Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO3 and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols
College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China
Qiong Li
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, PR China
Yunhong Zhang
CORRESPONDING AUTHOR
The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Related authors
No articles found.
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194, https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Shuaishuai Ma, Zhe Chen, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 21, 9705–9717, https://doi.org/10.5194/acp-21-9705-2021, https://doi.org/10.5194/acp-21-9705-2021, 2021
Short summary
Short summary
LLPS, efflorescence and deliquescence of aerosol particles can be observed visually and determined quantitatively. Different LLPS mechanisms may dominate successively in mixed organic–inorganic particles. The formation of more concentrated inorganic inclusions may cause secondary LLPS. Furthermore, high inorganic factions may result in an inorganic salt crust enclosing the separated organic phases.
Cited articles
Bilde, M., Svenningsson, B., Mønster, J., and Rosenørn, T.: Even-odd
alternation of evaporation rates and vapor pressures of C3–C9 dicarboxylic
acid aerosols, Environ. Sci. Technol., 37, 1371–1378,
https://doi.org/10.1021/es0201810, 2003.
Bouzidi, H., Zuend, A., Ondráèek, J., Schwarz, J., and
Ždímal, V.: Hygroscopic behavior of inorganic–organic aerosol
systems including ammonium sulfate, dicarboxylic acids, and oligomer, Atmos.
Environ., 229, 117481, https://doi.org/10.1016/j.atmosenv.2020.117481, 2020.
Braban, C. F.: Laboratory studies of model tropospheric aerosol phase
transitions, Ph.D. thesis, University of Toronto, Toronto, 2004.
Braban, C. F. and Abbatt, J. P. D.: A study of the phase transition behavior of internally mixed ammonium sulfate – malonic acid aerosols, Atmos. Chem. Phys., 4, 1451–1459, https://doi.org/10.5194/acp-4-1451-2004, 2004.
Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R.,
Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F.,
Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal
nitrogen oxide processing and its role in regional air quality, Science,
311, 67–70, https://doi.org/10.1126/science.1120120, 2006.
Cai, C., Stewart, D. J., Preston, T. C., Walker, J. S., Zhang, Y. H., and
Reid, J. P.: A new approach to determine vapour pressures and
hygroscopicities of aqueous aerosols containing semi-volatile organic
compounds, Phys. Chem. Chem. Phys., 16, 3162–3172,
https://doi.org/10.1039/c3cp54948h, 2014.
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L.
A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty
in indirect forcing, Nature, 503, 67–71,
https://doi.org/10.1038/nature12674, 2013.
Chen, Z., Liu, P., Liu, Y., and Zhang, Y. H.: Strong acids or bases
displaced by weak acids or bases in aerosols: Reactions driven by the
continuous partitioning of volatile products into the gas phase, Acc. Chem.
Res., 54, 3667–3678, https://doi.org/10.1021/acs.accounts.1c00318, 2021.
Choi, M. Y. and Chan, C. K.: The effects of organic species on the
hygroscopic behaviors of inorganic aerosols, Environ. Sci. Technol., 36,
2422–2428, https://doi.org/10.1021/es0113293, 2002.
Compernolle, S. and Müller, J.-F.: Henry's law constants of diacids and hydroxy polyacids: recommended values, Atmos. Chem. Phys., 14, 2699–2712, https://doi.org/10.5194/acp-14-2699-2014, 2014.
Durham, J. L. and Stockburger, L.: Nitric acid-air diffusion coefficient:
Experimental determination, Atmos. Environ., 20, 559–563,
https://doi.org/10.1016/0004-6981(86)90098-3, 1986.
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999.
Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M.: Atmospheric processes
and their controlling influence on cloud condensation nuclei activity, Chem.
Rev., 115, 4199–4217, https://doi.org/10.1021/cr5006292, 2015.
