Articles | Volume 21, issue 7
https://doi.org/10.5194/acp-21-5575-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5575-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling
Lomonosov Moscow State University, Faculty of Geography, Department of oceanography, 119991, Moscow, Russia
Shirshov Institute of Oceanology RAS, Experimental ocean physics laboratory, 117997, Moscow, Russia
Hydrometeorological Research Centre of the Russian Federation, Marine Division, 123242, Moscow, Russia
Anna Shestakova
A.M.Obukhov Institute of Atmospheric Physics RAS, Department of atmosphere dynamics, Air-Sea Interaction Laboratory, 119017, Moscow, Russia
Dmitry Chechin
A.M.Obukhov Institute of Atmospheric Physics RAS, Department of atmosphere dynamics, Air-Sea Interaction Laboratory, 119017, Moscow, Russia
Moscow Institute of Physics and Technology, Unmanned aerial vehicles laboratory, 141700, Dolgoprudniy, Russia
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, and Galina Surkova
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-244, https://doi.org/10.5194/nhess-2021-244, 2021
Manuscript not accepted for further review
Short summary
Short summary
This article presents new information about storm surges, wind waves, and their recurrence in the Caspian Sea based on the results of numerical modeling. The storm surges maximum is 2.7 m and it was observed in the northern part of the Sea for the modeling period (1979–2017). The extreme sea level values in the northern part of the Caspian Sea for the return period 100 years is close to 3 m. The significant wave height maximum is 8.2 m.
Timothy W. Juliano, Florian Tornow, Ann M. Fridlind, Andrew S. Ackerman, Gregory S. Elsaesser, Bart Geerts, Christian P. Lackner, David Painemal, Israel Silber, Mikhail Ovchinnikov, Gunilla Svensson, Michael Tjernström, Peng Wu, Alejandro Baró Pérez, Peter Bogenschutz, Dmitry Chechin, Kamal Kant Chandrakar, Jan Chylik, Andrey Debolskiy, Rostislav Fadeev, Anu Gupta, Luisa Ickes, Michail Karalis, Martin Köhler, Branko Kosović, Peter Kuma, Weiwei Li, Evgeny Mortikov, Hugh Morrison, Roel A. J. Neggers, Anna Possner, Tomi Raatikainen, Sami Romakkaniemi, Niklas Schnierstein, Shin-ichiro Shima, Nikita Silin, Mikhail Tolstykh, Lulin Xue, Meng Zhang, and Xue Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-6217, https://doi.org/10.5194/egusphere-2025-6217, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Models struggle to capture cloud and precipitation processes and their radiative effects in marine cold-air outbreaks. We use a quasi-Lagrangian framework to compare large-eddy simulation (LES) and single-column model (SCM) output with field and satellite observations. With fixed droplet and ice numbers, LES and SCM agree in liquid-only tests. In mixed-phase conditions, LES plausibly capture cloud thinning and breakup, while SCMs largely remain overcast and thereby miss cloud radiative effects.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Anna Pavlova, Stanislav Myslenkov, Victor Arkhipkin, and Galina Surkova
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-244, https://doi.org/10.5194/nhess-2021-244, 2021
Manuscript not accepted for further review
Short summary
Short summary
This article presents new information about storm surges, wind waves, and their recurrence in the Caspian Sea based on the results of numerical modeling. The storm surges maximum is 2.7 m and it was observed in the northern part of the Sea for the modeling period (1979–2017). The extreme sea level values in the northern part of the Caspian Sea for the return period 100 years is close to 3 m. The significant wave height maximum is 8.2 m.
Cited articles
Andreas, E.: Thermal and size evolution of sea spray droplets, Tech. Rep. No.
