Articles | Volume 22, issue 19
https://doi.org/10.5194/acp-22-12769-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-12769-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Kanishk Gohil
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
Chun-Ning Mao
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
Dewansh Rastogi
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
Chao Peng
State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Mingjin Tang
State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
Related authors
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Rui Li, Haley E. Plaas, Yifan Zhang, Yizhu Chen, Tianyu Zhang, Yi Yang, Sagar Rathod, Guohua Zhang, Xinming Wang, Douglas S. Hamilton, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4058, https://doi.org/10.5194/egusphere-2025-4058, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work measured solubility of aerosol Fe from several distinct anthropogenic sources, updated aerosol Fe solubility parameterizations used in the Community Earth System model, and found that residential burning is a significant source of soluble aerosol Fe to the ocean.
Mingjin Tang, Morgane M. G. Perron, Alex R. Baker, Rui Li, Andrew R. Bowie, Clifton S. Buck, Ashwini Kumar, Rachel Shelley, Simon J. Ussher, Rob Clough, Scott Meyerink, Prema P. Panda, Ashley T. Townsend, and Neil Wyatt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3274, https://doi.org/10.5194/egusphere-2025-3274, 2025
Short summary
Short summary
This work, initiated by the SCOR (Scientific Committee on Oceanic Research) Working Group 167, has examined eight leaching protocols commonly used in the literature, is the first large-scale international laboratory comparison for aerosol trace element leaching protocols.
Yue Sun, Yujiao Zhu, Hengde Liu, Lanxiadi Chen, Hongyong Li, Yujian Bi, Di Wu, Xiangkun Yin, Can Cui, Ping Liu, Yu Yang, Jisheng Zhang, Yanqiu Nie, Lanxin Zhang, Jiangshan Mu, Yuhong Liu, Zhaoxin Guo, Qinyi Li, Yuqiang Zhang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-2855, https://doi.org/10.5194/egusphere-2025-2855, 2025
Short summary
Short summary
Rainwater samples collected at the summit of Mount Tai were analyzed for ice-nucleating particles (INPs). Our findings revealed that INP concentrations peaked in spring, driven predominantly by long-range transport of dust aerosols. Mineral dust contributed 43.6 % of annual INPs, with its contribution rising sharply to 71.7 % in spring. Satellite observations further revealed that the long-range transport of dust in spring promotes large-scale cloud formation over the NCP region.
Tianyu Zhang, Yizhu Chen, Huanhuan Zhang, Lei Liu, Chengpeng Huang, Zhengyang Fang, Yifan Zhang, Fu Wang, Lan Luo, Guohua Zhang, Xinming Wang, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2235, https://doi.org/10.5194/egusphere-2025-2235, 2025
Short summary
Short summary
This work investigated seasonal variations of aerosol Al solubility for supermicron and submicron particles at two locations in northern China. We conclude that atmospheric chemical processing, in which aerosol liquid water and acidity play vital roles, dictates aerosol Al solubility.
Nahin Ferdousi-Rokib, Stephanie Jacoby, N. Cazimir Armstrong, Alana Dodero, Martin Changman Ahn, Ergine Zephira Remy, Zhenfa Zhang, Avram Gold, Joseph L. Woo, Yue Zhang, Jason D. Surratt, and Akua A. Asa-Awuku
EGUsphere, https://doi.org/10.5194/egusphere-2025-1935, https://doi.org/10.5194/egusphere-2025-1935, 2025
Short summary
Short summary
This study looks at how natural compounds when mixed with salts in the air affect how clouds form. These compounds come from plants and are found all over the world. They are sticky, and this changes how water droplets and clouds form. Sometimes the compound spreads more easily when mixed with salt, while the other compound does not change. Depending on the condition, these mixtures can behave differently, which affects how we predict cloud formation.
