Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-11255-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Lamei Shi
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Jiahua Zhang
CORRESPONDING AUTHOR
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Da Zhang
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Jingwen Wang
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Xianglei Meng
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Yuqin Liu
Key Laboratory of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fengmei Yao
College of Earth and Planetary Sciences, University of Chinese
Academy of Sciences, Beijing 101407, China
Related authors
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Yuqin Liu, Jiahua Zhang, Putian Zhou, Tao Lin, Juan Hong, Lamei Shi, Fengmei Yao, Jun Wu, Huadong Guo, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018, https://doi.org/10.5194/acp-18-18187-2018, 2018
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Yuqin Liu, Jiahua Zhang, Putian Zhou, Tao Lin, Juan Hong, Lamei Shi, Fengmei Yao, Jun Wu, Huadong Guo, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018, https://doi.org/10.5194/acp-18-18187-2018, 2018
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Microphysics of liquid water in sub-10 nm ultrafine aerosol particles
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions
Reconsideration of surface tension and phase state effects on cloud condensation nuclei activity based on the atomic force microscopy measurement
Hygroscopicity and CCN potential of DMS-derived aerosol particles
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
The effectiveness of the coagulation sink of 3–10 nm atmospheric particles
Measurement report: An exploratory study of fluorescence and cloud condensation nuclei activity of urban aerosols in San Juan, Puerto Rico
Viscosity and physical state of sucrose mixed with ammonium sulfate droplets
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models
Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification
Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC
On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level
Particle emissions from a modern heavy-duty diesel engine as ice nuclei in immersion freezing mode: a laboratory study on fossil and renewable fuels
Comparison of saturation vapor pressures of α-pinene + O3 oxidation products derived from COSMO-RS computations and thermal desorption experiments
Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification
Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning
The effect of (NH4)2SO4 on the freezing properties of non-mineral dust ice-nucleating substances of atmospheric relevance
Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures
Aerosol formation and growth rates from chamber experiments using Kalman smoothing
Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors
Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age
Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts
Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol ∕ (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification
Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area
Properties and emission factors of cloud condensation nuclei from biomass cookstoves – observations of a strong dependency on potassium content in the fuel
Measurement report: Effects of NOx and seed aerosol on highly oxygenated organic molecules (HOMs) from cyclohexene ozonolysis
Interactions of organosulfates with water vapor under sub- and supersaturated conditions
Laboratory study of the collection efficiency of submicron aerosol particles by cloud droplets – Part I: Influence of relative humidity
Size-resolved atmospheric ice-nucleating particles during East Asian dust events
Aqueous-phase behavior of glyoxal and methylglyoxal observed with carbon and oxygen K-edge X-ray absorption spectroscopy
Brown carbon's emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon
Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles
Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity
The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime
The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
Comparing secondary organic aerosol (SOA) volatility distributions derived from isothermal SOA particle evaporation data and FIGAERO–CIMS measurements
Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 1: Optical properties
Enhanced growth rate of atmospheric particles from sulfuric acid
Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems
Effects of SO2 on optical properties of secondary organic aerosol generated from photooxidation of toluene under different relative humidity conditions
Influence of the dry aerosol particle size distribution and morphology on the cloud condensation nuclei activation. An experimental and theoretical investigation
Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs)
Detection of tar brown carbon with a single particle soot photometer (SP2)
Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content
Technical note: Frenkel, Halsey and Hill analysis of water on clay minerals: toward closure between cloud condensation nuclei activity and water adsorption
Xiaohan Li and Ian C. Bourg
Atmos. Chem. Phys., 23, 2525–2556, https://doi.org/10.5194/acp-23-2525-2023, https://doi.org/10.5194/acp-23-2525-2023, 2023
Short summary
Short summary
Aerosol particles with sizes smaller than 50 nm impact cloud formation and precipitation. Representation of this effect is hindered by limited understanding of the properties of liquid water in these particles. Our simulations of aerosol particles containing salt or organic compounds reveal that water enters a less cohesive phase at droplet sizes below 4 nm. This effect causes important deviations from theoretical predictions of aerosol properties, including phase state and hygroscopic growth.
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023, https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Fabian Mahrt, Carolin Rösch, Kunfeng Gao, Christopher H. Dreimol, Maria A. Zawadowicz, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 1285–1308, https://doi.org/10.5194/acp-23-1285-2023, https://doi.org/10.5194/acp-23-1285-2023, 2023
Short summary
Short summary
Major aerosol types emitted by biomass burning include soot, ash, and charcoal particles. Here, we investigated the ice nucleation activity of 400 nm size-selected particles of two different pyrolyis-derived charcoal types in the mixed phase and cirrus cloud regime. We find that ice nucleation is constrained to cirrus cloud conditions, takes place via pore condensation and freezing, and is largely governed by the particle porosity and mineral content.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Kanishk Gohil, Chun-Ning Mao, Dewansh Rastogi, Chao Peng, Mingjin Tang, and Akua Asa-Awuku
Atmos. Chem. Phys., 22, 12769–12787, https://doi.org/10.5194/acp-22-12769-2022, https://doi.org/10.5194/acp-22-12769-2022, 2022
Short summary
Short summary
The Hybrid Activity Model (HAM) is a promising new droplet growth model that can be potentially used for the analysis of any type of atmospheric compound. HAM may potentially improve the representation of hygroscopicity of organic aerosols in large-scale global climate models (GCMs), hence reducing the uncertainties in the climate forcing due to the aerosol indirect effect.