Finlayson-Pitts, B. J. and Hemminger, J. C.: Physical chemistry of airborne
sea salt particles and their components, J. Phys. Chem. A, 104, 11463–11477,
https://doi.org/10.1021/jp002968n, 2000.
Freney, E., Sellegri, K., Chrit, M., Adachi, K., Brito, J., Waked, A., Borbon, A., Colomb, A., Dupuy, R., Pichon, J.-M., Bouvier, L., Delon, C., Jambert, C., Durand, P., Bourianne, T., Gaimoz, C., Triquet, S., Féron, A., Beekmann, M., Dulac, F., and Sartelet, K.: Aerosol composition and the contribution of SOA formation over Mediterranean forests, Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, 2018.
Furukawa, T. and Takahashi, Y.: Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles, Atmos. Chem. Phys., 11, 4289–4301, https://doi.org/10.5194/acp-11-4289-2011, 2011.
Gao, X. Y., Zhang, Y. H., and Liu, Y.: A kinetics study of the heterogeneous
reaction of n-butylamine with succinic acid using an ATR-FTIR flow reactor,
Phys. Chem. Chem. Phys., 20, 15464–15472,
https://doi.org/10.1039/C8CP01914B, 2018.
Ghorai, S., Wang, B. B., Tivanski, A., and Laskin, A.: Hygroscopic
properties of internally mixed particles composed of NaCl and water-soluble
organic acids, Environ. Sci. Technol., 48, 2234-2241,
https://doi.org/10.1021/es404727u, 2014.
Gibson, E. R., Hudson, P. K., and Grassian, V. H.: Physicochemical
properties of nitrate aerosols: Implications for the atmosphere, J. Phys.
Chem. A, 110, 11785–11799, https://doi.org/10.1021/jp063821k, 2006.
Haynes, W. M. and Lide, D. R.: CRC handbook of chemistry and physics, CRC
Press, Boca Raton, FL, ISBN 978-1-4398-5511-9, 2011.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
https://doi.org/10.1029/1999RG000078, 2000.
He, X., Leng, C., Pang, S., and Zhang, Y.: Kinetics study of heterogeneous
reactions of ozone with unsaturated fatty acid single droplets using
micro-FTIR spectroscopy, RSC Adv., 7, 3204–3213,
https://doi.org/10.1039/c6ra25255a, 2017.
Hind, A. R., Bhargava, S. K., Van Bronswijk, W., Grocott, S. C., and Eyer,
S. L.: On the aqueous vibrational spectra of alkali metal oxalates, Appl.
Spectrosc., 52, 683–691, https://doi.org/10.1366/0003702981944355, 1998.
Hodas, N., Zuend, A., Mui, W., Flagan, R. C., and Seinfeld, J. H.: Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols, Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, 2015.
Hodas, N., Zuend, A., Schilling, K., Berkemeier, T., Shiraiwa, M., Flagan, R. C., and Seinfeld, J. H.: Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols, Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, 2016.
Hoffman, R. C., Laskin, A., and Finlayson-Pitts, B. J.: Sodium nitrate
particles: physical and chemical properties during hydration and
dehydration, and implications for aged sea salt aerosols, J. Aerosol Sci.,
35, 869–887, https://doi.org/10.1016/j.jaerosci.2004.02.003, 2004.
Hung, H.-M., Katrib, Y., and Martin, S. T.: Products and mechanisms of the
reaction of oleic acid with ozone and nitrate radical, J. Phys. Chem. A,
109, 4517–4530, https://doi.org/10.1021/jp0500900, 2005.
Hung, H.-M. and Ariya, P.: Oxidation of oleic acid and oleic acid/sodium
chloride(aq) mixture droplets with ozone: changes of hygroscopicity and role
of secondary reactions, J. Phys. Chem. A, 111, 620–632,
https://doi.org/10.1021/jp0654563, 2007.
Jing, B., Tong, S., Liu, Q., Li, K., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate, Atmos. Chem. Phys., 16, 4101–4118, https://doi.org/10.5194/acp-16-4101-2016, 2016.
