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Abstract. Air pollution exhibits hyper-local variation, especially near emissions sources. In addition to people’s
time-activity patterns, this variation is the most critical element determining exposure. Pollution exposure is
time-activity- and path-dependent, with specific behaviours such as mode of commuting and time spent near
a roadway or in a park playing a decisive role. Compared to conventional air pollution monitoring stations,
nodes containing low-cost air pollution sensors can be deployed with very high density. In this study, a network
of 18 nodes using low-cost air pollution sensors was deployed in Newcastle-under-Lyme, Staffordshire, UK, in
June 2020. Each node measured a range of species including nitrogen dioxide (NO2), ozone (O3), and particulate
matter (PM2.5 and PM10); this study focuses on NO2 and PM2.5 over a 1-year period from 1 August 2020 to
1 October 2021. A simple and effective temperature, scale, and offset correction was able to overcome data
quality issues associated with temperature bias in the NO2 readings. In its recent update, the World Health
Organization (WHO) dramatically reduced annual exposure limit values from 40 to 10 µg m−3 for NO2 and
from 10 to 5 µg m−3 for PM2.5. We found that the average annual mean NO2 concentration for the network
was 17.5 µg m−3 and 8.1 µg m−3 for PM2.5. While in exceedance of the WHO guideline levels, these average
concentrations do not exceed legally binding UK/EU standards. The network average NO2 concentration was
12.5 µg m−3 higher than values reported by a nearby regional air quality monitoring station, showing the critical
importance of monitoring close to sources before pollution is diluted. We demonstrate how data from a low-cost
air pollution sensor network can reveal insights into patterns of air pollution and help determine whether sources
are local or non-local. With spectral analysis, we investigate the variation of the pollution levels and identify
typical periodicities. Both NO2 and PM2.5 have contributions from high-frequency sources; however, the low-
frequency sources are significantly different. Using spectral analysis, we determine that at least 54.3± 4.3 % of
NO2 is from local sources, whereas, in contrast, only 37.9± 3.5 % of PM2.5 is local.
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1 Introduction

According to the World Health Organization (WHO), 7 mil-
lion premature deaths every year can be attributed to poor air
quality (Lelieveld et al., 2015; WHO, 2021). In response to
the adverse health effects caused by air pollution, the WHO
developed air quality guidelines (AQGs) for a set of key
air pollutants, including nitrogen dioxide (NO2) and particu-
late matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5)
(WHO, 2021). Since the WHO’s 2015 recommendation, ev-
idence has accumulated showing many additional negative
impacts of air pollution on health (Abdo et al., 2016; Sun et
al., 2016; Chen et al., 2018; Ai et al., 2019; Wang et al., 2019;
Wu et al., 2019; Zhang et al., 2020). After a comprehensive
review of the evidence, the WHO has recently recommended
a much stricter set of standards and warned that exceeding
the new air quality guideline levels is associated with sig-
nificant health risks. Table 1 shows the previous and revised
AQGs for the pollutants of focus within this study along with
the EU standards. These standards are legally binding, while
the WHO values are indicative.

Traditionally, air quality monitoring is based on static
air quality monitoring stations (AQMSs) with calibrated
high-precision instruments. However, due to their purchase
and maintenance costs, conventional AQMSs are generally
sparsely located (Kumar et al., 2015; Maag et al., 2018). This
monitoring strategy is suited to characterizing regional air
quality but could fail to account for elevated concentrations
near sources. Moreover, the temporal and spatial resolutions
of such monitoring station networks are limited (Motlagh et
al., 2020). For example, there are a total of 18 AQMSs in
the nation of Denmark, responsible for measuring concen-
trations at street level, urban background, and regions – the
Danish National Monitoring Programme for Water and Na-
ture (NOVANA) (Ellermann et al., 2020).

Meanwhile, field studies have shown that pollution lev-
els, especially in urban environments, can vary substantially
within a few metres due to localized air pollution sources
(Lebret et al., 2000; Kingham et al., 2000; Monn, 2001; Zou
et al., 2009; Wang et al., 2018; Li et al., 2019; Wilson et
al., 2019). The local component can often be an important
factor contributing to people’s exposure, for example, for
those who commute in a vehicle and/or work as professional
drivers, street police, bicycle delivery, etc. (Frederickson et
al., 2020a), or live or work in buildings near busy roads. Low-
cost air pollution sensors and sensor networks have evolved
rapidly during the last few decades, enabled by technological
progress and the development of fast and inexpensive wire-
less communication systems (Snyder et al., 2013). While the
technologies are still evolving, low-cost air pollution sensors
are becoming available and are starting to become a valu-
able supplement to the sparse conventional AQMSs. Low-
cost sensor (LCS)-based networks are not a substitute for net-
works of conventional AQMSs, since high-quality monitor-
ing data are necessary for checking compliance with guide-

lines, and they are also necessary for validating less expen-
sive mapping obtained from modelling and/or LCS-based
monitoring.

Networks of low-cost air pollution sensors are becoming
more common. On a device level, clearly the sensor elements
cannot compete with commercial instruments regarding the
three “S”s: sensitivity, stability, and selectivity (Lewis et al.,
2016; Borrego et al., 2016; Castell et al., 2017; Frederick-
son et al., 2020b); this may be more than compensated for
because LCSs enable greatly increased site density and tem-
poral resolution, facilitating new insights into patterns and
sources of air pollution. In addition, LCSs can not only sup-
plement coarse-scale monitoring networks, but also add sub-
stantial value to mappings provided by mathematical mod-
els. Dense networks of LCSs can be used for source appor-
tionment and to distinguish local from non-local pollution
(Heimann et al., 2015) and as an aid in interpreting mathe-
matical models that are often an integrated part of air quality
monitoring (Hertel et al., 2007).

Within this study, electrochemical LCSs are used to mea-
sure gaseous pollutants, and laser-based particle counters are
used to quantify particulate matter. Electrochemical sensor
technology offers a number of advantages, including linear
response, small size, low cost in fabrication, relatively fast
response, and low power consumption (Frederickson et al.,
2020b). While low-cost air pollution sensors bring new op-
portunities for monitoring, important issues remain regarding
data quality. Studies show that sensor data can be influenced
by environmental factors such as temperature and confound-
ing gases (Spinelle et al., 2015, 2017; Mead et al., 2013;
Bulot et al., 2020). Considerable efforts have been made to
understand these factors, with varying success. Field work
presents a complex and dynamic environment, greatly com-
plicating the task of calibration. Experience shows that it is
crucial to test each individual sensor and correct for multiple
ambient factors (Popoola et al., 2016).

