Articles | Volume 21, issue 7
https://doi.org/10.5194/acp-21-5575-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5575-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling
Lomonosov Moscow State University, Faculty of Geography, Department of oceanography, 119991, Moscow, Russia
Shirshov Institute of Oceanology RAS, Experimental ocean physics laboratory, 117997, Moscow, Russia
Hydrometeorological Research Centre of the Russian Federation, Marine Division, 123242, Moscow, Russia
Anna Shestakova
A.M.Obukhov Institute of Atmospheric Physics RAS, Department of atmosphere dynamics, Air-Sea Interaction Laboratory, 119017, Moscow, Russia
Dmitry Chechin
A.M.Obukhov Institute of Atmospheric Physics RAS, Department of atmosphere dynamics, Air-Sea Interaction Laboratory, 119017, Moscow, Russia
Moscow Institute of Physics and Technology, Unmanned aerial vehicles laboratory, 141700, Dolgoprudniy, Russia
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, and Galina Surkova
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-244, https://doi.org/10.5194/nhess-2021-244, 2021
Manuscript not accepted for further review
Short summary
Short summary
This article presents new information about storm surges, wind waves, and their recurrence in the Caspian Sea based on the results of numerical modeling. The storm surges maximum is 2.7 m and it was observed in the northern part of the Sea for the modeling period (1979–2017). The extreme sea level values in the northern part of the Caspian Sea for the return period 100 years is close to 3 m. The significant wave height maximum is 8.2 m.
Stanislav Myslenkov, Vladimir Platonov, Alexander Kislov, Ksenia Silvestrova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-198, https://doi.org/10.5194/nhess-2020-198, 2020
Revised manuscript not accepted
Short summary
Short summary
The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height for the whole period amounts to 9.9 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, and Galina Surkova
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-244, https://doi.org/10.5194/nhess-2021-244, 2021
Manuscript not accepted for further review
Short summary
Short summary
This article presents new information about storm surges, wind waves, and their recurrence in the Caspian Sea based on the results of numerical modeling. The storm surges maximum is 2.7 m and it was observed in the northern part of the Sea for the modeling period (1979–2017). The extreme sea level values in the northern part of the Caspian Sea for the return period 100 years is close to 3 m. The significant wave height maximum is 8.2 m.
Stanislav Myslenkov, Vladimir Platonov, Alexander Kislov, Ksenia Silvestrova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-198, https://doi.org/10.5194/nhess-2020-198, 2020
Revised manuscript not accepted
Short summary
Short summary
The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height for the whole period amounts to 9.9 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Towards kilometer-scale ocean–atmosphere–wave coupled forecast: a case study on a Mediterranean heavy precipitation event
Tropical Pacific climate variability under solar geoengineering: impacts on ENSO extremes
Simulation of the radiative effect of haze on the urban hydrological cycle using reanalysis data in Beijing
A new roughness length parameterization accounting for wind–wave (mis)alignment
Tracing changes in atmospheric moisture supply to the drying Southwest China
The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest
The impacts of moisture transport on drifting snow sublimation in the saltation layer
On the importance of cascading moisture recycling in South America
Sensitivity of high-temperature weather to initial soil moisture: a case study using the WRF model
On the "well-mixed" assumption and numerical 2-D tracing of atmospheric moisture
How relevant is the deposition of mercury onto snowpacks? – Part 1: A statistical study on the impact of environmental factors
How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study
César Sauvage, Cindy Lebeaupin Brossier, and Marie-Noëlle Bouin
Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, https://doi.org/10.5194/acp-21-11857-2021, 2021
Short summary
Short summary
Air–sea processes are key elements during Mediterranean heavy precipitation events. We aim to progress in their representation in high-resolution weather forecast. Using coupled ocean–air–wave simulations, we investigated air–sea mechanisms modulated by ocean and waves during a case that occurred in southern France. Results showed significant impact of the forecast on low-level dynamics and air–sea fluxes and illustrated potential benefits of coupled numerical weather prediction systems.