CRREL-89-11, Cold Regions Research and Engineering Lab, Hanover NH, 37 pp., 1989. a
Arthun, M. and Schrum, C.: Ocean surface heat flux variability in the Barents
Sea, J. Mar. Syst., 83, 88–98,
https://doi.org/10.1016/j.jmarsys.2010.07.003, 2010. a, b
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the
Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice,
J. Phys. Ocean., 48, 1849–1866,
https://doi.org/10.1175/JPO-D-18-0003.1, 2018. a
Beljaars, A. and Holtslag, A.: Flux Parameterization over Land Surfaces for
Atmospheric Models, J. Appl. Meteorol., 30, 327–341,
https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991. a
Boukhanovsky, A., Chernyshyova, E., Ivanov, S., and Lopatoukhin, L.: New
generation of wind and wave climate handbooks-guide to naval architect and
for offshore activity, Taylor & Francis, 35–44, 2012. a
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically
Significant Effects of Some Approximations in the Bulk Parameterizations of
Turbulent Air-Sea Fluxes, J. Phys. Ocean., 47, 5–28,
https://doi.org/10.1175/JPO-D-16-0169.1, 2017. a
Brümmer, B.: Boundary-layer modification in wintertime cold-air outbreaks
from the arctic sea ice, Bound.-Lay. Meteorol., 80, 109–125,
https://doi.org/10.1007/BF00119014, 1996. a, b
Brutsaert, W.: Evaporation into the Atmosphere: Theory, History and
Applications, Vol. 1, Springer Netherlands, https://doi.org/10.1007/978-94-017-1497-6,
1982. a
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteor. Soc., 81, 639–640,
https://doi.org/10.1002/qj.49708135027, 1955. a, b
Chechin, D. G. and Lüpkes, C.: Boundary-Layer Development and Low-level
Baroclinicity during High-Latitude Cold-Air Outbreaks: A Simple Model,
Bound.-Lay. Meteorol., 162, 91–116,
https://doi.org/10.1007/s10546-016-0193-2, 2017. a, b
Chechin, D. G. and Lüpkes, C.: Baroclinic low-level jets in Arctic marine
cold-air outbreaks, IOP Conf. Ser.: Earth Environ. Sci., 231, 012011, https://doi.org/10.1088/1755-1315/231/1/012011, 2019. a
Chechin, D. G., Lüpkes, C., Repina, I. A., and Gryanik, V. M.: Idealized
dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal
sea ice zone with fine and coarse resolution, J. Geophys. Res.-Atmos., 118, 8787–8813, https://doi.org/10.1002/jgrd.50679,
2013. a
Chechin, D. G., Zabolotskikh, E. V., Repina, I. A., and Shapron, B.: Influence
of baroclinicity in the atmospheric boundary layer and Ekman friction on the
surface wind speed during cold-air outbreaks in the Arctic, Izv. Atmos. Ocean. Phy+, 51, 127–137,
https://doi.org/10.1134/S0001433815020048, 2015. a
Drennan, W., Taylor, P., and Yelland, M.: Parameterizing the sea surface
roughness, J. Phys. Ocean., 35, 835–848,
https://doi.org/10.1175/JPO2704.1, 2005. a
ECMWF: IFS Documentation CY41R2 – Part VII: ECMWF Wave Model, no. 7 in IFS
Documentation, ECMWF, https://doi.org/10.21957/672v0alz, 2016. a
Fairall, C., Bradley, E., Rogers, D., Edson, J., and Young, G.: Bulk
parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere
Coupled Ocean Atmosphere Response Experiment, J. Geophys.
Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996. a, b, c, d
Fairall, C., Bradley, E., Hare, J., Grachev, A., and Edson, J.: Bulk
parameterization of air-sea fluxes: Updates and verification for the COARE
algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a, b
Fletcher, J., Mason, S., and Jakob, C.: The Climatology, Meteorology, and
Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres,
J. Climate, 29, 1999–2014, https://doi.org/10.1175/JCLI-D-15-0268.1,
2016. a
Grachev, A., Fairall, C., and Bradley, E.: Convective profile constants
revisited, Bound.-Lay. Meteorol., 94, 495–515,
https://doi.org/10.1023/A:1002452529672, 2000. a
Grønas, S. and Skeie, P.: A case study of strong winds at an Arctic front,
Tellus A, 51, 865–879,
https://doi.org/10.1034/j.1600-0870.1999.00022.x, 1999. a
Hakkinen, S. and Cavalieri, D.: A Study of Oceanic Surface Heat Fluxes in the
Greenalnd, Norwegian, and Barents Seas, J. Geophys.
