Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-7253-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7253-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations
Wannan Wang
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3730 AE, the Netherlands
Ronald van der A
CORRESPONDING AUTHOR
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3730 AE, the Netherlands
Jieying Ding
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3730 AE, the Netherlands
Michiel van Weele
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3730 AE, the Netherlands
Tianhai Cheng
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Viewed
Total article views: 4,158 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Dec 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,049 | 1,086 | 23 | 4,158 | 230 | 24 | 71 |
- HTML: 3,049
- PDF: 1,086
- XML: 23
- Total: 4,158
- Supplement: 230
- BibTeX: 24
- EndNote: 71
Total article views: 3,489 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 May 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,716 | 752 | 21 | 3,489 | 156 | 20 | 64 |
- HTML: 2,716
- PDF: 752
- XML: 21
- Total: 3,489
- Supplement: 156
- BibTeX: 20
- EndNote: 64
Total article views: 669 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Dec 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
333 | 334 | 2 | 669 | 74 | 4 | 7 |
- HTML: 333
- PDF: 334
- XML: 2
- Total: 669
- Supplement: 74
- BibTeX: 4
- EndNote: 7
Viewed (geographical distribution)
Total article views: 4,158 (including HTML, PDF, and XML)
Thereof 4,331 with geography defined
and -173 with unknown origin.
Total article views: 3,489 (including HTML, PDF, and XML)
Thereof 3,536 with geography defined
and -47 with unknown origin.
Total article views: 669 (including HTML, PDF, and XML)
Thereof 795 with geography defined
and -126 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
18 citations as recorded by crossref.
- Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China Q. Hong et al. 10.1016/j.scitotenv.2022.154045
- Spatial and temporal distribution characteristics of ground-level nitrogen dioxide and ozone across China during 2015–2020 Y. Li et al. 10.1088/1748-9326/ac3794
- A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring B. Zhou et al. 10.1016/j.jes.2021.12.008
- Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China W. Chen et al. 10.1016/j.scitotenv.2022.154218
- Attenuated sensitivity of ozone to precursors in Beijing–Tianjin–Hebei region with the continuous NOx reduction within 2014–2018 W. Wei et al. 10.1016/j.scitotenv.2021.152589
- Modeling of spatial and temporal variations of ozone-NO -VOC sensitivity based on photochemical indicators in China X. Du et al. 10.1016/j.jes.2021.12.026
- Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways Z. Liu et al. 10.5194/acp-22-1209-2022
- Effect of Lockdown on Pollutant Levels in the Delhi Megacity: Role of Local Emission Sources and Chemical Lifetimes C. Mallik et al. 10.3389/fenvs.2021.743894
- Identification of ozone sensitivity for NO2 and secondary HCHO based on MAX-DOAS measurements in northeast China J. Xue et al. 10.1016/j.envint.2021.107048
- A review on methodology in O3-NOx-VOC sensitivity study C. Liu & K. Shi 10.1016/j.envpol.2021.118249
- Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology H. Yin et al. 10.1088/1748-9326/ac3e22
- Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014 J. Ren et al. 10.1016/j.atmosenv.2021.118556
- Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations Y. Gao et al. 10.1016/j.scitotenv.2021.151722
- Reduction in Anthropogenic Emissions Suppressed New Particle Formation and Growth: Insights From the COVID‐19 Lockdown V. Kanawade et al. 10.1029/2021JD035392
- Contrasting chemical environments in summertime for atmospheric ozone across major Chinese industrial regions: the effectiveness of emission control strategies Z. Liu et al. 10.5194/acp-21-10689-2021
- Air Quality over China G. de Leeuw et al. 10.3390/rs13173542
- Sensitivities of Ozone Air Pollution in the Beijing–Tianjin–Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling X. Wang et al. 10.1021/acs.est.1c00131
- Air Quality During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China N. Wang et al. 10.1021/acs.est.0c08383
15 citations as recorded by crossref.
- Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China Q. Hong et al. 10.1016/j.scitotenv.2022.154045
- Spatial and temporal distribution characteristics of ground-level nitrogen dioxide and ozone across China during 2015–2020 Y. Li et al. 10.1088/1748-9326/ac3794
- A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring B. Zhou et al. 10.1016/j.jes.2021.12.008
- Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China W. Chen et al. 10.1016/j.scitotenv.2022.154218
- Attenuated sensitivity of ozone to precursors in Beijing–Tianjin–Hebei region with the continuous NOx reduction within 2014–2018 W. Wei et al. 10.1016/j.scitotenv.2021.152589
- Modeling of spatial and temporal variations of ozone-NO -VOC sensitivity based on photochemical indicators in China X. Du et al. 10.1016/j.jes.2021.12.026
- Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways Z. Liu et al. 10.5194/acp-22-1209-2022
- Effect of Lockdown on Pollutant Levels in the Delhi Megacity: Role of Local Emission Sources and Chemical Lifetimes C. Mallik et al. 10.3389/fenvs.2021.743894
- Identification of ozone sensitivity for NO2 and secondary HCHO based on MAX-DOAS measurements in northeast China J. Xue et al. 10.1016/j.envint.2021.107048
- A review on methodology in O3-NOx-VOC sensitivity study C. Liu & K. Shi 10.1016/j.envpol.2021.118249
- Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology H. Yin et al. 10.1088/1748-9326/ac3e22
- Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014 J. Ren et al. 10.1016/j.atmosenv.2021.118556
- Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations Y. Gao et al. 10.1016/j.scitotenv.2021.151722
- Reduction in Anthropogenic Emissions Suppressed New Particle Formation and Growth: Insights From the COVID‐19 Lockdown V. Kanawade et al. 10.1029/2021JD035392
- Contrasting chemical environments in summertime for atmospheric ozone across major Chinese industrial regions: the effectiveness of emission control strategies Z. Liu et al. 10.5194/acp-21-10689-2021
3 citations as recorded by crossref.
- Air Quality over China G. de Leeuw et al. 10.3390/rs13173542
- Sensitivities of Ozone Air Pollution in the Beijing–Tianjin–Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling X. Wang et al. 10.1021/acs.est.1c00131
- Air Quality During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China N. Wang et al. 10.1021/acs.est.0c08383
Latest update: 05 Jun 2023
Short summary
We developed a method to determine the type of photochemical regime of ozone formation by using only satellite observations of formaldehyde and nitrogen dioxide as well as ozone measurements on the ground. It was found that many cities in China, because of their high level of air pollution, are in the so-called VOC-limited photochemical regime. This means that the current reductions of nitrogen dioxide resulted in higher levels of photochemical smog in these cities.
We developed a method to determine the type of photochemical regime of ozone formation by using...
Altmetrics
Final-revised paper
Preprint