Charbel Harb and Hosein Foroutan
Atmos. Chem. Phys., 22, 11759–11779, https://doi.org/10.5194/acp-22-11759-2022, https://doi.org/10.5194/acp-22-11759-2022, 2022
Short summary
Short summary
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is crucial for understanding their climatic and public health impacts. We develop an LSA emission parameterization and implement it in an atmospheric model to investigate Great Lakes surface emissions. We find that the same breaking wave is likely to produce fewer aerosols in freshwater than in saltwater and that Great Lakes emissions influence the regional aerosol burden and can reach the cloud layer.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Bighnaraj Sarangi, Darrel Baumgardner, Benjamin Bolaños-Rosero, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 22, 9647–9661, https://doi.org/10.5194/acp-22-9647-2022, https://doi.org/10.5194/acp-22-9647-2022, 2022
Short summary
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, https://doi.org/10.5194/acp-22-5331-2022, 2022
Short summary
Short summary
Incomplete combustion of fossil fuel produces carbonaceous particles called soot. These particles can affect cloud formation by acting as centres for droplet or ice formation. The atmospheric residence time of soot particles is of the order of days to weeks, which can result in them becoming coated by various trace species in the atmosphere such as acids. In this study, we quantify the cirrus cloud-forming ability of soot particles coated with the atmospherically ubiquitous sulfuric acid.
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016, https://doi.org/10.5194/acp-22-4985-2022, https://doi.org/10.5194/acp-22-4985-2022, 2022
Short summary
Short summary
Soot particles impact cloud formation and radiative properties in the upper atmosphere where aircraft emit carbonaceous particles. We use cloud chambers to mimic the upper atmosphere temperature and humidity to test the influence of the morphology of the soot particles on ice cloud formation. For particles larger than 200 nm, the compacted (densified) samples have a higher affinity for ice crystal formation in the cirrus regime than the fluffy (un-compacted) soot particles of the same sample.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166, https://doi.org/10.5194/acp-22-4149-2022, https://doi.org/10.5194/acp-22-4149-2022, 2022
Short summary
Short summary
Aerosol water uptake plays a key role in atmospheric physicochemical processes. We designed chamber experiments on aerosol water uptake of secondary organic aerosol (SOA) from mixed biogenic and anthropogenic precursors with inorganic seed. Our results highlight this chemical composition influences the reconciliation of the sub- and super-saturated water uptake, providing laboratory evidence for understanding the chemical controls of water uptake of the multi-component aerosol.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, https://doi.org/10.5194/acp-21-12595-2021, 2021
Short summary
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Yu Wang, Aristeidis Voliotis, Yunqi Shao, Taomou Zong, Xiangxinyue Meng, Mao Du, Dawei Hu, Ying Chen, Zhijun Wu, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 11303–11316, https://doi.org/10.5194/acp-21-11303-2021, https://doi.org/10.5194/acp-21-11303-2021, 2021
Short summary
Short summary
Aerosol phase behaviour plays a profound role in atmospheric physicochemical processes. We designed dedicated chamber experiments to study the phase state of secondary organic aerosol from biogenic and anthropogenic mixed precursors. Our results highlight the key role of the organic–inorganic ratio and relative humidity in phase state, but the sources and organic composition are less important. The result provides solid laboratory evidence for understanding aerosol phase in a complex atmosphere.
Ana A. Piedehierro, André Welti, Angela Buchholz, Kimmo Korhonen, Iida Pullinen, Ilkka Summanen, Annele Virtanen, and Ari Laaksonen
Atmos. Chem. Phys., 21, 11069–11078, https://doi.org/10.5194/acp-21-11069-2021, https://doi.org/10.5194/acp-21-11069-2021, 2021
Short summary
Short summary
Ice crystals in cirrus clouds contain particles that start ice formation. We study whether particles forming above boreal forests can help in the making of cirrus clouds and if the water content in the particles affects this property. In the laboratory, we made boreal-forest-like particles and cooled and humidified them to measure whether an ice crystal develops. We found that only when dry can these particles form an ice crystal but no better than solution droplets.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Shuaishuai Ma, Zhe Chen, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 21, 9705–9717, https://doi.org/10.5194/acp-21-9705-2021, https://doi.org/10.5194/acp-21-9705-2021, 2021
Short summary
Short summary
LLPS, efflorescence and deliquescence of aerosol particles can be observed visually and determined quantitatively. Different LLPS mechanisms may dominate successively in mixed organic–inorganic particles. The formation of more concentrated inorganic inclusions may cause secondary LLPS. Furthermore, high inorganic factions may result in an inorganic salt crust enclosing the separated organic phases.
Zhaobin Sun, Xiujuan Zhao, Ziming Li, Guiqian Tang, and Shiguang Miao
Atmos. Chem. Phys., 21, 8863–8882, https://doi.org/10.5194/acp-21-8863-2021, https://doi.org/10.5194/acp-21-8863-2021, 2021
Short summary
Short summary
Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective.