Abdul Malik, Peer J. Nowack, Joanna D. Haigh, Long Cao, Luqman Atique, and Yves Plancherel
Atmos. Chem. Phys., 20, 15461–15485, https://doi.org/10.5194/acp-20-15461-2020, https://doi.org/10.5194/acp-20-15461-2020, 2020
Short summary
Short summary
Solar geoengineering has been introduced to mitigate human-caused global warming by reflecting sunlight back into space. This research investigates the impact of solar geoengineering on the tropical Pacific climate. We find that solar geoengineering can compensate some of the greenhouse-induced changes in the tropical Pacific but not all. In particular, solar geoengineering will result in significant changes in rainfall, sea surface temperatures, and increased frequency of extreme ENSO events.
Tom V. Kokkonen, Sue Grimmond, Sonja Murto, Huizhi Liu, Anu-Maija Sundström, and Leena Järvi
Atmos. Chem. Phys., 19, 7001–7017, https://doi.org/10.5194/acp-19-7001-2019, https://doi.org/10.5194/acp-19-7001-2019, 2019
Short summary
Short summary
This is the first study to evaluate and correct the WATCH WFDEI reanalysis product in a highly polluted urban environment. It gives an important understanding of the uncertainties in reanalysis products in local-scale urban modelling in polluted environments and identifies and corrects the most important variables in hydrological modelling. This is also the first study to examine the effects of haze on the local-scale urban hydrological cycle.
Sara Porchetta, Orkun Temel, Domingo Muñoz-Esparza, Joachim Reuder, Jaak Monbaliu, Jeroen van Beeck, and Nicole van Lipzig
Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, https://doi.org/10.5194/acp-19-6681-2019, 2019
Short summary
Short summary
Two-way feedback occurs between offshore wind and waves. Using an extensive data set of offshore measurements, we show that the wave roughness affecting the wind is dependent on the alignment between the wind and wave directions. Moreover, we propose a new roughness parameterization that takes into account the dependence on alignment. Using this in numerical models will facilitate a better representation of offshore wind, which is relevant to wind energy and and climate modeling.
Chi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui
Atmos. Chem. Phys., 17, 10383–10393, https://doi.org/10.5194/acp-17-10383-2017, https://doi.org/10.5194/acp-17-10383-2017, 2017
Short summary
Short summary
Precipitation over Southwest China (SWC) has decreased significantly in recent years. By tracking precipitation moisture, we found that the reduced precipitation results from the reduced moisture supply from the extended west, which is influenced by the South Asian summer monsoon and the westerlies. Further study revealed the dynamic variations in circulation dominate the interannual variations in SWC precipitation. Changes in circulation systems may be related to the recent changes in SSTs.
Liang Chen, Yanping Li, Fei Chen, Alan Barr, Michael Barlage, and Bingcheng Wan
Atmos. Chem. Phys., 16, 8375–8387, https://doi.org/10.5194/acp-16-8375-2016, https://doi.org/10.5194/acp-16-8375-2016, 2016
Short summary
Short summary
This work is the first time that Noah-MP is used to investigate the impact of parameterizing organic soil at a boreal forest site. Including an organic soil parameterization significantly improved performance of the model in surface energy and hydrology simulations due to the lower thermal conductivity and greater porosity of the organic soil. It substantially modified the partition between direct soil evaporation and vegetation transpiration in the simulation.
Ning Huang, Xiaoqing Dai, and Jie Zhang
Atmos. Chem. Phys., 16, 7523–7529, https://doi.org/10.5194/acp-16-7523-2016, https://doi.org/10.5194/acp-16-7523-2016, 2016
Short summary
Short summary
Drifting snow sublimation (DSS) is of glaciological and hydrological importance. This work is related to the simulation of DSS, which is obviously related to the scientific topics, such as multi-field coupling of wind, snow particles, humidity, etc. Previous studies argued that sublimation will soon vanish in saltation layer. This work shows the sublimation rate of saltating snow can be several orders of magnitude greater than that of the suspended snow due to the impact of moisture advection.
