473–1483, https://doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2, 1997 a
Frederickson, L. B., Lim, S., Russell, H. S., Kwiatkowski, S., Bonomaully, J., Schmidt, J. A., Hertel, O., Mudway, I., Barratt, B., and Johnson, M. S: Monitoring excess exposure to air pollution for professional drivers in London using low-cost sensors, MDPI Atmos., 11, 749, https://doi.org/10.3390/atmos11070749, 2020a. a
Gemmer, M. and Bo, X.: Air quality legislation and standards in the European Union: Background, status and public participation, Adv. Clim. Change Res., 4, 50–59, https://doi.org/10.3724/SP.J.1248.2013.050, 2013. a
Genikomsakis, K. N., Galatoulas, N.-F., Dallas, P. I., Candanedo Ibarra, L. M., Margaritis, D., and Ioakimidis, C. S.: Development and on-field testing of low-cost portable system for monitoring PM2.5 concentrations, Sensors, 18, 1056–1072, https://doi.org/10.3390/s22072767, 2018. a
Grange, S. K., Lewis, A. C., and Carslaw, D. C.: Source apportionment advances using polar plots of bivariate correlation and regression statistics, Atmos. Environ., 145, 128–134, https://doi.org/10.1016/j.atmosenv.2016.09.016, 2016. a
Grigoratos, T. and Giorgio, M.: Brake wear particle emissions: A review, Environ. Sci. Pollut. Res., 22, 2491–504, https://doi.org/10.1007/s11356-014-3696-8, 2015. a
Heimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., and Jones, R. L.: Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors, Atmos. Environ., 113, 10–19, https://doi.org/10.1016/j.atmosenv.2015.04.057, 2015. a
Hertel, O., Ellermann, T., Palmgren, F., Berkowicz, R., Løfstrøm, P., Frohn, L. M., Geels, C., Ambelas Skjøth, C., Brandt, J., Christensen, J., Kemp, K., and Ketzel, M.: Integrated air pollution monitoring – combined use of measurements and models in monitoring programmes, Environ. Chem., 4, 65–74, https://doi.org/10.1071/EN06077, 2007. a
Hies, T., Treffeisen, R., Sebald, L., and Reimer, E.: Spectral analysis of air pollutants. Part 1: elemental carbon time series, Atmos. Environ., 34, 3495–3502, https://doi.org/10.1016/S1352-2310(00)00146-1, 2000. a
Hogrefe, C., Porter, P. S., Gego, E., Gilliland, A., Gilliam, R., Swall, J., Irwin, J., and Rao, S. T.: Temporal features in observed and simulated meteorology and air quality over the Eastern United States, Atmos. Environ., 40, 5041–5055, https://doi.org/10.1016/j.atmosenv.2005.12.056, 2006. a
Hwang, C. and Chen, S.-A.: Fourier and wavelet analyses of TOPEX/Poseidon-derived sea level anomaly over the South China Sea: A contribution to the South China Sea Monsoon Experiment, J. Geophys. Res., 105, 28785–28804, https://doi.org/10.1029/2000JC900109, 2000. a
Kingham, S., Briggs, D., Elliott, P., Fischer, P., and Lebret, E.: Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England, Atmos. Environ., 34, 905–916, https://doi.org/10.1016/S1352-2310(99)00321-0, 2000. a
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., and Britter, R.: The rise of low-cost sensing for managing air pollution in cities, Environ. Int., 75, 199–205, https://doi.org/10.1016/j.envint.2014.11.019, 2015. a
Lazić, L., Urošević, M. A., Mijić, Z., Vuković, G., and Ilić, L.: Traffic contribution to air pollution in urban street canyons: Integrated application of the OSPM, moss biomonitoring and spectral analysis, Atmos. Environ., 141, 347–360, https://doi.org/10.1016/j.atmosenv.2016.07.008, 2016. a, b
Lebret, E., Briggs, D., Van Reeuwijk, H., Fischer, P., Smallbone, K., Harssema, H., Kriz, B., Gorynski, P., and Elliott, P.: Small area variations in ambient NO2 concentrations in four European areas, Atmos. Environ., 34, 177–185, https://doi.org/10.1016/S1352-2310(99)00292-7, 2000. a
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–414, https://doi.org/10.1038/nature15371, 2015. a
Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J., Smith, K. R., Buckley, J. W., Ellis, M., and Gillot, S. R.: Evaluating the performance of low cost chemical sensors for air pollution research, Faraday Discuss., 189, 85–103, https://doi.org/10.1039/C5FD00201J, 2016 a
Li, C., Wang, Z., Li, B., Peng, Z. R., and Fu, Q.: Investigating the relationship between air pollution variation and urban form, Build. Environ., 147, 559–568, https://doi.org/10.1016/j.buildenv.2018.06.038, 2019. a
Li, J., Hauryliuk, A., Malings, C., Eilenberg, S. R., Subramanian, R., and Presto, A. A.: Characterizing the aging of Alphasense NO2 sensors in long-term field deployments, ACS Sens., 6, 2952–2959,
https://doi.org/10.1021/acssensors.1c00729, 2021. a
Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright D., Neale, D., Kan, R., Kirkwood, J., and Morawska, L.: Low-cost sensors as an alternative for long-term air quality monitoring, Environ. Res., 185, 109738, https://doi.org/10.1016/j.envres.2020.109438, 2020. a