While a time series analysis based on summary statistics is
a simple and effective tool, more sophisticated techniques are
necessary to better understand the ultimate causes of these
variations (Hwang and Chen, 2000). Spectral analysis using
the Fourier transform can provide a deeper understanding of
time series, because transformation into the frequency do-
main allows characterization of sources according to their
periodicity and rate of change (Percival and Walden, 1998).
While spectral analysis has long been used for meteorolog-
ical variables, because of its ability to distinguish synoptic
and seasonal signals (Van der Hoven, 1957; Lyons, 1975; Es-
kridge et al., 1997), studies applying the Fourier transform
to air pollution data emerged much later (Rao et al., 1976;
Hogrefe et al., 2006; Choi et al., 2008; Lazi et al., 2016).

There is a relation between temporal and spatial scales
of air pollution (Brasseur and Jacob, 2017). Analysis of air
quality data in the frequency domain contributes to the under-
standing of periodic behaviours and yields information about
spatial and temporal scales of the hidden, underlying mecha-
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Table 1. Air quality standards set by the European Union (Gemmer and Bo, 2013) and the WHO’s global air quality guidelines (AQGs)
from 2015 and 2021 (WHO, 2021). All concentrations are in µg m−3.

EU AQGs 2015 AQGs 2021

Pollutant Averaging period Concentration Averaging period Concentration Averaging period Concentration

NO2
Annual mean 40 Annual mean 40 Annual mean 10
1 h mean 200 1 h mean 200 24 h mean 25

PM2.5 Annual mean 25
Annual mean 10 Annual mean 5
24 h mean 25 24 h mean 15

nisms (Hies et al., 2000; Sebald et al., 2000; Marr and Harley,
2002). Short-term fluctuations of the pollutant concentrations
are related to local-scale phenomena, including local disper-
sion conditions and patterns in local emissions and chem-
istry. Conversely, seasonal changes and the long-range trans-
port and emissions of pollutants contribute to the spectrum at
very low frequencies (Tchepel et al., 2009). On the timescale
of days, there are the motions of weather systems, for exam-
ple a high-pressure system with well-developed photochem-
ical air pollution. Pollution arriving from a distant source is
characterized by a slowly rising and falling signal due to the
effects of transport time and atmospheric mixing. Regional
emissions are of course regional in scale, and photochemical
pollution typically develops in a synoptic air mass. In con-
trast, local sources (e.g. traffic) more often present as a sharp
spike in concentration. Even an instantaneous puff of pollu-
tion will broaden with time based on the vertical and hori-
zontal eddy diffusion coefficients, K , which are of the order
of 100 m2 s−1 (Seinfeld and Pandis, 2016).

In this paper, we show how low-cost air pollution sensors
provide additional insights into the patterns and sources of
air pollution when deployed as a network rather than as indi-
vidual sensors. A low-cost air pollution sensor network con-
sisting of 18 low-cost air pollution sensor nodes (called AirN-
ode4PX) was deployed in Newcastle-under-Lyme, UK, in the
area centred around the ring road (see Fig. 1). The variation
in road width, the different types of road structure, and highly
variable traffic patterns all impact pollutant dispersion, re-
sulting in significant spatiotemporal variation of pollution in
the area. Each AirNode measured a range of species, includ-
ing nitrogen dioxide (NO2), ozone (O3), and particulate mat-
ter (PM2.5 and PM10); in this paper we focus on NO2 and
PM2.5. This paper does not attempt to demonstrate that the
low-cost air pollution sensors meet specific air quality mon-
itoring standards. Rather, we argue that data obtained from
such a network are able to provide useful additional informa-
tion about local air pollution that extends what can be learned
from conventional air quality monitoring stations. The data
obtained from the low-cost air pollution sensor network are
used for time series analysis in the frequency domain to ob-
tain information on the variability of air pollution concentra-
tions and to distinguish local sources from regional ones. The

network, together with the analysis approach, has allowed
pollutant emissions attributable solely to the local sources to
be distinguished from other regional or long-range transport
sources. The approach of frequency domain analysis will be
further evaluated in subsequent studies.

2 Field trial of the Staffordshire network

In June 2020, a network of 18 air pollution sensor nodes con-
taining low-cost electrochemical and metal oxide gas sen-
sors and optical particle counters was deployed in Newcastle-
under-Lyme in Staffordshire, UK, in the area centred around
the ring road. In addition, an anemometer was installed to
record wind speed and direction. The initial 14 d installa-
tion, stabilization, and testing periods of the measurement
campaign are excluded from the analysis. Overall, the study
covers a 14-month period from 1 August 2020 to 1 Octo-
ber 2021.

2.1 Nodes of low-cost air pollution sensors

The nodes include low-cost air pollution sensors, signal pro-
cessing, and communications. The units, 88× 88× 90 mm,
are assembled by AirLabs into weatherproof enclosures with
full exposure to ambient air and are set up to report mea-
surements to a cloud hosted by Amazon Web Services. The
low-cost air pollution sensor nodes are generation 4P and are
referred to as AirNode, AirNode4PX, or 4PX, with X being
the node number. Each AirNode includes sensors for measur-
ing NO2 (NO2-B43F from Alphasense Ltd.) and O3 (MiCS-
6814 from SGX Sensortech) as well as PM2.5 and PM10
(SDS-011 from Nova Fitness Co.) at a 1 min time resolu-
tion. In addition, each node is equipped with a control board
and micro-controller unit (ESP32) for programming the sen-
sors. The AirNodes were laboratory tested in Copenhagen,
Denmark, to validate their response and obtain laboratory-
based calibration coefficients, which are used to interpret
the preliminary data. After laboratory calibration, the AirN-
odes were shipped to Newcastle-under-Lyme in Stafford-
shire, UK, and were mounted 2.5 to 3 m above street level
on lamp posts which also provided power as shown in Fig. 1.
Since the study focuses on NO2 and PM2.5, a brief descrip-
tion of the sensors is given below.
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Figure 1. Spatial distribution of the AirNode network (left panel) and an overview of the location of the network relative to the two closest
reference stations (right panel). The urban background station at the Stoke-on-Trent centre is highlighted with a red marker, whereas the
roadside monitoring station at the Stoke-on-Trent A50 roadside is highlighted with a blue marker. The last AQMS used in this study (regional
background monitoring station at Ladybower) is located 54 km from the network and is for clarity not included in the map. Maps obtained
from © OpenStreetMap contributors 2021. Distributed under Open Data Commons Open Database License (ODbL) v1.0 (OpenStreetMap
contributors, 2021).