Jing, B., Wang, Z., Tan, F., Guo, Y., Tong, S., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids, Atmos. Chem. Phys., 18, 5115–5127, https://doi.org/10.5194/acp-18-5115-2018, 2018.
Kerminen, V.-M., Teinilä, K., Hillamo, R., and Pakkanen, T.:
Substitution of chloride in sea-salt particles by inorganic and organic
anions, J. Aerosol Sci., 29, 929–942,
https://doi.org/10.1016/S0021-8502(98)00002-0, 1998.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition and
phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Krieger, U. K., Marcolli, C., and Reid, J. P.: Exploring the complexity of
aerosol particle properties and processes using single particle techniques,
Chem. Soc. Rev., 41, 6631–6662, https://doi.org/10.1039/c2cs35082c, 2012.
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic
material affects its reactivity, P. Natl. Acad. Sci. USA., 109,
17354–17359, https://doi.org/10.1073/pnas.1209071109, 2012.
Lamb, D., Moyle, A. M., and Brune, W. H.: The environmental control of
individual aqueous particles in a cubic electrodynamic levitation system,
Aerosol Sci. Technol., 24, 263–278,
https://doi.org/10.1080/02786829608965371, 1996.
Laskin, A., Cowin, J. P., and Iedema, M. J.: Analysis of individual
environmental particles using modern methods of electron microscopy and
X-ray microanalysis, J. Electron Spectrosc. Relat. Phenom., 150, 260–274,
https://doi.org/10.1016/j.elspec.2005.06.008, 2006.
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang,
B. B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of
internally mixed sea salt and organic particles: Surprising reactivity of
NaCl with weak organic acids, J. Geophys. Res.-Atmos., 117, D15302,
https://doi.org/10.1029/2012jd017743, 2012.
Laskina, O., Morris, H. S., Grandquist, J. R., Qin, Z., Stone, E. A.,
Tivanski, A. V., and Grassian, V. H.: Size matters in the water uptake and
hygroscopic growth of atmospherically relevant multicomponent aerosol
particles, J. Phys. Chem. A, 119, 4489–4497,
https://doi.org/10.1021/jp510268p, 2015.
Leng, C. B., Pang, S. F., Zhang, Y., Cai, C., Liu, Y., and Zhang, Y. H.:
Vacuum FTIR observation on the dynamic hygroscopicity of aerosols under
pulsed relative humidity, Environ. Sci. Technol., 49, 9107–9115,
https://doi.org/10.1021/acs.est.5b01218, 2015.
Li, X., Gupta, D., Lee, J., Park, G., and Ro, C.-U.: Real-time investigation
of chemical compositions and hygroscopic properties of aerosols generated
from NaCl and malonic acid mixture solutions using in situ Raman
microspectrometry, Environ. Sci. Technol., 51, 263–270,
https://doi.org/10.1021/acs.est.6b04356, 2017.
Ling, T. Y. and Chan, C. K.: Partial crystallization and deliquescence of
particles containing ammonium sulfate and dicarboxylic acids, J. Geophys.
Res.-Atmos., 113, D14205, https://doi.org/10.1029/2008jd009779, 2008.
Liu, Y., Yang, Z. W., Desyaterik, Y., Gassman, P. L., Wang, H., and Laskin,
A.: Hygroscopic behavior of substrate-deposited particles studied by
micro-FT-IR spectroscopy and complementary methods of particle analysis,
Anal. Chem., 80, 633–642, https://doi.org/10.1021/ac701638r, 2008.
Ma, Q. X. and He, H.: Synergistic effect in the humidifying process of
atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures,
Atmos. Environ., 50, 97–102, https://doi.org/10.1016/j.atmosenv.2011.12.057,
2012.