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
X.-M. Zeng, B. Wang, Y. Zhang, S. Song, X. Huang, Y. Zheng, C. Chen, and G. Wang
Atmos. Chem. Phys., 14, 9623–9639, https://doi.org/10.5194/acp-14-9623-2014, https://doi.org/10.5194/acp-14-9623-2014, 2014
H. F. Goessling and C. H. Reick
Atmos. Chem. Phys., 13, 5567–5585, https://doi.org/10.5194/acp-13-5567-2013, https://doi.org/10.5194/acp-13-5567-2013, 2013
D. A. Durnford, A. P. Dastoor, A. O. Steen, T. Berg, A. Ryzhkov, D. Figueras-Nieto, L. R. Hole, K. A. Pfaffhuber, and H. Hung
Atmos. Chem. Phys., 12, 9221–9249, https://doi.org/10.5194/acp-12-9221-2012, https://doi.org/10.5194/acp-12-9221-2012, 2012
D. Durnford, A. Dastoor, A. Ryzhkov, L. Poissant, M. Pilote, and D. Figueras-Nieto
Atmos. Chem. Phys., 12, 9251–9274, https://doi.org/10.5194/acp-12-9251-2012, https://doi.org/10.5194/acp-12-9251-2012, 2012
Cited articles
Andreas, E.: Thermal and size evolution of sea spray droplets, Tech. Rep. No.
CRREL-89-11, Cold Regions Research and Engineering Lab, Hanover NH, 37 pp., 1989. a
Arthun, M. and Schrum, C.: Ocean surface heat flux variability in the Barents
Sea, J. Mar. Syst., 83, 88–98,
https://doi.org/10.1016/j.jmarsys.2010.07.003, 2010. a, b
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the
Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice,
J. Phys. Ocean., 48, 1849–1866,
https://doi.org/10.1175/JPO-D-18-0003.1, 2018. a
Beljaars, A. and Holtslag, A.: Flux Parameterization over Land Surfaces for
Atmospheric Models, J. Appl. Meteorol., 30, 327–341,
https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991. a
Boukhanovsky, A., Chernyshyova, E., Ivanov, S., and Lopatoukhin, L.: New
generation of wind and wave climate handbooks-guide to naval architect and
for offshore activity, Taylor & Francis, 35–44, 2012. a
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically
Significant Effects of Some Approximations in the Bulk Parameterizations of
Turbulent Air-Sea Fluxes, J. Phys. Ocean., 47, 5–28,
https://doi.org/10.1175/JPO-D-16-0169.1, 2017. a
Brümmer, B.: Boundary-layer modification in wintertime cold-air outbreaks
from the arctic sea ice, Bound.-Lay. Meteorol., 80, 109–125,
https://doi.org/10.1007/BF00119014, 1996. a, b
Brutsaert, W.: Evaporation into the Atmosphere: Theory, History and
Applications, Vol. 1, Springer Netherlands, https://doi.org/10.1007/978-94-017-1497-6,
1982. a
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteor. Soc., 81, 639–640,
https://doi.org/10.1002/qj.49708135027, 1955. a, b
Chechin, D. G. and Lüpkes, C.: Boundary-Layer Development and Low-level
Baroclinicity during High-Latitude Cold-Air Outbreaks: A Simple Model,
Bound.-Lay. Meteorol., 162, 91–116,
https://doi.org/10.1007/s10546-016-0193-2, 2017. a, b
Chechin, D. G. and Lüpkes, C.: Baroclinic low-level jets in Arctic marine
cold-air outbreaks, IOP Conf. Ser.: Earth Environ. Sci., 231, 012011, https://doi.org/10.1088/1755-1315/231/1/012011, 2019. a
Chechin, D. G., Lüpkes, C., Repina, I. A., and Gryanik, V. M.: Idealized
dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal
sea ice zone with fine and coarse resolution, J. Geophys. Res.-Atmos., 118, 8787–8813, https://doi.org/10.1002/jgrd.50679,
2013. a
Chechin, D. G., Zabolotskikh, E. V., Repina, I. A., and Shapron, B.: Influence
of baroclinicity in the atmospheric boundary layer and Ekman friction on the
surface wind speed during cold-air outbreaks in the Arctic, Izv. Atmos. Ocean. Phy+, 51, 127–137,
https://doi.org/10.1134/S0001433815020048, 2015. a
Drennan, W., Taylor, P., and Yelland, M.: Parameterizing the sea surface
roughness, J. Phys. Ocean., 35, 835–848,
https://doi.org/10.1175/JPO2704.1, 2005. a
ECMWF: IFS Documentation CY41R2 – Part VII: ECMWF Wave Model, no. 7 in IFS
Documentation, ECMWF, https://doi.org/10.21957/672v0alz, 2016. a
Fairall, C., Bradley, E., Rogers, D., Edson, J., and Young, G.: Bulk
parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere
Coupled Ocean Atmosphere Response Experiment, J. Geophys.
Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996. a, b, c, d
Fairall, C., Bradley, E., Hare, J., Grachev, A., and Edson, J.: Bulk
parameterization of air-sea fluxes: Updates and verification for the COARE
algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a, b
Fletcher, J., Mason, S., and Jakob, C.: The Climatology, Meteorology, and
Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres,
J. Climate, 29, 1999–2014, https://doi.org/10.1175/JCLI-D-15-0268.1,
2016. a
Grachev, A., Fairall, C., and Bradley, E.: Convective profile constants
revisited, Bound.-Lay. Meteorol., 94, 495–515,
https://doi.org/10.1023/A:1002452529672, 2000. a
Grønas, S. and Skeie, P.: A case study of strong winds at an Arctic front,
Tellus A, 51, 865–879,
https://doi.org/10.1034/j.1600-0870.1999.00022.x, 1999. a
Hakkinen, S. and Cavalieri, D.: A Study of Oceanic Surface Heat Fluxes in the
Greenalnd, Norwegian, and Barents Seas, J. Geophys.
Res.-Oceans, 94, 6145–6157, https://doi.org/10.1029/JC094iC05p06145,
1989. a
Hasselman, S. and Hasselman, K.: Computations and Parameterizations of the
Nonlinear Eenergy-transfer in a Gravity-wave Spectrum .1. A New Method for
Efficient Computations of the Exact Nonlinear Transfer Integral, J. Phys. Ocean., 15, 1369–1377,
https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2, 1985. a
Ivanov, V., Varentsov, M., Matveeva, T., Repina, I., Artamonov, A., and
Khavina, E.: Arctic Sea Ice Decline in the 2010s: The Increasing Role of the
OceanAir Heat Exchange in the Late Summer, Atmosphere, 10, 184,
https://doi.org/10.3390/atmos10040184, 2019. a
Ivanov, V. V. and Timokhov, L. A.: Atlantic Water in the Arctic Circulation
Transpolar System, Russ. Meteorol. Hydro+, 44, 238–249,
https://doi.org/10.3103/S1068373919040034, 2019. a
Janssen, P.: Quasi-linear theory of wind-wave generation applied to wave
forecasting, J. Phys. Ocean., 21, 1631–1642,
https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2, 1991. a
Jones, I. S. F. and Toba, Y. (Eds.): Wind Stress over the Ocean, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9780511552076, 2001. a
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy. Meteor. Soc., 98, 563–589,
https://doi.org/10.1002/qj.49709841707, 1972. a
Kim, T., Moon, J.-H., and Kang, K.: Uncertainty and sensitivity of
wave-induced sea surface roughness parameterisations for a coupled numerical
weather prediction model, Tellus A, 70, https://doi.org/10.1080/16000870.2018.1521242, 2018. a, b
Kolstad, E. W.: Extreme small-scale wind episodes over the Barents Sea: When,
where and why?, Clim. Dynam., 45, 2137–2150,
https://doi.org/10.1007/s00382-014-2462-4, 2015. a, b
Kolstad, E. W. and Bracegirdle, T. J.: Marine cold-air outbreaks in the
future: an assessment of IPCC AR4 model results for the Northern Hemisphere,
Clim. Dynam., 30, 871–885, https://doi.org/10.1007/s00382-007-0331-0,
2008. a
Kolstad, E. W., Bracegirdle, T. J., and Seierstad, I. A.: Marine cold-air