Thomas Bjerring Kristensen, John Falk, Robert Lindgren, Christina Andersen, Vilhelm B. Malmborg, Axel C. Eriksson, Kimmo Korhonen, Ricardo Luis Carvalho, Christoffer Boman, Joakim Pagels, and Birgitta Svenningsson
Atmos. Chem. Phys., 21, 8023–8044, https://doi.org/10.5194/acp-21-8023-2021, https://doi.org/10.5194/acp-21-8023-2021, 2021
Short summary
Short summary
Residential biomass combustion is a major anthropogenic source of aerosol particles on regional and global scales. Nevertheless, little is known about those aerosol particles' ability to act as cloud condensation nuclei (CCN) and thus influence cloud properties and climate. Our study shows a strong link between the potassium content in the fuel and emissions of CCN for different stove technologies. Previous studies may have underestimated the anthropogenic climate impact of these emissions.
Meri Räty, Otso Peräkylä, Matthieu Riva, Lauriane Quéléver, Olga Garmash, Matti Rissanen, and Mikael Ehn
Atmos. Chem. Phys., 21, 7357–7372, https://doi.org/10.5194/acp-21-7357-2021, https://doi.org/10.5194/acp-21-7357-2021, 2021
Short summary
Short summary
Cyclohexene resembles certain relatively complex compounds in the atmosphere that through oxidation produce vapours that take part in aerosol formation. We studied the highly oxygenated organic molecules (HOMs) formed in cyclohexene ozonolysis, the relationship between their chemical composition and their tendency to condense onto seed aerosol, as well as the effect of NOx pollutants on their signals. Two existing models were also tested for their ability to predict the volatility of the HOMs.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Alexis Dépée, Pascal Lemaitre, Thomas Gelain, Marie Monier, and Andrea Flossmann
Atmos. Chem. Phys., 21, 6945–6962, https://doi.org/10.5194/acp-21-6945-2021, https://doi.org/10.5194/acp-21-6945-2021, 2021
Short summary
Short summary
Present article describe a new In-Cloud Aerosol Scavenging Experiment (In-CASE) that has been conceived to measure the collection efficiency of submicron aerosol particles by cloud droplets. The present article focuses on the influence of phoretic effects on the collection efficiency.
Jingchuan Chen, Zhijun Wu, Jie Chen, Naama Reicher, Xin Fang, Yinon Rudich, and Min Hu
Atmos. Chem. Phys., 21, 3491–3506, https://doi.org/10.5194/acp-21-3491-2021, https://doi.org/10.5194/acp-21-3491-2021, 2021
Short summary
Short summary
Asian mineral dust is a crucial contributor to global ice-nucleating particles (INPs), while its size-resolved information on freezing activity is extremely rare. Here we conducted the first known INP measurements of size-resolved airborne East Asian dust particles. An explicit size dependence of both INP concentration and surface
ice-active-site density was observed. The new parameterizations can be widely applied in models to better characterize and predict ice nucleation activities of dust.
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Cuiqi Zhang, Yue Zhang, Martin J. Wolf, Leonid Nichman, Chuanyang Shen, Timothy B. Onasch, Longfei Chen, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020, https://doi.org/10.5194/acp-20-13957-2020, 2020
Short summary
Short summary
Black carbon (BC) is considered the second most important global warming agent. However, the role of BC aerosol–cloud–climate interactions in the cirrus formation remains uncertain. Our study of selected BC types and sizes suggests that increases in diameter, compactness, and/or surface oxidation of BC particles lead to more efficient ice nucleation (IN) via pore condensation freezing (PCF) pathways,and that coatings of common secondary organic aerosol (SOA) materials can inhibit ice formation.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
Olli-Pekka Tikkanen, Angela Buchholz, Arttu Ylisirniö, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 20, 10441–10458, https://doi.org/10.5194/acp-20-10441-2020, https://doi.org/10.5194/acp-20-10441-2020, 2020
Short summary
Short summary
We compared the volatility distributions of secondary organic aerosol (SOA) constituents estimated from isothermal evaporation experiments from either particle size change data, by process modelling and global optimization, or from mass spectrometer data with positive matrix factorization analysis. Our results show that, despite the two very different estimation methods, the volatility distributions are comparable if uncertainties are taken into account.
Damon M. Smith, Marc N. Fiddler, Rudra P. Pokhrel, and Solomon Bililign
Atmos. Chem. Phys., 20, 10149–10168, https://doi.org/10.5194/acp-20-10149-2020, https://doi.org/10.5194/acp-20-10149-2020, 2020
Short summary
Short summary
Biomass burning aerosol can scatter and absorb light, contributing to the cooling or warming of the planet. The scattering and absorption properties (optical properties) change as aerosol ages and interacts with atmospheric gases. Optical properties also depend on burning conditions, fuel type, and morphology. Africa is a major source of biomass burning aerosols, but there are very few laboratory studies. This study focuses on the optical properties of aerosols from east African biomass fuels.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Arttu Ylisirniö, Angela Buchholz, Claudia Mohr, Zijun Li, Luis Barreira, Andrew Lambe, Celia Faiola, Eetu Kari, Taina Yli-Juuti, Sergey A. Nizkorodov, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Chem. Phys., 20, 5629–5644, https://doi.org/10.5194/acp-20-5629-2020, https://doi.org/10.5194/acp-20-5629-2020, 2020
Short summary
Short summary
We studied the chemical composition and volatility of secondary organic aerosol (SOA) particles formed from emissions of Scots pines and compared those results to SOA formed from α-pinene and from a sesquiterpene mixture. We found that SOA formed from single precursors cannot capture the properties of SOA formed from real plant emissions.