Res.-Oceans, 94, 6145–6157, https://doi.org/10.1029/JC094iC05p06145,
1989. a
Hasselman, S. and Hasselman, K.: Computations and Parameterizations of the
Nonlinear Eenergy-transfer in a Gravity-wave Spectrum .1. A New Method for
Efficient Computations of the Exact Nonlinear Transfer Integral, J. Phys. Ocean., 15, 1369–1377,
https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2, 1985. a
Ivanov, V., Varentsov, M., Matveeva, T., Repina, I., Artamonov, A., and
Khavina, E.: Arctic Sea Ice Decline in the 2010s: The Increasing Role of the
OceanAir Heat Exchange in the Late Summer, Atmosphere, 10, 184,
https://doi.org/10.3390/atmos10040184, 2019. a
Ivanov, V. V. and Timokhov, L. A.: Atlantic Water in the Arctic Circulation
Transpolar System, Russ. Meteorol. Hydro+, 44, 238–249,
https://doi.org/10.3103/S1068373919040034, 2019. a
Janssen, P.: Quasi-linear theory of wind-wave generation applied to wave
forecasting, J. Phys. Ocean., 21, 1631–1642,
https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2, 1991. a
Jones, I. S. F. and Toba, Y. (Eds.): Wind Stress over the Ocean, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9780511552076, 2001. a
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy. Meteor. Soc., 98, 563–589,
https://doi.org/10.1002/qj.49709841707, 1972. a
Kim, T., Moon, J.-H., and Kang, K.: Uncertainty and sensitivity of
wave-induced sea surface roughness parameterisations for a coupled numerical
weather prediction model, Tellus A, 70, https://doi.org/10.1080/16000870.2018.1521242, 2018. a, b
Kolstad, E. W.: Extreme small-scale wind episodes over the Barents Sea: When,
where and why?, Clim. Dynam., 45, 2137–2150,
https://doi.org/10.1007/s00382-014-2462-4, 2015. a, b
Kolstad, E. W. and Bracegirdle, T. J.: Marine cold-air outbreaks in the
future: an assessment of IPCC AR4 model results for the Northern Hemisphere,
Clim. Dynam., 30, 871–885, https://doi.org/10.1007/s00382-007-0331-0,
2008. a
Kolstad, E. W., Bracegirdle, T. J., and Seierstad, I. A.: Marine cold-air
outbreaks in the North Atlantic: temporal distribution and associations with
large-scale atmospheric circulation, Clim. Dynam., 33, 187–197,
https://doi.org/10.1007/s00382-008-0431-5, 2009. a, b, c
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Li, J., Ma, Y., Liu, Q., Zhang, W., and Guan, C.: Growth of wave height with
retreating ice cover in the Arctic, Cold Reg. Sci. Technol.,
164, https://doi.org/10.1016/j.coldregions.2019.102790, 2019. a
Liu, Q., Babanin, A. V., Zieger, S., Young, I. R., and Guan, C.: Wind and Wave
Climate in the Arctic Ocean as Observed by Altimeters, J. Climate,
29, 7957–7975, https://doi.org/10.1175/JCLI-D-16-0219.1, 2016. a
Liu, W., Katsaros, K., and Businger, J.: Bulk Parametrization of Air-sea
Exchanges of Heat and Water-vapor Including the Molecular Constraints at the
Interface, J. Atmos. Sci., 36, 1722–1735,
https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2, 1979. a
Mahrt, L., Vickers, D., Frederickson, P., Davidson, K., and Smedman, A.:
Sea-surface aerodynamic roughness, J. Geophys. Res.-Oceans, 108, 3171, https://doi.org/10.1029/2002JC001383, 2003. a
Moore, G. W. K.: The Novaya Zemlya Bora and its impact on Barents Sea air-sea
interaction, Geophys. Res. Lett., 40, 3462–3467,
https://doi.org/10.1002/grl.50641, 2013. a
Myslenkov, S., Medvedeva, A., Arkhipkin, V., Markina, M., Surkova, G., Krylov,
A., Dobrolyubov, S., Zilitinkevich, S., and Koltermann, P.: Long-term
statistics of storms in the Baltic, Barents and White Seas and their future
climate projections, Geography, Environment, Sustainability, 11, 93–112,
2018a. a, b
Myslenkov, S. A., Markina, M. Y., Kiseleva, S. V., Stoliarova, E. V.,
Arkhipkin, V. S., and Umnov, P. M.: Estimation of Available Wave Energy in
the Barents Sea, Thermal Engineering, 65, 411–419,
https://doi.org/10.1134/S0040601518070054, 2018b. a, b
Narizhnaya, A. I., Chernokulsky, A. V., Akperov, M. G., Chechin, D. G., Esau,
I., and Timazhev, A. V.: Marine cold air outbreaks in the Russian Arctic:
climatology, interannual variability, dependence on sea-ice concentration,
IOP Conference Series: Earth and Environmental Science, 606, 012039,
https://doi.org/10.1088/1755-1315/606/1/012039, 2020. a
Pan, Y., Sha, W., Zhu, S., and Ge, S.: A new parameterization scheme for sea
surface aerodynamic roughness, Prog. Nat. Sci., 18, 1365–1373,
https://doi.org/10.1016/j.pnsc.2008.05.006, 2008. a, b
Papritz, L. and Grams, C. M.: Linking Low-Frequency Large-Scale Circulation
Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic,
Geophys. Res. Lett., 45, 2542–2553,
https://doi.org/10.1002/2017GL076921, 2018. a
Papritz, L. and Spengler, T.: A Lagrangian Climatology of Wintertime Cold Air
Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air-Sea
Heat Fluxes, J. Climate, 30, 2717–2737,
https://doi.org/10.1175/JCLI-D-16-0605.1, 2017. a
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A.