Ma, Q. X., Ma, J. Z., Liu, C., Lai, C. Y., and He, H.: Laboratory study on
the hygroscopic behavior of external and internal C2–C4
dicarboxylic acid–NaCl mixtures, Environ. Sci. Technol., 47, 10381–10388,
https://doi.org/10.1021/es4023267, 2013.
Ma, Q. X., Liu, C., Ma, J. Z., Chu, B. W., and He, H.: A laboratory study on
the hygroscopic behavior of H2C2O4-containing mixed
particles, Atmos. Environ., 200, 34–39,
https://doi.org/10.1016/j.atmosenv.2018.11.056, 2019a.
Ma, Q. X., Zhong, C., Liu, C., Liu, J., Ma, J. Z., Wu, L. Y., and He, H.: A
comprehensive study about the hygroscopic behavior of mixtures of oxalic
acid and nitrate salts: Implication for the occurrence of atmospheric metal
oxalate complex, ACS Earth Space Chem., 3, 1216–1225,
https://doi.org/10.1021/acsearthspacechem.9b00077, 2019b.
Ma, S. S., Yang, W., Zheng, C. M., Pang, S. F., and Zhang, Y. H.: Subsecond
measurements on aerosols: From hygroscopic growth factors to efflorescence
kinetics, Atmos. Environ., 210, 177–185,
https://doi.org/10.1016/j.atmosenv.2019.04.049, 2019c.
Ma, S., Chen, Z., Pang, S., and Zhang, Y.: Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification, Atmos. Chem. Phys., 21, 9705–9717, https://doi.org/10.5194/acp-21-9705-2021, 2021a.
Ma, S. S., Pang, S. F., Li, J., and Zhang, Y. H.: A review of efflorescence
kinetics studies on atmospherically relevant particles, Chemosphere, 277,
130320, https://doi.org/10.1016/j.chemosphere.2021.130320, 2021b.
Marcolli, C., Luo, B., and Peter, T.: Mixing of the organic aerosol
fractions: Liquids as the thermodynamically stable phases, J. Phys. Chem. A,
108, 2216–2224, https://doi.org/10.1021/jp036080l, 2004.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9, 9491–9522, https://doi.org/10.5194/acp-9-9491-2009, 2009.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546, 637–641,
https://doi.org/10.1038/nature22806, 2017.
Parsons, M. T., Knopf, D. A., and Bertram, A. K.: Deliquescence and
crystallization of ammonium sulfate particles internally mixed with
water-soluble organic compounds, J. Phys. Chem. A, 108, 11600–11608,
https://doi.org/10.1021/jp0462862, 2004.
Peng, C. G., Chan, M. N., and Chan, C. K.: The hygroscopic properties of
dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions,
Environ. Sci. Technol., 35, 4495–4501, https://doi.org/10.1021/es0107531,
2001.
Peng, C., Jing, B., Guo, Y. C., Zhang, Y. H., and Ge, M. F.: Hygroscopic
behavior of multicomponent aerosols involving NaCl and dicarboxylic acids,
J. Phys. Chem. A, 120, 1029–1038, https://doi.org/10.1021/acs.jpca.5b09373,
2016.
Peng, C. G. and Chan, C. K.: The water cycles of water-soluble organic
salts of atmospheric importance, Atmos. Environ., 35, 1183–1192,
https://doi.org/10.1016/S1352-2310(00)00426-X, 2001.
Pope, F. D., Dennis-Smither, B. J., Griffiths, P. T., Clegg, S. L., and Cox,
R. A.: Studies of single aerosol particles containing malonic acid, glutaric
acid, and their mixtures with sodium chloride. I. Hygroscopic growth, J.
Phys. Chem. A, 114, 5335–5341, https://doi.org/10.1021/jp100059k, 2010.
Pöschl, U.: Atmospheric aerosols: composition, transformation, climate
and health effects, Angew. Chem., Int. Ed., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2006.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294, 2119–2124,
https://doi.org/10.1126/science.1064034, 2001.