outbreaks in the North Atlantic: temporal distribution and associations with
large-scale atmospheric circulation, Clim. Dynam., 33, 187–197,
https://doi.org/10.1007/s00382-008-0431-5, 2009. a, b, c
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Li, J., Ma, Y., Liu, Q., Zhang, W., and Guan, C.: Growth of wave height with
retreating ice cover in the Arctic, Cold Reg. Sci. Technol.,
164, https://doi.org/10.1016/j.coldregions.2019.102790, 2019. a
Liu, Q., Babanin, A. V., Zieger, S., Young, I. R., and Guan, C.: Wind and Wave
Climate in the Arctic Ocean as Observed by Altimeters, J. Climate,
29, 7957–7975, https://doi.org/10.1175/JCLI-D-16-0219.1, 2016. a
Liu, W., Katsaros, K., and Businger, J.: Bulk Parametrization of Air-sea
Exchanges of Heat and Water-vapor Including the Molecular Constraints at the
Interface, J. Atmos. Sci., 36, 1722–1735,
https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2, 1979. a
Mahrt, L., Vickers, D., Frederickson, P., Davidson, K., and Smedman, A.:
Sea-surface aerodynamic roughness, J. Geophys. Res.-Oceans, 108, 3171, https://doi.org/10.1029/2002JC001383, 2003. a
Moore, G. W. K.: The Novaya Zemlya Bora and its impact on Barents Sea air-sea
interaction, Geophys. Res. Lett., 40, 3462–3467,
https://doi.org/10.1002/grl.50641, 2013. a
Myslenkov, S., Medvedeva, A., Arkhipkin, V., Markina, M., Surkova, G., Krylov,
A., Dobrolyubov, S., Zilitinkevich, S., and Koltermann, P.: Long-term
statistics of storms in the Baltic, Barents and White Seas and their future
climate projections, Geography, Environment, Sustainability, 11, 93–112,
2018a. a, b
Myslenkov, S. A., Markina, M. Y., Kiseleva, S. V., Stoliarova, E. V.,
Arkhipkin, V. S., and Umnov, P. M.: Estimation of Available Wave Energy in
the Barents Sea, Thermal Engineering, 65, 411–419,
https://doi.org/10.1134/S0040601518070054, 2018b. a, b
Narizhnaya, A. I., Chernokulsky, A. V., Akperov, M. G., Chechin, D. G., Esau,
I., and Timazhev, A. V.: Marine cold air outbreaks in the Russian Arctic:
climatology, interannual variability, dependence on sea-ice concentration,
IOP Conference Series: Earth and Environmental Science, 606, 012039,
https://doi.org/10.1088/1755-1315/606/1/012039, 2020. a
Pan, Y., Sha, W., Zhu, S., and Ge, S.: A new parameterization scheme for sea
surface aerodynamic roughness, Prog. Nat. Sci., 18, 1365–1373,
https://doi.org/10.1016/j.pnsc.2008.05.006, 2008. a, b
Papritz, L. and Grams, C. M.: Linking Low-Frequency Large-Scale Circulation
Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic,
Geophys. Res. Lett., 45, 2542–2553,
https://doi.org/10.1002/2017GL076921, 2018. a
Papritz, L. and Spengler, T.: A Lagrangian Climatology of Wintertime Cold Air
Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air-Sea
Heat Fluxes, J. Climate, 30, 2717–2737,
https://doi.org/10.1175/JCLI-D-16-0605.1, 2017. a
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A.