M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and
Wendisch, M.: Role of air-mass transformations in exchange between the Arctic
and mid-latitudes, Nat. Geosci., 11, 805–812,
https://doi.org/10.1038/s41561-018-0234-1, 2018. a
Pope, J. O., Bracegirdle, T. J., Renfrew, I. A., and Elvidge, A. D.: The impact
of wintertime sea-ice anomalies on high surface heat flux events in the
Iceland and Greenland Seas, Clim. Dynam., 54, 1937–1952,
https://doi.org/10.1007/s00382-019-05095-3, 2020. a
Prakash, K. R., Pant, V., and Nigam, T.: Effects of the Sea Surface Roughness and Sea Spray‐Induced Flux 780 Parameterization on the Simulations of a Tropical Cyclone, J. Geophys. Res.-Atmos., 124, 781 https://doi.org/10.1029/2018JD029760, 2019. a
Rahmstorf, S. and Ganopolski, A.: Long-Term Global Warming Scenarios Computed
with an Efficient Coupled Climate Model, Clim. Change, 43, 353–367,
https://doi.org/10.1023/A:1005474526406, 1999. a
Renfrew, I. A., Moore, G. W. K., Guest, P. S., and Bumke, K.: A Comparison of
Surface Layer and Surface Turbulent Flux Observations over the Labrador Sea
with ECMWF Analyses and NCEP Reanalyses, J. Phys. Ocean.,
32, 383–400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2, 2002. a, b
Ribal, A. and Young, I. R.: 33 years of globally calibrated wave height and
wind speed data based on altimeter observations, Sci. Data, 6, 77,
https://doi.org/10.1038/s41597-019-0083-9, 2019. a
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., ya Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010. a, b
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D.,
Hou, Y.-T., ya Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The
NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a, b
Savijärvi, H. I.: Cold air outbreaks over high-latitude sea gulfs, Tellus
A, 64, 12244,
https://doi.org/10.3402/tellusa.v64i0.12244, 2012. a
Semedo, A., Sušelj, K., Rutgersson, A., and Sterl, A.: A Global View on the
Wind Sea and Swell Climate and Variability from ERA-40, J. Climate,
24, 1461–1479, https://doi.org/10.1175/2010JCLI3718.1, 2011. a
Shimura, T., Mori, N., Takemi, T., and Mizuta, R.: Long-term impacts of ocean
wave-dependent roughness on global climate systems, J. Geophys.
Res.-Oceans, 122, 1995–2011,
https://doi.org/10.1002/2016JC012621, 2017. a
Simonsen, K. and Haugan, P. M.: Heat budgets of the Arctic Mediterranean and
sea surface heat flux parameterizations for the Nordic Seas, J. Geophys. Res.-Oceans, 101, 6553–6576,
https://doi.org/10.1029/95JC03305, 1996. a
Skeie, P.: Meridional flow variability over the Nordic Seas in the Arctic
oscillation framework, Geophys. Res. Lett., 27, 2569–2572,
https://doi.org/10.1029/2000GL011529, 2000.
a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li,
C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B.,
Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the barents
sea in the arctic climate system, Rev. Geophys., 51, 415–449,
https://doi.org/10.1002/rog.20017, 2013. a
Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind
profiles as a function of wind speed and temperature, J. Geophys.
Res.-Oceans, 93, 15467–15472,
https://doi.org/10.1029/JC093iC12p15467, 1988. a
Tolman, H.: The WAVEWATCH III Development Group: User manual and system
documentation of WAVEWATCH III version 4.18, Technical Note, Environmental
Modeling Center, National Centers for Environmental Prediction, National
Weather Service, National Oceanic and Atmospheric Administration, US
Department of Commerce, College Park, MD, 311 pp., 2014. a, b
Wheeler, D. D., Harvey, V. L., Atkinson, D. E., Collins, R. L., and Mills,
M. J.: A climatology of cold air outbreaks over North America: WACCM and
ERA-40 comparison and analysis, J. Geophys. Res.-Atmos.,
116, D12107, https://doi.org/10.1029/2011JD015711, 2011. a
Wu, B., Wang, J., and Walsh, J. E.: Dipole Anomaly in the Winter Arctic
Atmosphere and Its Association with Sea Ice Motion, J. Climate, 19,
210–225, https://doi.org/10.1175/JCLI3619.1, 2006. a
Yu, L., Jin, X., and Weller, R.: Multidecade Global Flux Datasets from the
Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible
Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables,
Tech. Rep., 64 pp., 2008. a
Zilitinkevich, S. S., Grachev, A. A., and Fairall, C. W.: Scaling Reasoning and
Field Data on the Sea Surface Roughness Lengths for Scalars, J. Atmos. Sci., 58, 320–325,
https://doi.org/10.1175/1520-0469(2001)058<0320:NACRAF>2.0.CO;2, 2001. a
Altmetrics
Final-revised paper
Preprint