Yifan Zhang, Rui Li, Zachary B. Bunnell, Yizhu Chen, Guanhong Zhu, Jinlong Ma, Guohua Zhang, Tim M. Conway, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-474, https://doi.org/10.5194/egusphere-2025-474, 2025
Short summary
Short summary
The sources of aerosol Fe, especially soluble aerosol Fe, remain to be constrained. The stable isotope ratio of Fe (δ56Fe) has emerged as a potential tracer for discriminating and quantifying sources of aerosol Fe. In this review, we examine the state of the field for using δ56Fe as an aerosol source tracer, and constraints on endmember signatures.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024, https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Short summary
We found that for ultrapure water batch leaching, the difference in specific experimental parameters, including agitation methods, filter pore size, and contact time, only led to a small and sometimes insignificant difference in determined aerosol trace element solubility. Furthermore, aerosol trace element solubility determined using four common ultrapure water leaching protocols showed good agreement.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Zhanyu Su, Lanxiadi Chen, Yuan Liu, Peng Zhang, Tianzeng Chen, Biwu Chu, Mingjin Tang, Qingxin Ma, and Hong He
Atmos. Chem. Phys., 24, 993–1003, https://doi.org/10.5194/acp-24-993-2024, https://doi.org/10.5194/acp-24-993-2024, 2024
Short summary
Short summary
In this study, different soot particles were analyzed to better understand their behavior. It was discovered that water-soluble substances in soot facilitate water adsorption at low humidity while increasing the number of water layers at high humidity. Soot from organic fuels exhibits hygroscopicity influenced by organic carbon and microstructure. Additionally, the presence of sulfate ions due to the oxidation of SO2 enhances soot's hygroscopicity.
Morgane M. G. Perron, Susanne Fietz, Douglas S. Hamilton, Akinori Ito, Rachel U. Shelley, and Mingjin Tang
Atmos. Meas. Tech., 17, 165–166, https://doi.org/10.5194/amt-17-165-2024, https://doi.org/10.5194/amt-17-165-2024, 2024
Short summary
Short summary
The solubility of vital and toxic trace elements delivered by the atmosphere determines their potential to fertilise or limit ocean productivity. A poor understanding of aeolian trace element solubility and the absence of a standard method to define this parameter hinder accurate model representation of the impact of atmospheric deposition on ocean productivity in a changing climate. The inter-journal special issue aims at “Reducing Uncertainty in Soluble aerosol Trace Element Deposition”.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Chun-Ning Mao, Kanishk Gohil, and Akua A. Asa-Awuku
Atmos. Chem. Phys., 22, 13219–13228, https://doi.org/10.5194/acp-22-13219-2022, https://doi.org/10.5194/acp-22-13219-2022, 2022
Short summary
Short summary
The impact of molecular-level surface chemistry for aerosol water uptake and droplet growth is not well understood. In this work we show changes in water uptake due to molecular-level surface chemistry can be measured and quantified. In addition, we develop a single-parameter model, representing changes in aerosol chemistry that can be used in global climate models to reduce the uncertainty in aerosol-cloud predictions.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Cited articles
Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, 2017. a
Al-Naiema, I. M., Offenberg, J. H., Madler, C. J., Lewandowski, M., Kettler,
J., Fang, T., and Stone, E. A.: Secondary organic aerosols from aromatic
hydrocarbons and their contribution to fine particulate matter in Atlanta,
Georgia, Atmos. Environ., 223, 117227,
https://doi.org/10.1016/j.atmosenv.2019.117227, 2020. a
Altaf, M. B., Dutcher, D. D., Raymond, T. M., and Freedman, M. A.: Effect of
particle morphology on cloud condensation nuclei activity, ACS Earth
Space Chem., 2, 634–639, 2018. a
Asa-Awuku, A. and Nenes, A.: Effect of solute dissolution kinetics on cloud
droplet formation: Extended Köhler theory, J. Geophys.
Res.-Atmos., 112, https://doi.org/10.1029/2005JD006934, 2007. a
Asa-Awuku, A., Nenes, A., Gao, S., Flagan, R. C., and Seinfeld, J. H.: Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity, Atmos. Chem. Phys., 10, 1585–1597, https://doi.org/10.5194/acp-10-1585-2010, 2010. a, b
Balla, D., Voutsa, D., and Samara, C.: Study of polar organic compounds in
airborne particulate matter of a coastal urban city, Environ. Sci.