The SDS-011 sensor (Nova Fitness Co. Ltd, 2015) is a
low-cost air pollution sensor measuring PM2.5 and PM10. Its
principle of operation is based on light scattering (van de
Hulst, 1981), where particle density distribution is deter-
mined using the intensity distribution patterns produced
when particles scatter a laser beam (Liu et al., 2019). The
sensor module includes a fan to ensure a continuous flow of
air through the sensor chamber (Genikomsakis et al., 2018).
An algorithm converts the particle density distribution into
particle mass, and it can measure the particle density distri-
bution between 0.3 and 10 µm (Bulot et al., 2020; Budde et
al., 2018).

For NO2 measurements, the NO2-B43F sensor (Al-
phasense, 2019) is used. This is an amperometric electro-
chemical gas sensor containing four electrodes, where the
principle of operation is based on electrochemistry (Freder-
ickson et al., 2020b). When the working electrode (WE) is
exposed to ambient air, the target gas can diffuse onto the
surface of the electrode, where it is chemically reduced, re-
sulting in a change in current. The counter electrode bal-
ances the current, and the reference electrode sets the op-
erating potential of WE. The fourth electrode is an auxil-
iary electrode (AE) and has the same structure as WE but
is not exposed to ambient air and hence is not affected by
the target gas concentration, only by environmental parame-
ters such as temperature. Therefore, the difference in voltage
between the WE and AE corresponds to changes in target
gas concentration at the electrochemical cell surface. A tran-

simpedance amplifier converts the currents from the electro-
chemical cell into a voltage. The voltage is amplified further
by a non-inverting operational amplifier, and then a 16-bit
analogue-to-digital (A/D) converter (ADS1115) samples the
output and produces a digital reading of the voltage level.
This is used by the microprocessor to calculate the actual gas
concentration (Cross et al., 2017; Stetter and Li, 2008; Mead
et al., 2013). To minimize possible cross-interference from
ozone, the NO2 sensors were fitted with integrated catalytic
ozone filters (MnO2 filters). The performance of these filters
was verified in the laboratory, and the NO2 sensors showed
no significant response to ozone in the range of 0–100 ppb.
Cross-interferences from other common gas pollutants were
not considered important based on prior studies (Sun et al.,
2017; Mead et al., 2013).

2.2 Correction methodology

The calibration of the electrochemical sensors measuring
NO2 is known to vary at high (> 20 ◦C) and low (<
0 ◦C) temperatures and with rapid temperature change (Al-
phasense, 2019; Popoola et al., 2016; Li et al., 2021). There-
fore, we apply a correction with coefficients determined by
using a linear regression model:

NO2 (corT )= a0+ a1 · T + a2 · dT/dt + a3 ·NO2(dV), (1)

where NO2 (dV) is the raw output obtained by the Al-
phasense NO2 cell. The NO2 (dV) readings are found from
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the voltage change in cell 2, which is determined by the dif-
ference between the WE and AE outputs, WE2v, and AE2v:

NO2(dV)=WE2v−AE2v. (2)

T is filtered temperature data obtained from the nearest ref-
erence station. Filtered temperature represents the tempera-
ture reading when ambient temperature exceeds 10 ◦C and is
transformed according to

f (t)=
{

0 if T < 10,
T − 10 otherwise, (3)

and dT/dt is the rate of change in the filtered temperature.
The temperature threshold of 10 ◦C was chosen because the
internal temperatures of the LCS nodes often exceed the am-
bient temperatures, and the performance of the correction
was sufficient. The linear regression coefficients, a0, a1, a2,
and a3, are calculated using the method of multiple least
squares, separately for each AirNode (Spinelle et al., 2017).
In this formula, a3 is a measure of the sensor’s sensitivity,
and a0 is the offset of the sensor, whereas a1 and a2 are tem-
perature correction coefficients.

All electrochemical sensors have a different inherent sen-
sitivity, and hence the NO2 readings need to be scale-
corrected. The scale correction is carried out by multiplying
the temperature-corrected NO2 readings (NO2 (corT )), from
each AirNode, by α, which is the ratio between the 0.80 and
0.20 quantiles of the NO2 readings obtained from the AirN-
odes (Qdiff,AirNode) and from the reference (Qdiff,Reference).
The reference is the NO2 readings obtained by chemilumi-
nescence from the reference-grade instrument at the AQMS
at Stoke-on-Trent centre, 4.1 km from the network, from the
same period as the measurements took place. All data from
the reference station are used for the correction. The differ-
ence between the 0.80 and 0.20 quantiles is a proxy for the
variation obtained in the measurements.

Qdiff,AirNode =Q0.80,AirNode−Q0.20,AirNode (4)
Qdiff,Reference =Q0.80,Reference−Q0.20,Reference (5)
α =Qdiff,Reference/Qdiff,AirNode (6)
NO2

(
corT ,S

)
= NO2 (corT ) ·α (7)

The offsets of the readings are determined by calculat-
ing the difference between the 0.25 quantile (Q0.25) ob-
tained from each AirNode (Q0.25,AirNode) and from the refer-
ence (Q0.25,Reference). Hence, the offset of the temperature-
and scale-corrected reading (NO2 (corT ,S)) is adjusted by
subtracting the calculated offset (β). The reference used in
the offset correction is the same as the one used for the scale
correction. The 0.25 quantile is a proxy for the measured
background concentration.

β =Q0.25,AirNode−Q0.25,Reference, (8)

NO2(cor)= NO2
(
corT ,S

)
−β, (9)

where NO2 (corT ,S) is the temperature- and scale-corrected
NO2 reading, and NO2 (cor) is the temperature-, offset-, and
scale-corrected NO2 reading.