Wenyu Zhang, Weigang Wang, Junling Li, Chao Peng, Kun Li, Li Zhou, Bo Shi, Yan Chen, Mingyuan Liu, and Maofa Ge
Atmos. Chem. Phys., 20, 4477–4492, https://doi.org/10.5194/acp-20-4477-2020, https://doi.org/10.5194/acp-20-4477-2020, 2020
Short summary
Short summary
We investigated the effect of SO2 under different humidities on optical properties of toluene-derived SOA under four conditions with CRDs and PAX at 532 and 375 nm, respectively. Our results showed that SO2 under different humidities can change the refractive complex index of toluene SOA by influencing the multiphase processes and altering the aerosol chemical compositions. Different atmospheric conditions could affect the properties of toluene SOA, as well as the global radiative balance.
Junteng Wu, Alessandro Faccinetto, Symphorien Grimonprez, Sébastien Batut, Jérôme Yon, Pascale Desgroux, and Denis Petitprez
Atmos. Chem. Phys., 20, 4209–4225, https://doi.org/10.5194/acp-20-4209-2020, https://doi.org/10.5194/acp-20-4209-2020, 2020
Short summary
Short summary
Soot particles released during anthropogenic activities may lead to positive direct or negative indirect climate forcing depending on their aging in the atmosphere. The latter occurs whenever soot particles act as cloud condensation nuclei (CCN) and trigger the formation of persistent clouds. Herein, we investigate the impact of the size distribution and morphology of freshly emitted soot particles on their aging process and propose a model to quantitatively predict their efficiency as CCN.
Otso Peräkylä, Matthieu Riva, Liine Heikkinen, Lauriane Quéléver, Pontus Roldin, and Mikael Ehn
Atmos. Chem. Phys., 20, 649–669, https://doi.org/10.5194/acp-20-649-2020, https://doi.org/10.5194/acp-20-649-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules have been suggested to form a large part of secondary organic aerosol. However, with their exotic structures, their volatilities are not well known, making their exact role in particle formation hard to assess. In laboratory experiments, we found the volatility of HOMs formed in the ozonolysis of the monoterpene alpha-pinene to be in the middle of earlier estimates. The volatilities of HOMs could be well explained in terms of their molecular formulae.
Joel C. Corbin and Martin Gysel-Beer
Atmos. Chem. Phys., 19, 15673–15690, https://doi.org/10.5194/acp-19-15673-2019, https://doi.org/10.5194/acp-19-15673-2019, 2019
Short summary
Short summary
We review the literature to refine the definition of "tar balls" (or tar particles). Then, using a marine-engine data set, we show that a standard SP2 can identify tar particles in two ways, as evaporating and non-incandescing (30 % of tar particles by number) or incandescing particles which scatter more light than soot at incandescence (70 % of tar particles by number). To our knowledge, no other technique can provide in situ, real-time evidence for the presence of tar particles in an aerosol.
Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-François Doussin
Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, https://doi.org/10.5194/acp-19-15503-2019, 2019
Short summary
Short summary
This paper presents a new dataset of laboratory measurements of the shortwave (SW) spectral complex refractive index and single-scattering albedo (SSA) for global mineral dust aerosols of varying origin and composition. Our results show that the dust refractive index and SSA vary strongly from source to source, mostly due to particle iron content changes. We recommend that source-dependent values of the SW spectral refractive index and SSA be used in models and remote sensing applications.
Courtney D. Hatch, Paul R. Tumminello, Megan A. Cassingham, Ann L. Greenaway, Rebecca Meredith, and Matthew J. Christie
Atmos. Chem. Phys., 19, 13581–13589, https://doi.org/10.5194/acp-19-13581-2019, https://doi.org/10.5194/acp-19-13581-2019, 2019
Short summary
Short summary
Atmospheric mineral dust has been identified as an important contributor to cloud formation and cloud properties that influence the Earth's climate, yet experimental measurements of climate model parameters currently disagree. This study demonstrates current best practices for analyzing water adsorption measurements, resulting in significantly improved agreement among experimental practices. As such, more accurate parameters can be used to improve simulations of aerosol climate effects.
Cited articles
Abish, B. and Mohanakumar, K.: Absorbing aerosol variability over the Indian
subcontinent and its increasing dependence on ENSO, Glob. Planet. Change,
106, 13–19, https://doi.org/10.1016/j.gloplacha.2013.02.007, 2013.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Nino
Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798, 2007.
Avila, A.: The chemical composition of dust transported in red rains – its
contribution to the biogeochemical cycle of a holm oak forest in Catalonia
(Spain), Atmos. Environ., 32, 179–191, https://doi.org/10.1016/S1352-2310(97)00286-0, 1998.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S.,
Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P.
K., and Singh, D.: Trends in aerosol optical depth over Indian region:
Potential causes and impact indicators, J. Geophys. Res.-Atmos., 118,
11794–11806, https://doi.org/10.1002/2013JD020507, 2013.
Banerjee, P. and Kumar, S. P.: ENSO modulation of interannual variability of
dust aerosols over the northwest Indian Ocean, J. Clim., 29, 1391–1415,
https://doi.org/10.1175/JCLI-D-15-0039.1, 2016.