Pollut. Res., 25, 12191–12205,
https://doi.org/10.1007/s11356-017-9993-2, 2018. a
Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G.,
Hallar, A. G., and Tolbert, M. A.: Importance of aerosol composition, mixing
state, and morphology for heterogeneous ice nucleation: A combined field and
laboratory approach, J. Geophys. Res., 117, https://doi.org/10.1029/2011JD016784, 2012. a
Cruz, C. N. and Pandis, S. N.: Deliquescence and hygroscopic growth of mixed
inorganic- organic atmospheric aerosol, Environ. Sci. Technol.,
34, 4313–4319, 2000. a
Dalirian, M., Ylisirniö, A., Buchholz, A., Schlesinger, D., Ström, J., Virtanen, A., and Riipinen, I.: Cloud droplet activation of black carbon particles coated with organic compounds of varying solubility, Atmos. Chem. Phys., 18, 12477–12489, https://doi.org/10.5194/acp-18-12477-2018, 2018. a
Dawson, J. N., Malek, K. A., Razafindrambinina, P. N., Raymond, T. M., Dutcher,
D. D., Asa-Awuku, A. A., and Freedman, M. A.: Direct Comparison of the
Submicron Aerosol Hygroscopicity of Water-Soluble Sugars, ACS Earth Space
Chem., 4, 2215–2226, https://doi.org/10.1021/acsearthspacechem.0c00159, 2020. a
Diniz, L. F., Carvalho, P. S., de Melo, C. C., and Ellena, J.: Reducing the
Hygroscopicity of the Anti-Tuberculosis Drug (S, S)-Ethambutol Using Multicomponent Crystal Forms, Cryst. Growth Design,
17, 2622–2630, https://doi.org/10.1021/acs.cgd.7b00144, 2017. a
Engelhart, G. J., Asa-Awuku, A., Nenes, A., and Pandis, S. N.: CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937–3949, https://doi.org/10.5194/acp-8-3937-2008, 2008. a
Fofie, E. A., Donahue, N. M., and Asa-Awuku, A.: Cloud condensation nuclei
activity and droplet formation of primary and secondary organic aerosol
mixtures, Aerosol Sci. Tech., 52, 242–251,
https://doi.org/10.1080/02786826.2017.1392480, 2018. a
Fu, P., Kawamura, K., and Barrie, L. A.: Photochemical and Other Sources of
Organic Compounds in the Canadian High Arctic Aerosol Pollution during
Winter−Spring, Environ. Sci. Technol., 43, 286–292,
https://doi.org/10.1021/es803046q, 2009. a
Giordano, M., Espinoza, C., and Asa-Awuku, A.: Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability, Atmos. Chem. Phys., 15, 1807–1821, https://doi.org/10.5194/acp-15-1807-2015, 2015. a
Gohil, K.: kgohil27/PyCAT: v1.0.1 (v1.1), Zenodo,
https://doi.org/10.5281/zenodo.6329787, 2022. a
Gohil, K. and Asa-Awuku, A. A.: Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC), Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, 2022. a, b, c
Goodman, A. L., Bernard, E. T., and Grassian, V. H.: Spectroscopic Study of
Nitric Acid and Water Adsorption on Oxide Particles: Enhanced Nitric Acid
Uptake Kinetics in the Presence of Adsorbed Water, J. Phys.
Chem. A, 105, 6443–6457, https://doi.org/10.1021/jp003722l, 2001. a
Gu, W., Li, Y., Zhu, J., Jia, X., Lin, Q., Zhang, G., Ding, X., Song, W., Bi, X., Wang, X., and Tang, M.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821–3832, https://doi.org/10.5194/amt-10-3821-2017, 2017. a
Gunn, R.: The ratio of the positive and negative light ion conductivities
within a neutral aerosol space, J. Colloid Sci., 11, 661–696,
1956. a
Hämeri, K., Charlson, R., and Hansson, H.-C.: Hygroscopic properties of mixed
ammonium sulfate and carboxylic acids particles, AIChE J., 48,
1309–1316, https://doi.org/10.1002/aic.690480617, 2002. a
Haque, Md. M., Kawamura, K., Deshmukh, D. K., Fang, C., Song, W., Mengying, B., and Zhang, Y.-L.: Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion, Atmos. Chem. Phys., 19, 5147–5164, https://doi.org/10.5194/acp-19-5147-2019, 2019. a
Hatch, C. D., Wiese, J. S., Crane, C. C., Harris, K. J., Kloss, H. G., and
Baltrusaitis, J.: Water Adsorption on Clay Minerals As a Function of Relative
Humidity: Application of BET and Freundlich Adsorption Models, Langmuir, 28,
1790–1803, https://doi.org/10.1021/la2042873, 2012. a
Hatch, C. D., Greenaway, A. L., Christie, M. J., and Baltrusaitis, J.: Water
adsorption constrained Frenkel–Halsey–Hill adsorption activation theory:
Montmorillonite and illite, Atmos. Environ., 87, 26–33,