Regarding the SDS-011 PM2.5 readings, outliers were re-
moved by excluding all values exceeding 5 times the stan-
dard deviation. Scale and offset correction was performed for
PM2.5, similarly to the one for the NO2 readings. However,
there was no significant difference between the corrected and
uncorrected PM2.5 readings since the PM2.5 readings were
already highly correlated (mean R2

= 0.72) with the refer-
ence readings from the Stoke-on-Trent centre.

2.3 Comparison with regulatory air quality monitoring
stations

The data obtained from the network are compared with
data from the three nearest regulatory air quality monitor-
ing stations: the roadside monitoring station at the Stoke-
on-Trent A50 roadside (52.980436◦ N, 2.111898◦W; 8.7 km
from the network), the urban background monitoring sta-
tion at Stoke-on-Trent centre (53.028210◦ N, 2.175133◦W;
4.1 km from the network), and the regional background mon-
itoring station at Ladybower (53.403370◦ N, 1.752006◦W;
54 km from the network). We do not expect perfect agree-
ment, but nonetheless the exercise is useful.

Ladybower is located in the Peak District National Park
around 800 m to the south-west of the Ladybower reservoir.
The nearest road is 20 m from the station and is only used by
the nearby farmsteads. The surrounding area is mainly open
moorland. The urban background monitoring station is lo-
cated in Stoke-on-Trent and is in the northern part of down-
town Hanley. This station is located 5 m from a road con-
nected to a busy multi-story car parking facility (50 m from
the monitoring station). The surrounding area is open grass,
with a few trees and commercial properties. The A50 Pot-
teries Way is a busy ring road which lies approximately
130 m to the north-east of the monitoring site. The roadside
monitoring station is located between the main road and a
parallel side road, near a pedestrian footbridge, beside the
dual-carriageway A50 through Stoke. All three AQMSs are
equipped with instruments for measuring NO2 by chemi-
luminescence, but only the Stoke-on-Trent centre measures
PM2.5. Hourly air pollution data from each monitoring sta-
tion were manually downloaded using the UK-Air data se-
lector (DEFRA, 2022).

2.4 Spectral analysis

Spectral analysis is widely used for investigating cycles and
variations of pollutants in time series to reveal the sources of
pollution (Marr and Harley, 2002; Lazi et al., 2016). Within
spectral analysis, the Fourier transform is a powerful tool
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Figure 2. (a) A periodogram showing short-term fluctuations at high frequencies (red), background signals at low frequencies (blue),
and the fluctuations in between (yellow). (b) Schematic illustration of air pollutant contributions from regional transport (blue), the urban
area (yellow), and the street (red). The relative concentration of the contributions depends on the considered pollutant and the dispersion
conditions.

for analysing time series including periodicities and rate of
change. To use the method, it is necessary to overcome obsta-
cles including the often unevenly spaced time points in time
series due to technical and practical problems during moni-
toring (Sun and Wang, 1996, 1997). The unequally spaced
or missing data can be circumvented by applying the fast
Fourier transform after filling the gaps and missing values
with the mean. In addition, the linear trend in the time series
is removed by subtracting the average concentration obtained
by each LCS. The periodogram for a finite time series is cal-
culated as the square of the magnitude of X:

8 (νk)= |X(k)|2 =

∣∣∣∣∣ 1
√
N

N−1∑
t=0

xte
(−2πiνk t)

∣∣∣∣∣
2

, (10)

where k = 0, 1, . . . ,N − 1, and N is the number of observa-
tions, xt is the time series, and νk = k/N . The periodogram
indicates the strength of the signal as a function of fre-
quency, while its spectrum over the frequency range corre-
sponds to the variance of the time series data. Parseval’s the-
orem (Narayanan and Prabhu, 2003) states that the energy,
or in this case intensity, is conserved during Fourier trans-
formation. Thus, the contribution of the different pollution
sources can be quantified by integrating the peaks in the pe-
riodograms (Marr and Harley, 2002).

There is a relationship between temporal and spatial scales
of the different air pollutants. Rapid, short-term fluctuations
of the pollutant concentrations happen as a result of local
phenomena, e.g. local-scale dispersion, local emissions, and
short-term atmospheric chemistry. Rapid changes contribute
to the periodogram at high frequencies, which in this work
are defined as above 0.0417 h−1, i.e. events with a frequen-
cies higher/shorter than 1 d. This is referred to as the “local”
contribution to the pollutant concentration. The local cut-
off is chosen based on the European Environment Agency’s
definition of a local timescale (EEA, 2008). The seasonal
changes in the emissions and long-range transport of the pol-
lution contribute to the periodogram at low frequencies (<

0.0139 h−1), i.e. events with a frequency lower/longer than
3 d. This is then referred to as the “regional” contribution to
the pollutant concentration. In this model, intermediate fre-
quencies are due to the “urban” contribution to the pollutant
concentration. The cutoff frequency for the regional contri-
bution is based on the intercontinental transport, which oc-
curs on timescales of the order of 3 d to 1 month (Stohl et al.,
2002). As noted in the introduction, the mixing of pollution
with time provides an upper limit on frequency for distant
sources; only local sources can give a high-frequency sig-
nal. The above-mentioned definitions are illustrated in Fig. 2.
One of the properties of diffusion is that a pulse of pollution
will propagate in a Gaussian concentration profile depending
on the diffusion constant and time. Under the Fourier trans-
form, a Gaussian is mapped onto another Gaussian with a dif-
ferent width. The transform of a wide function is narrow and
vice versa. By integrating periodograms in the three different
frequency bins by the equations below, the relative contribu-
tion of local, urban, and regional pollution of the LCS data
can be quantified.

JN (g)=

νend∫
νstart

g (νk)8 (νk)dνk, (11)

where νstart and νend are the start and end frequencies in the
chosen frequency bins, which is elaborated below.

RegionalN (g)=

0.0139∫
0

g (νk)8 (νk)dνk

UrbanN (g)=

0.0417∫
0.0139

g (νk)8 (νk)dνk

LocalN (g)=

0.5∫
0.0417

g (νk)8 (νk)dνk (12)
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Figure 3. Daily patterns of NO2 measured by the reference instrument (blue), corrected NO2 concentrations (red) measured by one repre-
sentative node (AirNode4P01), and uncorrected NO2 concentrations (yellow) measured by AirNode4P01 during weekdays (a) and week-
ends (b). Note the different-scale y axis. The shading shows the 95 % confidence intervals of the mean. Please note that NO2_raw represents
the Alphasense NO2 cell output (dV) multiplied by the scale coefficient obtained from the laboratory calibration. The plots are produced by
timeVariation{openair} (Carslaw and Ropkins, 2012).

g is non-negative and square-integrable with respect to the
Lebesgue measure on νk . After the relative contributions are
calculated for each LCS node, the average concentration to-
gether with the standard deviation can be calculated across
the AirNode network to illustrate how much local pollution
the network is seeing on average and how much variation is
seen across all AirNodes.