Liu, H.-Y., Schneider, P., Haugen, R., and Vogt, M.: Performance assessment of a low-cost PM2.5 sensor for a near four-month period in Oslo, Norway, Atmosphere, 10, 411–459, https://doi.org/10.3390/atmos10020041, 2019. a
Lyons, T. J.: Mesoscale wind spectra, Q. J. Roy. Meteorol. Soc., 101, 901–910, https://doi.org/10.1002/qj.49710143013, 1975. a
Maag, B., Zhou, Z., and Thiele, L.: A survey on sensor calibration in air pollution monitoring deployments, IEEE Internet Things J., 5, 4857–4870, https://doi.org/10.1109/JIOT.2018.2853660, 2018. a
Marr, L. and Harley, R.: Spectral Analysis of Weekday–Weekend Differences in Ambient Ozone, Nitrogen Oxide, and Non-methane Hydrocarbon Time Series in California, Atmos. Environ., 36, 2327–2335, https://doi.org/10.1016/S1352-2310(02)00188-7, 2002. a, b, c
Mead, M., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J., McLeod, M., Hodgson, T., Dicks, J., Lewis, A. C., Cohen, J., Baron, R., Saffell, J., and Jones, R.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmos. Environ., 70, 186–203, https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013. a, b, c
Monn, C.: Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone, Atmos. Environ., 35, 1–32, https://doi.org/10.1016/S1352-2310(00)00330-7, 2001. a
Motlagh, N. H., Lagerspetz, E., Nurmi, P., Li, X., Varjonen, S., Mineraud, J., Siekkinen, M., Rebeiro-Hargrave, A., Hussein, T., and Petaja, T: Toward massive scale air quality monitoring, IEEE Commun. Mag., 58, 54–59, https://doi.org/10.1109/MCOM.001.1900515, 2020. a
Narayanan, V. A. and Prabhu, K. M. M.: The fractional Fourier transform: Theory, implementation and error analysis, Microprocess. Microsyst., 27, 511–521, https://doi.org/10.1016/S0141-9331(03)00113-3, 2003. a
Nova Fitness Co. Ltd: Laser PM2.5 Sensor specification, SDS011, Version V1.3, Data sheet, https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
(last access: 24 September 2022), 2015 a
Palmgren, F., Berkowicz, R., Hertel, O., and Vignati, E.: Effects of reduction in NOx on the NO2 levels in urban streets, Sci. Total Environ., 189/190, 409–415, https://doi.org/10.1016/0048-9697(96)05238-2, 1996. a
Percival, D. and Walden, A.: Spectral analysis for physical applications. Cambridge University Press, https://doi.org/10.1017/CBO9780511622762, 1998. a
Popoola, O. A. M., Stewart, G. B., Mead, M. I., and Jones, R. L.: Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability, Atmos. Environ., 147, 330–343, https://doi.org/10.1016/j.atmosenv.2016.10.024, 2016. a, b
Rao, S. T., Samson, P. J., and Peddada, A. R.: Spectral analysis
approach to the dynamics of air pollutants, Atmos. Environ., 10, 375–379, https://doi.org/10.1016/0004-6981(76)90005-6, 1976. a
Sebald, L., Treffeisen, R., Reimer, E., and Hies, T.: Spectral analysis of air pollutants. Part 2: ozone time series, Atmos. Environ., 34, 3503–3509, https://doi.org/10.1016/S1352-2310(00)00147-3, 2000. a
Seinfeld, J. H. and Pandis, S. N.: Atmopsheric Chemistry and Physics, 3rd Edn., John Wiley and Sons, Hoboken, New Jersey, ISBN 9781118947401, 2016. a
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.: The changing paradigm of air pollution monitoring, Environ. Sci. Technol., 47, 11369–11377, https://doi.org/10.1021/es4022602, 2013. a
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sens. Actuat. B, 215, 249–257, https://doi.org/10.1016/j.snb.2015.03.031, 2015. a
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2, Sens. Actuat. B, 238, 706–715, https://doi.org/10.1016/j.snb.2016.07.036, 2017. a, b
Stetter, J. R. and Li, J.: Amperometric gas sensors: A review, Chem. Rev., 108, 352–366, https://doi.org/10.1021/cr0681039, 2008. a
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the pathways and timescales of intercontinental air pollution transport, J. Geophys. Res.-Atmos., 107, ACH 6-1–ACH 6-17, https://doi.org/10.1029/2001JD001396, 2002. a
Sun, G., Hazlewood, G., Bernatsky, S., Kaplan, G. G., Eksteen, B., and Barnabe, C.: Association between air pollution and the development of rheumatic disease: a systematic review, Int. J. Rheumatol., 2016, 5356307, https://doi.org/10.1155/2016/5356307, 2016. a
Sun, L. and Wang, M.:Global warming and global dioxide emission: An empirical study, J. Environ. Manage., 46, 327–343, https://doi.org/10.1006/jema.1996.0025, 1996. a
Sun, L. and Wang, M.: A component time-series model for SO2 data: Forecasting, interpretation and modification, Atmos. Environ., 31, 1285–1295, https://doi.org/10.1016/S1352-2310(96)00306-8, 1997. a
Sun, L., Westerdahl, D., and Ning, Z.: Development and evaluation of a novel and cost-effective approach for low-cost NO2 sensor drift correction, Sensors, 17, 1916, https://doi.org/10.3390/s17081916, 2017.