Banerjee, P., Satheesh, S. K., Moorthy, K. K., Nanjundiah, R. S., and Nair,
V. S.: Long-range transport of mineral dust to the northeast Indian Ocean:
Regional versus remote sources and the implications, J. Clim., 32,
1525–1549, https://doi.org/10.1175/JCLI-D-18-0403.1, 2019.
Behrooz, R. D., Esmaili-Sari, A., Bahramifar, N., and Kaskaoutis, D. G.:
Analysis of the TSP, PM10 concentrations and water-soluble ionic species in airborne samples over Sistan, Iran during the summer dusty period, Atmos.
Pollut. Res., 8, 403–417, https://doi.org/10.1016/j.apr.2016.11.001, 2017.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and
the weakening of the south asian summer monsoon, Science, 334,
502–505, https://doi.org/10.1126/science.1204994, 2011.
Bozlaker, A., Prospero, J. M., Fraser, M. P., and Chellam, S.: Quantifying
the contribution of long-range saharan dust transport on particulate matter
concentrations in Houston, Texas, using detailed elemental analysis,
Environ. Sci. Technol., 47, 10179–10187, https://doi.org/10.1021/es4015663,
2013.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation
and case studies, J. Clim., 30, 6851–6872,
https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi,
G., Timmermann, A., Santoso, A., Mcphaden, M. J., Wu, L., England, M. H.,
Wang, G., Guilyardi, E., and Jin, F. F.: Increasing frequency of extreme El
Niño events due to greenhouse warming, Nat. Clim. Chang., 4, 111–116,
https://doi.org/10.1038/nclimate2100, 2014.
Chauhan, S. S.: Desertification control and management of land degradation
in the Thar desert of India, Environmentalist, 23, 219–227,
https://doi.org/10.1023/B:ENVR.0000017366.67642.79, 2003.
Chen, Y.-S., Sheen, P.-C., Chen, E.-R., Liu, Y.-K., Wu, T.-N., and Yang,
C.-Y.: Effects of Asian dust storm events on daily mortality in Taipei,
Taiwan, Environ. Res., 95, 151–155,
https://doi.org/10.1016/j.envres.2003.08.008, 2004.
Cherchi, A. and Navarra, A.: Influence of ENSO and of the Indian Ocean
Dipole on the Indian summer monsoon variability, Clim. Dyn., 41, 81–103,
https://doi.org/10.1007/s00382-012-1602-y, 2013.
Clark, C. O., Cole, J. E., and Webster, P. J.: Indian Ocean SST and Indian
summer rainfall: Predictive relationships and their decadal variability, J.
Clim., 13, 2503–2519, https://doi.org/10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2, 2000.
Dong, B., Dai, A., Vuille, M., and Timm, O. E.: Asymmetric modulation of
ENSO teleconnections by the interdecadal Pacific oscillation, J. Clim., 31,
7337–7361, https://doi.org/10.1175/JCLI-D-17-0663.1, 2018.
Du, Y., Xie, S. P., Huang, G., and Hu, K.: Role of air-sea interaction in
the long persistence of El Niño-induced north Indian Ocean warming, J.
Clim., 22, 2023–2038, https://doi.org/10.1175/2008JCLI2590.1, 2009.
Easterling, D. R. and Wehner, M. F.: Is the climate warming or cooling?,
Geophys. Res. Lett., 36, 4–6, https://doi.org/10.1029/2009GL037810, 2009.
Erel, Y., Dayan, U., Rabi, R., Rudich, Y., and Stein, M.: Trans boundary
transport of pollutants by atmospheric mineral dust, Environ. Sci. Technol.,
40, 2996–3005, https://doi.org/10.1021/es051502l, 2006.
Fyfe, J. C., Merryfield, W. J., Kharin, V., Boer, G. J., Lee, W. S., and Von
Salzen, K.: Skillful predictions of decadal trends in global mean surface
temperature, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2011GL049508, 2011.
Fyfe, J. C., Gillett, N. P., and Zwiers, F. W.: Overestimated global warming
over the past 20 years, Nat. Clim. Chang., 3, 767–769,
https://doi.org/10.1038/nclimate1972, 2013.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Clim., 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2, NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://disc.gsfc.nasa.gov/, last access: 1 February 2021.
Graham, N. E.: Decadal-scale climate variability in the tropical and North
Pacific during the 1970s and 1980s: observations and model results, Clim.
Dyn., 10, 135–162, https://doi.org/10.1007/BF00210626, 1994.
Guo, H., Wang, X., and Gao, Z.: Uncertain linear regression model and its
application, J. Intell. Manuf., 28, 559–564,
https://doi.org/10.1007/s10845-014-1022-4, 2017.
Hansen, J. E., Sato, M., and Ruedy, R.: Radiative forcing and climate
response, J. Geophys. Res.-Atmos., 102, 6831–6864, https://doi.org/10.1029/96JD03436, 1997.
He, L., Lin, A., Chen, X., Zhou, H., Zhou, Z., and He, P.: Assessment of
MERRA-2 Surface PM2.5 over the Yangtze River Basin: Ground-based
verification, spatiotemporal distribution and meteorological dependence,
Remote Sens., 11, 460, https://doi.org/10.3390/rs11040460, 2019.