3 Results and discussion

In the following section, we present the results of our study
and of the data analysis.

3.1 Sensor data quality

The first requirement is to establish the fidelity of the moni-
toring network.

3.1.1 Missing data

The data completeness of the AirNodes varies between sites.
In the monitoring network, apart from four AirNodes (4P04,
4P06, 4P08, and 4P20), all AirNodes have more than 80 %
data completeness during the sampling period. The four
AirNodes with data completeness below 80 % were excluded
from the analysis. Across the network of AirNodes, the mean
data completeness is 95 %, which is sufficient for investigat-
ing the local variation of air pollution. The main reasons for
data gaps are the irregularities in the line power and lapses
in the wireless internet connection. In addition, spiders had
in a few cases entered through the small holes at the base
of the AirNodes and nested in the housing, leading to sensor
failure.

3.1.2 Correction of NO2 readings

It is necessary to account for temperature bias while deploy-
ing electrochemical NO2 sensors (Alphasense, 2014). For
our study, this correction was crucial in order to get mean-
ingful readings from the electrochemical sensors since the
raw readings showed unphysical behaviour. The typical NO2
patterns during weekdays (Monday to Friday) and weekends
(Saturday and Sunday) measured by AirNode4P01 as an ex-
ample are shown before and after the correction in Fig. 3. All
AirNodes have the same tendencies, so Fig. 3 is characteris-
tic of all AirNodes. For clarity, the NO2_raw represents the
Alphasense NO2 cell output (dV) multiplied by the scale co-
efficient obtained from the laboratory calibration. The NO2
patterns of the corrected NO2 readings compared to the read-
ings from the reference indicate that the correction proce-
dure can overcome most of the disparity between the read-
ings during higher temperatures. Modeled temperature data
from DEFRA (DEFRA, 2022) are used to correct for the
temperature bias. The correction coefficients for the AirN-
odes were calculated for each individual AirNode, and the
mean and standard deviation of the correction coefficients are
a0 = 20.83 (13.29), a1 =−0.30 (0.17), a2 = 1.37 (0.58), and
a3 = 892.38 (521.02). All four terms in the linear regression
model have a p value of below 0.05 for all AirNodes. The
relatively high standard deviations are linked to the known
intra-sensor variability and show that each sensor requires
individual calibration and/or correction. The correction coef-
ficient, a0, or offset of the sensor is higher than the average
concentration, and it has a relatively high standard deviation.
This is a property of the Alphasense cell and can vary signifi-
cantly from cell to cell, which underscores the importance of
calibrating and correcting the raw data from low-cost sensors
in order to obtain accurate concentrations.
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Figure 4. Correlation heatmap of the Pearson correlation coefficient for NO2 (a) and PM2.5 (b). Note the different scales.

It is known that in cities the temperature can vary strongly
over small distances (Cao et al., 2021), and therefore it would
have been more accurate to measure the internal temperature
of the AirNodes and use that information for the correction.
However, the correction methodology even with the mod-
eled temperature data yields corrected readings that follow
expected trends, giving confidence in sensor accuracy. How-
ever, as seen in Fig. 3, there is still a relatively large discrep-
ancy between the reference and corrected AirNode readings
on weekdays between 8 and 12 h, which can be attributed to
the large distance between the reference instrument and the
AirNodes (4.1 km) and the fact that the concentration of NO2
can have different profiles at different locations, depending
on the traffic modes and sources. Sensor performance is val-
idated below.

3.1.3 Inter-sensor variability

Inter-sensor variability has been used as a metric of sensor
reliability in recent studies (Liu et al., 2020). Figure 4 dis-
plays the correlation heatmap of the Pearson correlation coef-
ficient for NO2 and PM2.5, in which the respective reference
measurements from the Stoke-on-Trent centre are included.
The Pearson correlation coefficients for PM2.5 among the
AirNodes ranged from 0.87 to 0.99 with a mean of 0.95. In
contrast, the Pearson correlation coefficients for NO2 ranged
from 0.30 to 0.88 with a mean of 0.64. For PM2.5, the low-
est Pearson correlation coefficients were above our quality
criterion of 0.85. We did not choose a similar criterion for
NO2 since we expect there is much higher variation between
the sensors due to localized sources. The AirNode network
readings rose and fell simultaneously as ambient concentra-
tions and conditions changed, confirming that the sensors
are operating as expected and giving confidence in sensor
measurement reliability. The AirNode readings generally fol-
lowed the same trends as seen at the reference instruments at
Stoke-on-Trent centre. The mean Pearson correlation coeffi-
cient for NO2 was 0.40 with a range of 0.3 to 0.47, whereas
the mean Pearson correlation coefficient for PM2.5 was 0.85

with a range of 0.80 to 0.87. Again, the larger discrepancy
between the reference and corrected NO2 readings can be at-
tributed to the more spatially variable nature of NO2.

3.2 Descriptive statistics

Air quality data for NO2 and PM2.5 measured at the different
sites during 2020 and 2021 were analysed. For this section,
only 1 year of data (1 August 2020 to 1 August 2021) is
used to compare with official guidelines. Descriptive statis-
tics of the air quality measurements are presented in Table 2.
The mean concentrations are compared with the WHO’s re-
cently updated European AQGs and the legally binding EU
standards; see Table 1. It should be noted that the legally
binding values for annual means are defined for 1 January to
31 December. The mean annual NO2 and PM2.5 concentra-
tions across the network exceed the updated WHO guidelines
by 7 and 3 µg m−3 for NO2 and PM2.5, respectively. All sites
have days where the daily average NO2 and PM2.5 concen-
trations exceed the WHO daily average AQG limits during
the period. However, none of the sites are above the legally
binding EU standards.