M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and
Wendisch, M.: Role of air-mass transformations in exchange between the Arctic
and mid-latitudes, Nat. Geosci., 11, 805–812,
https://doi.org/10.1038/s41561-018-0234-1, 2018. a
Pope, J. O., Bracegirdle, T. J., Renfrew, I. A., and Elvidge, A. D.: The impact
of wintertime sea-ice anomalies on high surface heat flux events in the
Iceland and Greenland Seas, Clim. Dynam., 54, 1937–1952,
https://doi.org/10.1007/s00382-019-05095-3, 2020. a
Prakash, K. R., Pant, V., and Nigam, T.: Effects of the Sea Surface Roughness and Sea Spray‐Induced Flux 780 Parameterization on the Simulations of a Tropical Cyclone, J. Geophys. Res.-Atmos., 124, 781 https://doi.org/10.1029/2018JD029760, 2019. a
Rahmstorf, S. and Ganopolski, A.: Long-Term Global Warming Scenarios Computed
with an Efficient Coupled Climate Model, Clim. Change, 43, 353–367,
https://doi.org/10.1023/A:1005474526406, 1999. a
Renfrew, I. A., Moore, G. W. K., Guest, P. S., and Bumke, K.: A Comparison of
Surface Layer and Surface Turbulent Flux Observations over the Labrador Sea
with ECMWF Analyses and NCEP Reanalyses, J. Phys. Ocean.,
32, 383–400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2, 2002. a, b
Ribal, A. and Young, I. R.: 33 years of globally calibrated wave height and
wind speed data based on altimeter observations, Sci. Data, 6, 77,
https://doi.org/10.1038/s41597-019-0083-9, 2019. a
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., ya Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010. a, b
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D.,
Hou, Y.-T., ya Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a, b
Savijärvi, H. I.: Cold air outbreaks over high-latitude sea gulfs, Tellus
A, 64, 12244,
https://doi.org/10.3402/tellusa.v64i0.12244, 2012. a
Semedo, A., Sušelj, K., Rutgersson, A., and Sterl, A.: A Global View on the
Wind Sea and Swell Climate and Variability from ERA-40, J. Climate,
24, 1461–1479, https://doi.org/10.1175/2010JCLI3718.1, 2011. a
Shimura, T., Mori, N., Takemi, T., and Mizuta, R.: Long-term impacts of ocean
wave-dependent roughness on global climate systems, J. Geophys.
Res.-Oceans, 122, 1995–2011,
https://doi.org/10.1002/2016JC012621, 2017. a
Simonsen, K. and Haugan, P. M.: Heat budgets of the Arctic Mediterranean and
sea surface heat flux parameterizations for the Nordic Seas, J. Geophys. Res.-Oceans, 101, 6553–6576,
https://doi.org/10.1029/95JC03305, 1996. a
Skeie, P.: Meridional flow variability over the Nordic Seas in the Arctic
oscillation framework, Geophys. Res. Lett., 27, 2569–2572,
https://doi.org/10.1029/2000GL011529, 2000.
a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li,
C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B.,
Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the barents
sea in the arctic climate system, Rev. Geophys., 51, 415–449,
https://doi.org/10.1002/rog.20017, 2013. a
Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind
profiles as a function of wind speed and temperature, J. Geophys.
Res.-Oceans, 93, 15467–15472,
https://doi.org/10.1029/JC093iC12p15467, 1988. a
Tolman, H.: The WAVEWATCH III Development Group: User manual and system
documentation of WAVEWATCH III version 4.18, Technical Note, Environmental
Modeling Center, National Centers for Environmental Prediction, National
Weather Service, National Oceanic and Atmospheric Administration, US
Department of Commerce, College Park, MD, 311 pp., 2014. a, b
Wheeler, D. D., Harvey, V. L., Atkinson, D. E., Collins, R. L., and Mills,
M. J.: A climatology of cold air outbreaks over North America: WACCM and
ERA-40 comparison and analysis, J. Geophys. Res.-Atmos.,
116, D12107, https://doi.org/10.1029/2011JD015711, 2011. a
Wu, B., Wang, J., and Walsh, J. E.: Dipole Anomaly in the Winter Arctic
Atmosphere and Its Association with Sea Ice Motion, J. Climate, 19,
210–225, https://doi.org/10.1175/JCLI3619.1, 2006. a
Yu, L., Jin, X., and Weller, R.: Multidecade Global Flux Datasets from the
Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible
Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables,
Tech. Rep., 64 pp., 2008. a
Zilitinkevich, S. S., Grachev, A. A., and Fairall, C. W.: Scaling Reasoning and
Field Data on the Sea Surface Roughness Lengths for Scalars, J. Atmos. Sci., 58, 320–325,
https://doi.org/10.1175/1520-0469(2001)058<0320:NACRAF>2.0.CO;2, 2001. a
Altmetrics
Final-revised paper
Preprint