He, S. and Wang, H.: Oscillating relationship between the East Asian Winter
Monsoon and ENSO, J. Clim., 26, 9819–9838,
https://doi.org/10.1175/JCLI-D-13-00174.1, 2013.
Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface
temperature analysis and its uncertainty, J. Clim., 27, 57–75,
https://doi.org/10.1175/JCLI-D-12-00837.1, 2014.
Hu, S. and Fedorov, A. V.: The extreme El Niño of 2015–2016 and the end
of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824,
https://doi.org/10.1002/2017GL072908, 2017.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Clim., 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, X., Zhou, T., Turner, A., Dai, A., Chen, X., Clark, R., Jiang, J.,
Man, W., Murphy, J., Rostron, J., Wu, B., Zhang, L., Zhang, W., and Zou, L.:
The recent decline and recovery of Indian summer monsoon rainfall: Relative
roles of external forcing and internal variability, J. Clim., 33,
5035–5060, https://doi.org/10.1175/JCLI-D-19-0833.1, 2020.
Jin, Q. and Wang, C.: The greening of Northwest Indian subcontinent and
reduction of dust abundance resulting from Indian summer monsoon revival,
Sci. Rep., 8, 1–9, https://doi.org/10.1038/s41598-018-23055-5, 2018.
Jin, Q., Wei, J., Pu, B., Yang, Z. L., and Parajuli, S. P.: High Summertime
Aerosol Loadings Over the Arabian Sea and Their Transport Pathways, J.
Geophys. Res.-Atmos., 123, 10568–10590,
https://doi.org/10.1029/2018JD028588, 2018.
Jin, Q., Wei, J., Lau, W. K. M., Pu, B., and Wang, C.: Interactions of Asian
mineral dust with Indian summer monsoon: Recent advances and challenges,
Earth-Sci. Rev., 215, 103562,
https://doi.org/10.1016/j.earscirev.2021.103562, 2021.
Kaiser, J. and Granmar, M.: Mounting Evidence Indicts Fine-Particle
Pollution, Science, 307, 1858–1861, https://doi.org/10.1126/science.307.5717.1858a, 2005.
Kinter, I. L., Miyakoda, K., and Yang, S.: Recent change in the connection
from the Asian monsoon to ENSO, J. Clim., 15, 1203–1215,
https://doi.org/10.1175/1520-0442(2002)015<1203:RCITCF>2.0.CO;2, 2002.
Krishnamurthy, L. and Krishnamurthy, V.: Influence of PDO on South Asian
summer monsoon and monsoon-ENSO relation, Clim. Dyn., 42, 2397–2410,
https://doi.org/10.1007/s00382-013-1856-z, 2014.
Krishnamurthy, V. and Kirtman, B. P.: Variability of the Indian Ocean:
Relation to monsoon and ENSO, Q. J. R. Meteorol. Soc., 129, 1623–1646,
https://doi.org/10.1256/qj.01.166, 2003.
Kucharski, F., Bracco, A., Yoo, J. H., and Molteni, F.: Low-frequency
variability of the Indian monsoon-ENSO relationship and the tropical
Atlantic: The “weakening” of the 1980s and 1990s, J. Clim., 20,
4255–4266, https://doi.org/10.1175/JCLI4254.1, 2007.
Kug, J. S., An, S. Il, Jin, F. F., and Kang, I. S.: Preconditions for El
Niño and La Niña onsets and their relation to the Indian Ocean,
Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2004GL021674, 2005.
Kumar, K. K., Rajagopalan, B., and Cane, M. A.: On the weakening
relationship between the indian monsoon and ENSO, Science, 284,
2156–2159, https://doi.org/10.1126/science.284.5423.2156, 1999.
Lakshmi, N. B., Nair, V. S., and Suresh Babu, S.: Vertical structure of
aerosols and mineral dust over the Bay of Bengal from multisatellite
observations, J. Geophys. Res.-Atmos., 122, 12845–12861,
https://doi.org/10.1002/2017JD027643, 2017.
Lakshmi, N. B., Babu, S. S., and Nair, V. S.: Recent Regime Shifts in
Mineral Dust Trends over South Asia from Long-Term CALIPSO Observations,
IEEE Trans. Geosci. Remote Sens., 57, 4485–4489,
https://doi.org/10.1109/TGRS.2019.2891338, 2019.
Lee, Y. G., Kim, J., Ho, C. H., An, S. Il, Cho, H. K., Mao, R., Tian, B.,
Wu, D., Lee, J. N., Kalashnikova, O., Choi, Y., and Yeh, S. W.: The effects
of ENSO under negative AO phase on spring dust activity over northern China:
An observational investigation, Int. J. Climatol., 35, 935–947,
https://doi.org/10.1002/joc.4028, 2015.
Liu, J., Wu, D., Liu, G., Mao, R., Chen, S., Ji, M., Fu, P., Sun, Y., Pan,
X., Jin, H., Zhou, Y., and Wang, X.: Impact of Arctic amplification on
declining spring dust events in East Asia, Clim. Dyn., 54, 1913–1935,
https://doi.org/10.1007/s00382-019-05094-4, 2020.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D.
S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Mahowald, N. M., Yoshioka, M., Collins, W. D., Conley, A. J., Fillmore, D.
W., and Coleman, D. B.: Climate response and radiative forcing from mineral
aerosols during the last glacial maximum, pre-industrial, current and
doubled-carbon dioxide climates, Geophys. Res. Lett., 332, 382–385, https://doi.org/10.1029/2006GL026126, 2006.
Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., and Zender, C. S.: Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmos. Chem. Phys., 10, 10875–10893, https://doi.org/10.5194/acp-10-10875-2010, 2010.
Miller, R. L. and Tegen, I.: Climate response to soil dust aerosols, J.
Clim., 11, 3247–3267, https://doi.org/10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2, 1998.
National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR): Atmospheric reanalysis dataset, Physical Sciences Laboratory (PSL) [data set],
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 1 March 2021.
Nitta, T. and Yamada, S.: Recent warming of tropical sea surface temperature
and its relationship to the Northern Hemisphere circulation, J. Meteorol.
Soc. Japan, 67, 375–383, https://doi.org/10.2151/jmsj1965.67.3_375, 1989.
NOAA/CPC: Climate indices: monthly atmospheric and ocean time series, Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC), Physical Sciences Laboratory (PSL) [data set], https://psl.noaa.gov/data/climateindices/list/, last access: 1 February 2021.
Osborn, T. J., Jones, P. D., Lister, D. H., Morice, C. P., Simpson, I. R.,
Winn, J. P., Hogan, E., and Harris, I. C.: Land Surface Air Temperature
Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set, J.
Geophys. Res.-Atmos., 126, e2019JD032352, https://doi.org/10.1029/2019JD032352, 2021.
Pallikari, F.: On the false hypothesis of psi-mediated shift of statistical average in tests with random number generators, in: The Parapsychological Association Convention 2004, 5–8 August 2004, Vienna University, 157–171,
https://doi.org/10.13140/2.1.4054.5289, 2004.
Parker, D. J., Willetts, P., Birch, C., Turner, A. G., Marsham, J. H.,
Taylor, C. M., Kolusu, S., and Martin, G. M.: The interaction of moist
convection and mid-level dry air in the advance of the onset of the Indian
monsoon, Q. J. R. Meteorol. Soc., 142, 2256–2272,
https://doi.org/10.1002/qj.2815, 2016.
Poulsen, O. M., Breum, N. O., Ebbehoj, N., Hansen, A. M., Ivens, U. I., van
Lelieveld, D., Malmros, P., Matthiasen, L., Nielsen, B. H., and Nielsen, E.
M.: Sorting and recycling of domestic waste. Review of occupational health
problems and their possible causes, Sci. Total Environ., 168, 33–56, https://doi.org/10.1016/0048-9697(95)04521-2, 1995.
Prospero, J. M. and Nees, R. T.: Impact of the North African drought and El
Niño on mineral dust in the Barbados trade winds, Nature, 320, 735–738,
https://doi.org/10.1038/320735a0, 1986.
Randles, C. A., Sliva, A. M. da, Buchard, V., Colarco, P., Armenov, A., and
Govindaraju, R.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System
Description and Data Assimilation Evaluation, J. Clim., 30, 6823–6850,
https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002jd002670, 2003.
Razakov, R. M. and Kosnazarov, K. A.: Dust and salt transfer from the
exposed bed of the Aral Sea and measures to decrease its environmental
impact, in: The Aral Sea Basin, edited by: Micklin, P. P. and Williams, W.
D., Springer, Berlin, Heidelberg, 95–102, https://doi.org/10.1007/978-3-642-61182-7_9, 1996.
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018.
Sabeerali, C. T., Ajayamohan, R. S., Bangalath, H. K., and Chen, N.:
Atlantic Zonal Mode: An Emerging Source of Indian Summer Monsoon Variability
in a Warming World, Geophys. Res. Lett., 46, 4460–4467,
https://doi.org/10.1029/2019GL082379, 2019.
Sanchez de la Campa, A., Garcia-Salamanca, A., Solano, J., de la Rosa, J.,
and Ramos, J.-L.: Chemical and microbiological characterization of
atmospheric particulate matter during an intense African dust event in
Southern Spain., Environ. Sci. Technol., 47, 3630–3638,
https://doi.org/10.1021/es3051235, 2013.
Schulz, M., Prospero, J. M., Baker, A. R., Dentener, F., Ickes, L., Liss, P.
S., Mahowald, N. M., Nickovic, S., García-Pando, C. P., Rodríguez,
S., Sarin, M., Tegen, I., and Duce, R. A.: Atmospheric Transport and
Deposition of Mineral Dust to the Ocean: Implications for Research Needs,
Environ. Sci. Technol., 46, 10390–10404, https://doi.org/10.1021/es300073u, 2012.
Singh, R. P., Prasad, A. K., Kayetha, V. K., and Kafatos, M.: Enhancement of
oceanic parameters associated with dust storms using satellite data, J.
Geophys. Res., 113, C11008, https://doi.org/10.1029/2008JC004815, 2008.
Srivastava, G., Chakraborty, A., and Nanjundiah, R. S.: Multidecadal see-saw
of the impact of ENSO on Indian and West African summer monsoon rainfall,
Clim. Dyn., 52, 6633–6649, https://doi.org/10.1007/s00382-018-4535-2, 2019.
Tegen, I., Lacis, A. A., and Fung, I.: The influence on climate forcing of
mineral aerosols from disturbed soils, Nature, 380, 419–422, https://doi.org/10.1038/380419a0, 1996.