The values obtained from the network can be analysed in
relation to the values reported by AQMSs, as long as the sig-
nificant distance between the measurement locations is kept
in mind. The values from the network are compared with the
three AQMSs: the monitoring station at the Stoke-on-Trent
A50 roadside, the urban background monitoring station at the
Stoke-on-Trent centre, and the regional background monitor-
ing station at Ladybower. Only the urban background station
at the Stoke-on-Trent centre is reported in PM2.5. Concentra-
tions of NO2 and PM2.5 (when available) are averaged within
the same period as the AirNodes in the network (i.e. 1 Au-
gust 2020 to 1 August 2021), and the descriptive statistics are
shown in Table 2. The mean concentrations obtained from
the network show similar values for NO2 and PM2.5 to those
seen at the urban background station. On average, while the
network sees lower NO2 values than the roadside monitoring
station (21.4 µg m−3), there is an NO2 excess relative to the
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Table 2. Statistics for air quality data measured from 1 August 2020 to 1 August 2021. For comparison, the descriptive statistics from
the three regulatory air quality monitoring stations (regional: Ladybower, urban background: Stoke-on-Trent centre, roadside: Stoke-on-
Trent A50 roadside) are shown for the corresponding period. Neither Ladybower nor the Stoke-on-Trent A50 roadside has instruments
for monitoring PM2.5. Abbreviations: SD: standard deviation, max: maximum value. We are aware that the measurement uncertainty is
significantly higher for low-cost air pollution sensors than for reference air quality monitoring measurements. However, EU air quality
guidelines approve low-cost sensor data as indicative but not quantitative data – in line with calculations with air quality models.

NO2 concentration (µg m−3) PM2.5 concentration (µg m−3)

Sensor Mean Median SD Max Exceedancea Mean Median SD Max Exceedanceb

AirNode4P01 18 16 11 82 41 9 5 12 122 58
AirNode4P02 17 11 12 101 45 7 4 8 101 26
AirNode4P03 18 15 11 89 44 9 6 10 121 40
AirNode4P05 17 16 10 78 37 8 4 10 109 42
AirNode4P09 19 16 13 91 51 8 4 11 119 44
AirNode4P10 19 18 10 100 36 10 5 15 241 54
AirNode4P11 18 17 10 71 36 11 6 13 125 43
AirNode4P13 17 11 13 100 34 7 4 9 94 27
AirNode4P14 17 10 13 91 60 7 4 9 92 19
AirNode4P16 15 10 11 89 34 8 5 10 132 27
AirNode4P18 17 14 11 86 43 7 4 11 163 33
AirNode4P19 18 16 11 95 38 6 3 8 89 33
AirNode4P21 18 15 10 83 47 7 4 11 140 32
AirNode4P23 18 16 10 77 30 9 5 13 129 56

Network mean 17.5 14.4 11.2 88.0 41.1 8.1 4.3 10.7 126.8 38.1
Network SD 0.9 2.5 1.0 9.1 7.9 1.4 0.9 1.9 38.6 12.1

Regional station 5 4 4 45 0 – – – – –
Urban station 19 16 13 102 64 8 6 7 74 6
Roadside station 39 35 25 155 271 – – – – –

a Number of days with an average NO2 concentration above the WHO’s guideline of 25 µg m−3. b Number of days with an average PM2.5 concentration above the
WHO’s guideline of 15 µg m−3.

regional background exposure (12.5 µg m−3). In an environ-
ment such as a city with an elevated urban background con-
centration, exposure to air pollution in micro-environments
can cause exceedance of recommended threshold values for
many individuals, in addition to the dangers of transient and
continued exposure.

3.3 Temporal trends

Figure 3 shows the temporal variation in NO2. On weekdays,
the NO2 concentration increases in two time periods during
the day, with peaks at 07:00 and 18:00 LT. On weekends, the
NO2 concentration rises steadily throughout the day. There
is a notable decrease in concentration during the weekend
compared to the weekdays at all sites. For both weekends
and weekdays, the NO2 concentration is lowest at night. The
two time periods with increased NO2 concentration during
the weekdays are typically periods of increased traffic during
morning and afternoon rush hours when people commute to
and from work (Vignati et al., 1996; Berkowicz et al., 1996).
Thus, traffic likely drives this observed variation, in line with
the declining NO2 concentration during the night and over
the weekend.

Figure 5. Monthly variation of NO2 measured by one represen-
tative node (AirNode4P10) (red) and the corresponding reference
instrument at Stoke-on-Trent centre (blue). The plot is produced by
timeVariation{openair} (Carslaw and Ropkins, 2012).
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In terms of monthly trends, Fig. 5 displays the monthly av-
erage of the NO2 concentration measured by one of the AirN-
odes together with the monthly readings from the nearest ur-
ban background AQMS (Stoke-on-Trent centre). All AirN-
odes have the same tendencies, so Fig. 5 is characteristic of
all AirNodes. The readings from the AirNode and the AQMS
follow the same trends, with the highest NO2 concentrations
in the spring and the winter.

3.4 Spatial trends

Wind speed and direction have been shown to provide es-
sential information that can help identify source locations
(Carslaw et al., 2006; Westmoreland et al., 2007). The de-
scription of variation with wind direction and wind speed on
a specific street (the so-called street canyon effect) is given
in Berkowicz et al. (1996). Bivariate polar plots are a pow-
erful tool for source characterization including mean pol-
lutant concentrations for specific wind speed and direction
bins (Uria-Tellaetxe and Carslaw, 2012; Grange et al., 2016;
Carslaw and Ropkins, 2012; Carslaw and Beevers, 2013). In
these plots wind direction is displayed from 0 to 360◦ clock-
wise on the angular axis, and wind speed is shown on the
radial scale.

The wind speed and direction data used in this study are
shown as a wind rose in Fig. 6. The wind rose shows that the
prevailing winds come from the south and north-west during
the measurement period. To assess spatially resolved source
patterns, bivariate polar plots of the NO2 and PM2.5 are in-
vestigated. The bivariate polar plots for each pollutant for all
sites are shown in Fig. 7. Reddish colours represent higher
values compared to the blueish ones.