https://doi.org/10.1016/j.atmosenv.2013.12.040, 2014. a
Hatch, C. D., Tumminello, P. R., Cassingham, M. A., Greenaway, A. L., Meredith, R., and Christie, M. J.: Technical note: Frenkel, Halsey and Hill analysis of water on clay minerals: toward closure between cloud condensation nuclei activity and water adsorption, Atmos. Chem. Phys., 19, 13581–13589, https://doi.org/10.5194/acp-19-13581-2019, 2019. a, b
He, X., Huang, X. H. H., Chow, K. S., Wang, Q., Zhang, T., Wu, D., and Yu,
J. Z.: Abundance and Sources of Phthalic Acids, Benzene-Tricarboxylic Acids,
and Phenolic Acids in PM2.5 at Urban and Suburban Sites in
Southern China, ACS Earth Space Chem., 2, 147–158,
https://doi.org/10.1021/acsearthspacechem.7b00131, 2018. a
Henson, B. F.: An adsorption model of insoluble particle activation:
Application to black carbon, J. Geophys. Res., 112, D24S16,
https://doi.org/10.1029/2007JD008549, 2007. a
Jing, B., Tong, S., Liu, Q., Li, K., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate, Atmos. Chem. Phys., 16, 4101–4118, https://doi.org/10.5194/acp-16-4101-2016, 2016. a
Jing, B., Wang, Z., Tan, F., Guo, Y., Tong, S., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids, Atmos. Chem. Phys., 18, 5115–5127, https://doi.org/10.5194/acp-18-5115-2018, 2018. a, b
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005. a
Kanellopoulos, P. G., Verouti, E., Chrysochou, E., Koukoulakis, K., and Bakeas,
E.: Primary and secondary organic aerosol in an urban/industrial site:
Sources, health implications and the role of plastic enriched waste burning,
J. Environ. Sci., 99, 222–238,
https://doi.org/10.1016/j.jes.2020.06.012, 2021. a
Kasparoglu, S., Li, Y., Shiraiwa, M., and Petters, M. D.: Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity, Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, 2021. a
Kawamura, K. and Kaplan, I. R.: Motor exhaust emissions as a primary source for
dicarboxylic acids in Los Angeles ambient air, Environ. Sci.
Technol., 21, 105–110, https://doi.org/10.1021/es00155a014, 1987. a
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., and Docherty, K. S.: The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides, Atmos. Chem. Phys., 12, 8711–8726, https://doi.org/10.5194/acp-12-8711-2012, 2012. a
Kreidenweis, S. and Asa-Awuku, A.: Aerosol hygroscopicity: Particle water
content and its role in atmospheric processes, Elsevier, 331–361, 2014. a
Kumar, P., Sokolik, I. N., and Nenes, A.: Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN, Atmos. Chem. Phys., 9, 2517–2532, https://doi.org/10.5194/acp-9-2517-2009, 2009b. a, b, c, d
Kumar, P., Sokolik, I. N., and Nenes, A.: Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals, Atmos. Chem. Phys., 11, 8661–8676, https://doi.org/10.5194/acp-11-8661-2011, 2011a. a, b, c
Kunwar, B., Kawamura, K., Fujiwara, S., Fu, P., Miyazaki, Y., and Pokhrel, A.:
Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric
aerosols from Mt. Fuji, Japan: Implication for primary emission versus
secondary formation, Atmos. Res., 221, 58–71,
https://doi.org/10.1016/j.atmosres.2019.01.021, 2019. a
Laaksonen, A., Malila, J., Nenes, A., Hung, H.-M., and Chen, J.-P.: Surface
fractal dimension, water adsorption efficiency and cloud nucleation activity
of insoluble aerosol, Sci. Rep., 6, 25504,
https://doi.org/10.1038/srep25504, 2016. a
Laaksonen, A., Malila, J., and Nenes, A.: Heterogeneous nucleation of water vapor on different types of black carbon particles, Atmos. Chem. Phys., 20, 13579–13589, https://doi.org/10.5194/acp-20-13579-2020, 2020. a
Liu, H., Kawamura, K., Kunwar, B., Cao, J., Zhang, J., Zhan, C., Zheng, J.,
Yao, R., Liu, T., and Xiao, W.: Dicarboxylic acids and related compounds in
fine particulate matter aerosols in Huangshi, central China, J.
Air Waste Manage. Assoc., 69, 513–526,
https://doi.org/10.1080/10962247.2018.1557089, 2019. a
Malek, K. A., Gohil, K., Al-Abadleh, H. A., and Asa-Awuku, A. A.:
Hygroscopicity of polycatechol and polyguaiacol secondary organic aerosol in
sub- and supersaturated water vapor environments, Environ. Sci.