Tokinaga, H., Richter, I., and Kosaka, Y.: ENSO Influence on the Atlantic
Niño, Revisited: Multi-Year versus Single-Year ENSO Events, J. Clim.,
32, 4585–4600, https://doi.org/10.1175/JCLI-D-18-0683.1, 2019.
Trenberth, K. E. and Hurrell, J. W.: Decadal atmosphere-ocean variations in
the Pacific, Clim. Dyn., 9, 303–319, https://doi.org/10.1007/BF00204745, 1994.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Chang., 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Veselovskii, I., Goloub, P., Podvin, T., Tanre, D., da Silva, A., Colarco, P., Castellanos, P., Korenskiy, M., Hu, Q., Whiteman, D. N., Pérez-Ramírez, D., Augustin, P., Fourmentin, M., and Kolgotin, A.: Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations, Atmos. Meas. Tech., 11, 949–969, https://doi.org/10.5194/amt-11-949-2018, 2018.
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511612336, 1999.
Wang, B., Wu, R., and Li, T.: Atmosphere-warm ocean interaction and its
impacts on Asian-Australian monsoon variation, J. Clim., 16, 1195–1211,
https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2, 2003.
Wang, L., Chen, W., and Huang, R.: Interdecadal modulation of PDO on the
impact of ENSO on the east Asian winter monsoon, Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287, 2008.
Wang, S., Huang, J., He, Y., and Guan, Y.: Combined effects of the Pacific
Decadal Oscillation and El Niño-Southern Oscillation on Global Land
Dry-Wet Changes, Sci. Rep., 4, 6651, https://doi.org/10.1038/srep06651, 2014.
Watanabe, M. and Jin, F. F.: Role of Indian Ocean warming in the development
of Philippine Sea anticyclone during ENSO, Geophys. Res. Lett., 29,
1161–1164, https://doi.org/10.1029/2001gl014318, 2002.
Weare, B. C., Navato, A. R., and Newell, R. E.: Empirical orthogonal
analysis of Pacific sea surface temperatures, J. Phys. Oceanogr., 6,
671–678, https://doi.org/10.1175/1520-0485(1976)006<0671:EOAOPS>2.0.CO;2, 1976.
Weng, H., Ashok, K., Behera, S. K., Rao, S. A., and Yamagata, T.: Impacts of
recent El Niño Modoki on dry/wet conditions in the Pacific rim during
boreal summer, Clim. Dyn., 29, 113–129, https://doi.org/10.1007/s00382-007-0234-0, 2007.
Wu, R. and Kirtman, B. P.: Understanding the impacts of the Indian ocean on
ENSO variability in a coupled GCM, J. Clim., 17, 4019–4031,
https://doi.org/10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2, 2004.
Wu, X., Liu, J., Wu, Y., Wang, X., Yu, X., Shi, J., and Bi, J.: Aerosol
optical absorption coefficients at a rural site in Northwest China: The
great contribution of dust particles, Atmos. Environ., 189, 145–152,
https://doi.org/10.1016/j.atmosenv.2018.07.002, 2018.
Xi, X. and Sokolik, I. N.: Dust interannual variability and trend in Central
Asia from 2000 to 2014 and their climatic linkages, J. Geophys. Res.-Atmos.,
120, 12175–12191, https://doi.org/10.1038/175238c0, 2016.
Yang, S. and Jiang, X.: Prediction of Eastern and Central Pacific ENSO
Events and Their Impacts on East Asian Climate by the NCEP Climate Forecast
System, J. Clim., 27, 4451–4472, https://doi.org/10.1175/JCLI-D-13-00471.1,
2014.
Yang, X. and Huang, P.: Restored relationship between ENSO and Indian summer
monsoon rainfall around 1999/2000, Innov., 2, 100102,
https://doi.org/10.1016/j.xinn.2021.100102, 2021.
Yu, J. and Kao, H.: Decadal changes of ENSO persistence barrier in SST and
ocean heat content indices: 1958–2001, J. Geophys. Res., 112, 1–10,
https://doi.org/10.1029/2006JD007654, 2007.
Yu, J.-Y., Mechoso, C. R., McWilliams, J. C., and Arakawa, A.: Impacts of
the Indian Ocean on the ENSO cycle, Geophys. Res. Lett., 29, 1204, https://doi.org/10.1029/2001GL014098, 2002.
Yu, Y., Notaro, M., Liu, Z., Wang, F., Alkolibi, F., Fadda, E., and Bakhrjy,
F.: Climatic controls on the interannual to decadal variability in Saudi
Arabian dust activity: Toward the development of a seasonal dust prediction
model, J. Geophys. Res.-Atmos., 120, 1739–1758,
https://doi.org/10.1002/jgrc.20224, 2015.
Yuan, Y. and Yang, S.: Impacts of Different Types of El Niño on the East
Asian Climate: Focus on ENSO Cycles, J. Clim., 25, 7702–7722, https://doi.org/10.1175/JCLI-D-11-00576.1, 2012.
Short summary
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its influence factors is crucial for disaster mitigation. Based on a linear regression method, this study revealed the interdecadal variability of relationships between ENSO and dust over northwestern South Asia from 1982 to 2014 and analyzed the effects of atmospheric factors on this interdecadal variability. The result sheds new light on numerical simulation involving the interdecadal variation of dust.
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its...
Altmetrics
Final-revised paper
Preprint