The bivariate polar plots show patterns that depend on de-
ployment location. AirNode4P23, AirNode4P19, and AirN-
ode4P02 are located in the southern part of the ring road,
and they display similar patterns in their bivariate polar plots.
Their surroundings are almost identical, and the traffic influ-
ence on their readings is similar. The nodes located in the
northern part of the ring road have different patterns relative
to the ones in the southern area. They experience the highest
values at lower wind speeds. When peak concentrations oc-
cur at low wind speeds, it suggests local sources. For exam-
ple, in a street canyon, there is both a direct and recycled con-
tribution to the concentration, where the relative size of these
two contributions depends on whether the measuring site at
a given time is on the leeward or windward side of the street.
AirNode4P10 is located in front of a school, and at lower
wind speeds or with westerly wind, elevated levels of NO2
were observed. In general, the highest concentrations are ob-
served at low wind speeds, where no whirlwind is formed
inside the street, independent of wind directions, or when the
measuring site is on the leeward side of the street (in relation
to the whirlwind). In the latter case, pollution from the traf-
fic in the specific section of the street will be led directly to
the measuring site, at the same time as there is a contribution

Figure 6. Wind rose showing the frequency of counts by wind
direction (%). The plot is produced by windRose{openair}
(Carslaw and Ropkins, 2012).

due to trapping of pollution within the limited volume of the
whirlwind.

Higher NO2 values are correlated with wind speed and the
orientation of the road. The traffic comes from the ring road
area and continues through St Paul’s Road. Near the school,
traffic stops frequently and accelerates and idles while chil-
dren are being dropped off and picked up. The lowest val-
ues of NO2 are seen at higher wind speeds with north-
westerly winds. The bivariate polar plots for AirNode4P01
and AirNode4P05 show similar patterns, with the highest
concentrations found for easterly and south-westerly winds,
whereas the lowest concentrations were seen with west-
erly and south-westerly winds. Higher-speed south-westerly
winds contributed to the peak concentrations at these loca-
tions. A wide-open parking area is located next to the ring
road in that direction, which could explain the elevated con-
centrations.

The wind speed dependence of concentrations in a street
canyon can be complex, as there are opposing effects: higher
wind speeds lead to more O3 but also more dilution of NOx
(NO+NO2). High wind speeds will therefore lead to lower
NO2, while at low wind speeds, NO2 formation is limited
by O3, which goes towards zero in the street (Palmgren et
al., 1996). Bivariate polar plots are good at revealing these
interrelationships. The wind speed dependence can help dis-
tinguish sources from one another. When several measure-
ment sites are available, polar plots can triangulate different
sources (Carslaw et al., 2006). As expected, NO2 is domi-
nated by local emissions, and peak values mainly occur for
low wind speeds, where elevated concentrations were ob-
served due to accumulation and lack of dispersion. The most
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Figure 7. Bivariate polar plots of NO2 (a) and PM2.5 (b) show the spatial variability in the study area for the entire study period. The figures
are produced by polarMap{openairmaps} (openairmaps is a package that supports openair (Carslaw and Ropkins, 2012) for
plotting on various maps), where the maps are obtained from © OpenStreetMap contributors 2021. Distributed under Open Data Commons
Open Database License (ODbL) v1.0 (OpenStreetMap contributors, 2021).

obvious features of NO2 bivariate polar plots are that the el-
evated levels are attributable to the orientation of the road or
the place with the highest traffic density.

Relative to the bivariate polar plots of NO2, the bivariate
polar plots of PM2.5 do not show as much variation across the
network. Generally, the highest concentrations of PM2.5 are
seen for south-easterly winds and higher wind speeds. This is
confirmed by the frequency spectrum showing slow changes
consistent with large air masses. This indicates that particles
originate from long-range transport. The bivariate polar plots
for PM2.5 also suggest that the locally sourced particulate
matter is present, shown by the elevated concentrations at
low wind speeds, where the atmospheric conditions are more
stable.

In general, sites across the sensor network show a vari-
ation in their bivariate polar plots (however, more for NO2
than for PM2.5) due to the different pollution sources. Thus,
there are additional benefits of multi-sensor node measure-
ments for characterizing sources in detail, especially when
combining them with meteorological information.

Figure 8 shows data from the urban background AQMS
at the Stoke-on-Trent centre at a time resolution of 1 h (DE-
FRA, 2022). Data from one of the AirNodes with a time reso-
lution of 30 min are shown for comparison. The raw readings
from the AirNodes have a time resolution of 1 min; however,
the temperature correction aggregates the data into 30 min
bins. Still, with a time resolution of 30 min, we see more lo-
cal variability in the data compared to the readings from the
reference station. The data have a measurement density in

both time and space, which cannot be achieved using current
conventional measurement methods. As seen in Fig. 8, the
readings from the AirNode and the AQMS follow the same
trend, but the correlation of determination is only 0.28. This
is expected, since the AQMS is located around 4 km from the
AirNode network. However, increasing the time resolution
will increase the correlation of determination; i.e. a time res-
olution of 3 h results in a correlation of determination of 0.38,
and a time resolution of 1 d yields 0.63.

3.5 Spectral analysis

Spectral analysis is performed on the air pollution data to
investigate its hidden periodicities and to quantify their mag-
nitude. The contributions of local and regional sources to
the pollution concentrations are determined based on the de-
termined amplitudes and frequencies. The local sources are
shown in the high-frequency periodogram, and the regional
or long-range sources are revealed in the low-frequency pe-
riodogram. Note however that local sources may be present
in both the low- and high-frequency regions. For example,
in an urban street, the traffic patterns follow stable patterns
with daily and weekly periodicities. Holiday periods follow
their own pattern, and for wood smoke, emissions follow
variations in outdoor temperature. By comparing the spec-
tra for the different pollutants measured by the same AirN-
ode, information on the sources can be revealed. If the emis-
sion sources for the different pollutants are the same, similar
cyclic patterns can be expected. The differences in the pol-
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Figure 8. Time series of NO2 measured by one representative AirNode (AirNode4P18) with a time resolution of 30 min and the correspond-
ing reference instrument at Stoke-on-Trent centre with a time resolution of 1 h. For clarity, only 2 weeks of data are shown.

Figure 9. Periodograms for NO2 at regional background AQMS, Ladybower (a), street AQMS, Stoke-on-Trent A50 roadside (b), and urban
background AQMS, Stoke-on-Trent centre (c). All periodograms are normalized against the highest peak.

lution spectra can indicate a contribution from the different
pollutant sources or the presence of chemical transformation
since all other conditions are identical.