Atmos., 2, 24–33, https://doi.org/10.1039/D1EA00063B, 2022. a
Mao, C.-N., Gohil, K., and Asa-Awuku, A.: A Single Parameter Hygroscopicity Model for Functionalized and Insoluble Aerosol Surfaces, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-339, in review, 2022. a, b, c, d
Meng, J., Wang, G., Hou, Z., Liu, X., Wei, B., Wu, C., Cao, C., Wang, J., Li, J., Cao, J., Zhang, E., Dong, J., Liu, J., Ge, S., and Xie, Y.: Molecular distribution and stable carbon isotopic compositions of dicarboxylic acids and related SOA from biogenic sources in the summertime atmosphere of Mt. Tai in the North China Plain, Atmos. Chem. Phys., 18, 15069–15086, https://doi.org/10.5194/acp-18-15069-2018, 2018. a
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9, 9491–9522, https://doi.org/10.5194/acp-9-9491-2009, 2009. a
Mkoma, S. L. and Kawamura, K.: Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons, Atmos. Chem. Phys., 13, 2235–2251, https://doi.org/10.5194/acp-13-2235-2013, 2013. a
Moore, R. H., Nenes, A., and Medina, J.: Scanning Mobility CCN Analysis—A
Method for Fast Measurements of Size-Resolved CCN Distributions and
Activation Kinetics, Aerosol Sci. Tech., 44, 861–871, 2010. a
Nakao, S.: Why would apparent κ linearly change with O/C? Assessing the
role of volatility, solubility, and surface activity of organic aerosols,
Aerosol Sci. Tech., 51, 1377–1388,
https://doi.org/10.1080/02786826.2017.1352082, 2017. a
Padró, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmos. Chem. Phys., 12, 10239–10255, https://doi.org/10.5194/acp-12-10239-2012, 2012. a
Peng, C., Malek, K. A., Rastogi, D., Zhang, Y., Wang, W., Ding, X., Asa-Awuku,
A. A., Wang, X., and Tang, M.: Hygroscopicity and cloud condensation
nucleation activities of hydroxyalkylsulfonates, Sci. Total
Enviro., 830, 154767, https://doi.org/10.1016/j.scitotenv.2022.154767, 2022. a
Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol – Part 2: Theoretical approaches, Atmos. Chem. Phys., 9, 3999–4009, https://doi.org/10.5194/acp-9-3999-2009, 2009. a
Rader, D. and McMurry, P.: Application of the tandem differential mobility
analyzer to studies of droplet growth or evaporation, J. Aerosol
Sci., 17, 771–787, 1986. a
Rahman, M. A. and Al-Abadleh, H. A.: Surface Water Structure and Hygroscopic
Properties of Light Absorbing Secondary Organic Polymers of Atmospheric
Relevance, ACS Omega, 3, 15519–15529, https://doi.org/10.1021/acsomega.8b02066,
2018. a
Roberts, G. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN
chamber for atmospheric measurements, Aerosol Sci. Tech., 39,
206–221, 2005. a
Samy, S., Mazzoleni, L. R., Mishra, S., Zielinska, B., and Hallar, A. G.:
Water-soluble organic compounds at a mountain-top site in Colorado, USA,
Atmos. Environ., 44, 1663–1671,
https://doi.org/10.1016/j.atmosenv.2010.01.033, 2010. a
Sánchez Gácita, M., Longo, K. M., Freire, J. L. M., Freitas, S. R., and Martin, S. T.: Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia, Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, 2017. a
Schill, S. R., Collins, D. B., Lee, C., Morris, H. S., Novak, G. A., Prather, K. A., Quinn, P. K., Sultana,
C. M., Tivanski, A. V., Zimmermann, K., and Cappa, C. D.: The Impact of Aerosol Particle Mixing State on the
Hygroscopicity of Sea Spray Aerosol, ACS Cent. Sci., 1, 132–141, 2015. a
Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young,
T. E.: Dissolution behavior and surface tension effects of organic compounds
in nucleating cloud droplets, Geophys. Res. Lett., 23, 277–280,
1996. a
Singh, D. K., Kawamura, K., Yanase, A., and Barrie, L. A.: Distributions of
Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and
Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport,
Photochemical Degradation/Production at Polar Sunrise, Environ. Sci.