Ray, A. K., Davis, E. J., and Ravindran, P.: Determination of ultra-low
vapor pressures by submicron droplet evaporation, J. Chem. Phys., 71,
582–587, https://doi.org/10.1063/1.438408, 1979.
Reid, R. C., Prausnitz, J. M., and Poling, B. E.: The properties of gases
and liquids, McGraw-Hill, New York, ISBN 978-0-07-051799-8, 1987.
Ren, H. M., Cai, C., Leng, C. B., Pang, S. F., and Zhang, Y. H.: Nucleation
kinetics in mixed NaNO3 glycerol droplets investigated with the
FTIR-ATR technique, J. Phys. Chem. B, 120, 2913–2920,
https://doi.org/10.1021/acs.jpcb.5b12442, 2016.
Rosenberger, T., Münzer, A., Kiesler, D., Wiggers, H., and Kruis, F. E.:
Ejector-based sampling from low-pressure aerosol reactors, J. Aerosol Sci.,
123, 105–115, https://doi.org/10.1016/j.jaerosci.2018.06.003, 2018.
Schilling, C. and Winterer, M.: Preserving particle characteristics at
increasing production rate of ZnO nanoparticles by chemical vapor synthesis,
Chem. Vap. Deposition, 20, 138–145, https://doi.org/10.1002/cvde.201307094,
2014.
Shao, X., Zhang, Y., Pang, S. F., and Zhang, Y. H.: Vacuum FTIR observation
on hygroscopic properties and phase transition of malonic acid aerosols,
Chem. Phys., 483–484, 7–11, https://doi.org/10.1016/j.chemphys.2016.11.001,
2017.
Shao, X., Wu, F. M., Yang, H., Pang, S. F., and Zhang, Y. H.: Observing
HNO3 release dependent upon metal complexes in malonic acid/nitrate
droplets, Spectrochim. Acta A, 201, 399–404,
https://doi.org/10.1016/j.saa.2018.05.026, 2018.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T.,
Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global distribution
of particle phase state in atmospheric secondary organic aerosols, Nat.
Commun., 8, 15002, https://doi.org/10.1038/ncomms15002, 2017.
Song, C. H. and Carmichael, G. R.: Gas-particle partitioning of nitric acid
modulated by alkaline aerosol, J. Atmos. Chem., 40, 1-22,
https://doi.org/10.1023/A:1010657929716, 2001.
Soonsin, V., Zardini, A. A., Marcolli, C., Zuend, A., and Krieger, U. K.: The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol, Atmos. Chem. Phys., 10, 11753–11767, https://doi.org/10.5194/acp-10-11753-2010, 2010.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613,
https://doi.org/10.1038/nature08281, 2009.
Sullivan, R. C. and Prather, K. A.: Investigations of the diurnal cycle and
mixing state of oxalic acid in individual particles in Asian aerosol
outflow, Environ. Sci. Technol., 41, 8062–8069,
https://doi.org/10.1021/es071134g, 2007.
Tang, I. N. and Fung, K. H.: Hydration and Raman scattering studies of
levitated microparticles: Ba(NO3)2, Sr(NO3)2, and
Ca(NO3)2, J. Chem. Phys., 106, 1653–1660,
https://doi.org/10.1063/1.473318, 1997.
Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., and Wang, X.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, 2019.
Tervahattu, H., Hartonen, K., Kerminen, V.-M., Kupiainen, K., Aarnio, P.,
Koskentalo, T., Tuck, A. F., and Vaida, V.: New evidence of an organic layer
on marine aerosols, J. Geophys. Res.-Atmos., 107, 4053,
https://doi.org/10.1029/2000JD000282, 2002.