Spectral analysis is performed on NO2 data from three dif-
ferent types of AQMSs to illustrate how periodograms vary
depending on location. These AQMSs are (1) regional back-
ground (Ladybower), (2) urban background (Stoke-on-Trent
centre), and (3) street (Stoke-on-Trent A50 roadside). The
three periodograms are shown in Fig. 9. While all three pe-
riodograms have significant peaks in the low-frequency re-
gion, only the urban background and street AQMSs have
significant peaks in the high-frequency region. We conclude
that these high-frequency peaks are due to the proximity and
strength of local NO2 sources.

Figure 10 displays the periodograms for NO2 and PM2.5
measured by AirNode4P01. The periodogram of NO2 fea-
tures three distinct peaks at 0.125, 0.084, and 0.042 h−1 cor-
responding to periods of 8, 12, and 24 h, respectively. In addi-
tion, one peak is identifiable in the high-frequency region at
0.17 h−1 (6 h). In the low-frequency region, there are multi-
ple peaks close to each other; however, the peaks correspond-
ing to 5 d (0.0083 h−1), 1 week (0.0061 h−1), and 1 month
(0.00135 h−1) can still be identified. All these cycles can be

related to local sources of pollution, e.g. traffic or meteoro-
logical changes. Peaks located in the low-frequency region
can originate from changes over either a synoptic or larger
scale. The highest intensity occurs in the high-frequency re-
gion since most of the NO2 originates from local sources.
The daily changes in NO2 concentrations can be associated
with the daily changes in traffic from nearby roads and the
diurnal variation caused by sunlight. Weekly periodicity may
also originate from changes in traffic.

The periodogram for PM2.5 (see Fig. 10) features one dis-
tinct peak in the high-frequency region at 0.042 h−1 (24 h)
and a prominent peak at 0.084 h−1 (12 h). Besides these two
peaks, most peaks are seen in the low-frequency region of
the periodogram, which is expected since PM2.5 is dominated
by long-range transport and non-local sources. However, the
contribution by PM from a nearby road can originate from
traffic, since vehicles, in general, can re-suspend particles
from the road into the air, and abrasion from brakes and tires
also produces PM (Grigoratos and Giorgio, 2015).

Periodograms for the rest of the AirNodes in the net-
work show results similar to the ones shown in Fig. 10, with
small changes in position and amplitude at specific loca-
tions. Conclusions regarding trends in pollution sources can
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Figure 10. Periodogram of NO2 (a) and PM2.5 (b) obtained by AirNode4P01.

Figure 11. Histogram of percentages of contribution (%) of local (red), urban (yellow), and regional sources (blue) for NO2 (a) and PM2.5 (b)
measured by all AirNodes in the network as well as for the three AQMS. Ref_Reg is the regional background AQMS, Ladybower, Ref_Street
is the street AQMS, Stoke-on-Trent A50 roadside, and Ref_Urban is the urban background AQMS, Stoke-on-Trent centre.

be drawn by examining the relative contributions from lo-
cal, urban, and regional sources. Figure 11 shows the cal-
culated percentages of local, urban, and regional contribu-
tions for the AirNodes as well as for the three different
types of AQMSs. The results for the network indicate that
local emissions are the most important source of NO2 with

an average of 54.3± 4.3 %, whereas PM2.5 is mainly due
to regional sources (62.1± 3.5 %). For NO2, urban sources
contribute 14.3± 1.9 % and regional sources 31.2± 4.5 %.
For PM2.5, urban sources contribute 20.0± 1.2 % and local
sources 17.9± 3.2 %.

https://doi.org/10.5194/acp-22-13949-2022 Atmos. Chem. Phys., 22, 13949–13965, 2022



13962 L. B. Frederickson et al.: Are dense networks of low-cost nodes really useful for monitoring air pollution?

As expected, the regional background AQMS shows the
highest relative contribution from regionally sourced NO2,
and the street AQMS has the highest level of locally sourced
NO2. The AirNodes in the network show a distribution of
contributions.

The results obtained for both NO2 and PM2.5 reveal con-
tributions of short-term (12 and 24 h) and long-term fluctua-
tions. The contributions at low frequencies are significantly
different between the two pollutants, indicating that temporal
variations are influenced by different processes. The method-
ology is a powerful tool for analysing the causes of air pollu-
tion.

4 Conclusions

Air pollution can be hyper-local, and low-cost air pollution
sensors are capable of accurately describing variation close
to pollution sources. This study assessed more than 1 year
of NO2 and PM2.5 data with high spatiotemporal resolution
(1 min) obtained using a network of 18 low-cost air pollution
sensor nodes. Initially, there were significant calibration is-
sues associated with temperature bias in the NO2 readings,
but a simple and effective temperature, scale, and offset cor-
rection was able to overcome this problem. Therefore, this
study, like many others, clearly indicates that while low-cost
air pollution sensors can be useful, calibration and correc-
tion are far from trivial and require supporting data from
reference stations. The corrected NO2 concentrations have
a strong connection with the reference station used, so re-
sults reflect both the low-cost air pollution sensor data and
reference station data.

In its recent update and revision of the air quality guide-
lines for Europe, the WHO has proposed annual NO2 and
PM2.5 exposure guideline thresholds of 10 and 5 µg m−3, re-
spectively. The annual mean NO2 and PM2.5 concentrations
across the network exceed the updated WHO guidelines by
7 µg m−3 for NO2 and 3 µg m−3 for PM2.5. However, none
of the sites had values exceeding the legally binding UK/EU
standards. An excess concentration of 12.5 µg m−3 of NO2 in
the network was seen relative to background levels measured
by the regional monitoring station at Ladybower reservoir.
This highlights the risk of pollution exposure for individuals
due to local sources and supports the use of local monitoring
to characterize the risk.

Spectral analysis is found to be a good method for study-
ing the variation within the time series. This approach en-
abled the detection of different underlying periodicities in
time series data and allowed the pollution signal to be appor-
tioned to different categories of pollution sources, whether
local, urban, or regional. The results highlighted the advan-
tages of having a densely deployed sensor network over
the sparse conventional air quality monitoring stations. The
highly increased spatiotemporal resolution of low-cost sen-
sors combined with their dense placement near pollution

sources makes it possible to provide additional information
on the patterns and sources of air pollution, which in turn
provides a better description of the highly variable and com-
plex nature of pollution.
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