Technol., 51, 8992–9004, https://doi.org/10.1021/acs.est.7b01644, 2017. a
Sorjamaa, R. and Laaksonen, A.: The effect of H2O adsorption on cloud drop activation of insoluble particles: a theoretical framework, Atmos. Chem. Phys., 7, 6175–6180, https://doi.org/10.5194/acp-7-6175-2007, 2007. a, b, c
Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010, 2010. a
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303–3316, https://doi.org/10.5194/acp-9-3303-2009, 2009. a, b, c, d, e
Talley, L. D., Vaughan, D. G., Xie, S. P., Allen, M. R., Boucher, O., et al.:
Climate Change 2013. The Physical Science Basis. Working Group I Contribution
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change – Abstract for decision-makers, edited by: Stocker, T., 2013. a
Tandon, A., Rothfuss, N. E., and Petters, M. D.: The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of particles with different morphologies, Atmos. Chem. Phys., 19, 3325–3339, https://doi.org/10.5194/acp-19-3325-2019, 2019. a
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with
Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation,
and Ice Nucleation, Chem. Rev., 116, 4205–4259,
https://doi.org/10.1021/acs.chemrev.5b00529, 2016. a
Tang, X., Cocker III, D. R., and Asa-Awuku, A.: Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN, Atmos. Chem. Phys., 12, 8377–8388, https://doi.org/10.5194/acp-12-8377-2012, 2012. a
Tavakoli, F. and Olfert, J. S.: Determination of particle mass, effective
density, mass–mobility exponent, and dynamic shape factor using an
aerodynamic aerosol classifier and a differential mobility analyzer in
tandem, J. Aerosol Sci., 75, 35–42, 2014. a
Taylor, N. F., Collins, D. R., Spencer, C. W., Lowenthal, D. H., Zielinska, B., Samburova, V., and Kumar, N.: Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States, Atmos. Chem. Phys., 11, 12085–12107, https://doi.org/10.5194/acp-11-12085-2011, 2011. a
Taylor, N. F., Collins, D. R., Lowenthal, D. H., McCubbin, I. B., Hallar, A. G., Samburova, V., Zielinska, B., Kumar, N., and Mazzoleni, L. R.: Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory, Atmos. Chem. Phys., 17, 2555–2571, https://doi.org/10.5194/acp-17-2555-2017, 2017. a
Vu, D., Gao, S., Berte, T., Kacarab, M., Yao, Q., Vafai, K., and Asa-Awuku, A.: External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states, Atmos. Meas. Tech., 12, 4277–4289, https://doi.org/10.5194/amt-12-4277-2019, 2019. a, b
Wang, W., Lei, T., Zuend, A., Su, H., Cheng, Y., Shi, Y., Ge, M., and Liu, M.: Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles, Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, 2021. a, b
Wiedensohler, A.: An approximation of the bipolar charge distribution for
particles in the submicron size range, J. Aerosol Sci., 19,
387–389, 1988. a
Yao, Q., Asa-Awuku, A., Zangmeister, C. D., and Radney, J. G.: Comparison of
three essential sub-micrometer aerosol measurements: Mass, size and shape,
Aerosol Sci. Technol., 54, 1197–1209, 2020. a
Yassine, M. M., Suski, M., and Dabek-Zlotorzynska, E.: Characterization of
benzene polycarboxylic acids and polar nitroaromatic compounds in atmospheric
aerosols using UPLC-MS/MS, J. Chromatogr. A, 1630, 461507,
https://doi.org/10.1016/j.chroma.2020.461507, 2020. a
Zhao, H., Zhang, Z., Hou, H., and Zhang, J.: Hygroscopic salt-modulated UiO-66:
Synthesis and its open adsorption performance, J. Solid State
Chem., 301, 122304, https://doi.org/10.1016/j.jssc.2021.122304, 2021. a
Zhong, X., Cui, C., and Yu, S.: Exploring the pathways of aromatic carboxylic
acids in ozone solutions, RSC Advances, 7, 34339–34347,
https://doi.org/10.1039/C7RA03039H, 2017a. a
Zhong, X., Cui, C., and Yu, S.: The determination and fate of disinfection
by-products from ozonation-chlorination of fulvic acid, Environ. Sci.
Pollut. Res., 24, 6472–6480, https://doi.org/10.1007/s11356-016-8350-1,
2017b. a
Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmospheric aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–5244, https://doi.org/10.5194/acp-8-5221-2008, 2008. a
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially...
Altmetrics
Final-revised paper
Preprint