Villepin, J. de and Novak, A.: Vibrational spectra of and isotope effect in
hydrogen bonded potassium hydrogen oxalate, Spectrosc. Lett., 4, 1–8,
https://doi.org/10.1080/00387017108078634, 1971.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P.,
Leskinen, J., Makela, J. M., Holopainen, J. K., Pöschl, U., Kulmala, M.,
Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic
secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Wang, B. B. and Laskin, A.: Reactions between water-soluble organic acids
and nitrates in atmospheric aerosols: Recycling of nitric acid and formation
of organic salts, J. Geophys. Res.-Atmos., 119, 3335–3351,
https://doi.org/10.1002/2013jd021169, 2014.
Wang, G., Xie, M., Hu, S., Gao, S., Tachibana, E., and Kawamura, K.: Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation, Atmos. Chem. Phys., 10, 6087–6096, https://doi.org/10.5194/acp-10-6087-2010, 2010.
Wang, N., Jing, B., Wang, P., Wang, Z., Li, J. R., Pang, S. F., Zhang, Y.
H., and Ge, M. F.: Hygroscopicity and compositional evolution of atmospheric
aerosols containing water-soluble carboxylic acid salts and ammonium
sulfate: Influence of ammonium depletion, Environ. Sci. Technol., 53,
6225–6234, https://doi.org/10.1021/acs.est.8b07052, 2019.
Wang, X., Jing, B., Tan, F., Ma, J., Zhang, Y., and Ge, M.: Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate, Atmos. Chem. Phys., 17, 12797–12812, https://doi.org/10.5194/acp-17-12797-2017, 2017.
Wu, F. M., Wang, N., Pang, S. F., and Zhang, Y. H.: Hygroscopic behavior and
fractional crystallization of mixed (NH4)2SO4 glutaric acid
aerosols by vacuum FTIR, Spectrochim. Acta A, 208, 255–261,
https://doi.org/10.1016/j.saa.2018.10.010, 2019a.
Wu, F. M., Wang, X. W., Pang, S. F., and Zhang, Y. H.: Measuring
hygroscopicity of internally mixed NaNO3 and glutaric acid particles by
vacuum FTIR, Spectrochim. Acta A, 219, 104–109,
https://doi.org/10.1016/j.saa.2019.04.034, 2019b.
Wu, Z. J., Nowak, A., Poulain, L., Herrmann, H., and Wiedensohler, A.: Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate, Atmos. Chem. Phys., 11, 12617–12626, https://doi.org/10.5194/acp-11-12617-2011, 2011.
Yeung, M. C., Ling, T. Y., and Chan, C. K.: Effects of the polymorphic
transformation of glutaric acid particles on their deliquescence and
hygroscopic properties, J. Phys. Chem. A, 114, 898–903,
https://doi.org/10.1021/jp908250v, 2010.
Zhang, Q. N., Zhang, Y., Cai, C., Guo, Y. C., Reid, J. P., and Zhang, Y. H.:
In situ observation on the dynamic process of evaporation and
crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR,
J. Phys. Chem. A, 118, 2728–2737, https://doi.org/10.1021/jp412073c, 2014.
Zhang, Y., Cai, C., Pang, S. F., Reid, J. P., and Zhang, Y. H.: A rapid scan
vacuum FTIR method for determining diffusion coefficients in viscous and
glassy aerosol particles, Phys. Chem. Chem. Phys., 19, 29177–29186,
https://doi.org/10.1039/c7cp04473a, 2017.
Zhao, H., Liu, X. F., and Tse, S. D.: Effects of pressure and precursor
loading in the flame synthesis of titania nanoparticles, J. Aerosol Sci.,
40, 919–937, https://doi.org/10.1016/j.jaerosci.2009.07.004, 2009.
Short summary
The nitrate phase state can play a critical role in determining the occurrence and extent of nitrate depletion in internally mixed NaNO3–DCA particles, which may be instructive for relevant aerosol reaction systems. Besides, organic acids have a potential to deplete nitrate based on the comprehensive consideration of acidity, particle-phase state, droplet water activity, and HNO3 gas-phase diffusion.
The nitrate phase state can play a critical role in determining the occurrence and extent of...
Altmetrics
Final-revised paper
Preprint