a
Tchepel, O., Costa, A. M., Martins, H., Ferreira, J., Monteiro, A., Miranda, A. I., and Borrego, C.: Determination of Background Concentrations for Air Quality Models Using Spectral Analysis of Monitoring Data, Atmos. Environ., 44, 106–114, https://doi.org/10.1016/j.atmosenv.2009.08.038, 2009. a
Uria-Tellaetxe, I. and Carslaw, D. C.: Conditional bivariate probability function for source identification, Environ. Model. Softw., 59, 1–9, https://doi.org/10.1016/j.envsoft.2014.05.002, 2014. a
Van de Hulst, H. C.: Light scattering by small particles, Dover Publications, Inc., New York, ISBN 9780486642284, ISBN 0486642283, 1981. a
Van der Hoven, I.: Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour, J. Meteorol., 14, 160–164, https://doi.org/10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2, 1957. a
Vignati, E., Berkowicz, R., and Hertel, O.: Comparison of air quality in streets of Copenhagen and Milan, in view of the climatological conditions, Sci. Total Environ., 189/190, 467–473, https://doi.org/10.1016/0048-9697(96)05247-3, 1996. a
Wang, W., Liu, C., Ying, Z., Lei, X., Wang, C., Huo, J., Zhao, Q., Zhang, Y., Duan, Y., Chen, R., and Fu, Q.: Particulate air pollution and ischemic stroke hospitalization: How the associations vary by constituents in Shanghai, China, Sci. Total Environ., 695, 133780, https://doi.org/10.1016/j.scitotenv.2019.133780, 2019. a
Wang, Z., Zhong, S., Peng, Z. R., and Cai, M.: Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection, Build. Environ., 141, 215–225, https://doi.org/10.1016/j.buildenv.2018.04.042, 2018. a
Westmoreland, E. J., Carslaw, N., Carslaw, D. C., Gillah, A., and Bates, E.: Analysis of air quality within a street canyon using statistical and dispersion modelling techniques, Atmos. Environ., 41, 9195–9205, https://doi.org/10.1016/j.atmosenv.2007.07.057, 2007. a
Wilson, J. G., Kingham, S., Pearce, J., and Sturman, A. P.: A review of intraurban variations in particulate air pollution: Implications for epidemiological research, Atmos. Environ., 39, 6444–6462, https://doi.org/10.1016/j.atmosenv.2005.07.030, 2005. a
Wu, Z., Zhang, Y., Zhang, L., Huang, M., Zhong, L., Chen, D., and Wang, X.: Trends of outdoor air pollution and the impact on premature mortality in the Pearl River Delta region of southern China during 2006–2015, Sci. Total Environ., 690, 248–260, https://doi.org/10.1016/j.scitotenv.2019.134390, 2019. a
Zhang, H., Dong, H., Ren, M., Liang, Q., Shen, X., Wang, Q., Yu, L., Lin, H., Luo, Q., Chen, W., and Knibbs, L. D.: Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou, China: A prospective cohort study, Sci. Total Environ., 699, 134390, https://doi.org/10.1016/j.scitotenv.2019.134390, 2020. a
Zou, B., Wilson, J. G., Zhan, F. B., and Zeng, Y.: Spatially differentiated and source-specific population exposure to ambient urban air pollution, Atmos. Environ., 43, 3981–3988, https://doi.org/10.1016/j.atmosenv.2009.05.022, 2009. a
Short summary
Low-cost sensors see additional pollution that is not seen with traditional regional air quality monitoring stations. This additional local pollution is sufficient to cause exceedance of the World Health Organization exposure thresholds. Analysis shows that a significant amount of the NO2 pollution we observe is local, mainly due to road traffic. This article demonstrates how networks of nodes containing low-cost pollution sensors can powerfully extend existing monitoring programmes.
Low-cost sensors see additional pollution that is not seen with traditional regional air quality...
Altmetrics
Final-revised paper
Preprint