Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O3 concentrations in northern Taiwan
Zhiyuan Li
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Kin-Fai Ho
The Jockey Club School of Public Health and Primary Care, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Hsiao-Chi Chuang
School of Respiratory Therapy, College of Medicine, Taipei Medical
University, Taipei, Taiwan
Department of Geography and Resource Management, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Stanley Ho Big Data Decision Analytics Research Centre, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Related authors
No articles found.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Cited articles
Allen, R. W., Amram, O., Wheeler, A. J., and Brauer, M.: The transferability
of NO and NO2 land use regression models between cities and pollutants,
Atmos. Environ., 45, 369–378, 2011.
Anand, J. S. and Monks, P. S.: Estimating daily surface NO2 concentrations from satellite data – a case study over Hong Kong using land use regression models, Atmos. Chem. Phys., 17, 8211–8230, https://doi.org/10.5194/acp-17-8211-2017, 2017.
Bertazzon, S., Johnson, M., Eccles, K., and Kaplan, G. G.: Accounting for
spatial effects in land use regression for urban air pollution modeling,
Spatial and Spatiotemporal Epidemiology, 14, 9–21, 2015.
Brokamp, C., Brandt, E. B., and Ryan, P. H.: Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling
strategies, J. Allergy Clin. Immun., 143, 2002–2006, 2019.
Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W., Niu, C.,
Kan, L., Schikowski, T., and Yan, B.: Application of land use regression to
assess exposure and identify potential sources in PM2.5, BC, NO2
concentrations, Atmos. Environ., 223, 117267, https://doi.org/10.1016/j.atmosenv.2020.117267, 2020.
Çapraz, Ö., Deniz, A., and Doğan, N.: Effects of air pollution
on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015,
Chemosphere, 181, 544–550, 2017.
Chen, M., Dai, F., Yang, B., and Zhu, S.: Effects of neighborhood green
space on PM2.5 mitigation: Evidence from five megacities in China,
Build. Environ., 156, 33–45, 2019.
Chen, T. H., Hsu, Y. C., Zeng, Y. T., Lung, S. C. C., Su, H. J., Chao, H. J., and Wu, C. D.: A hybrid kriging/land-use regression model with Asian
culture-specific sources to assess NO2 spatial-temporal variations,
Environ. Pollut., 259, 113875,https://doi.org/10.1016/j.envpol.2019.113875,
2020.
Chi, K. H., Li, Y. N., and Hung, N. T.: Spatial and temporal variation of
PM2.5 and atmospheric PCDD/FS in Northern Taiwan during winter monsoon
and local pollution episodes, Aerosol Air Qual. Res., 17, 3151–3165, 2017.
Chiu, H. W., Lee, Y. C., Huang, S. L., and Hsieh, Y. C.: How does
periurbanization teleconnect remote areas? An emergy approach,
Ecol. Model., 403, 57–69, 2019.
Chou, C. C.-K., Lee, C. T., Cheng, M. T., Yuan, C. S., Chen, S. J., Wu, Y. L., Hsu, W. C., Lung, S. C., Hsu, S. C., Lin, C. Y., and Liu, S. C.: Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan, Atmos. Chem. Phys., 10, 9563–9578, https://doi.org/10.5194/acp-10-9563-2010, 2010.
De Hoogh, K., Gulliver, J., van Donkelaar, A., Martin, R. V., Marshall, J. D., Bechle, M. J., Cesaroni, G., Pradas, M. C., Dedele, A., Eeftens, M., and
Forsberg, B.: Development of West-European PM2.5 and NO2 land use
regression models incorporating satellite-derived and chemical transport
modelling data, Environ. Res., 151, 1–10, 2016.
De Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M.,
Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., and
Klompmaker, J.: Spatial PM2.5, NO2, O3 and BC models for
Western Europe–Evaluation of spatiotemporal stability, Environ. Int., 120,
81–92, 2018.
Eeftens, M., Meier, R., Schindler, C., Aguilera, I., Phuleria, H., Ineichen,
A., Davey, M., Ducret-Stich, R., Keidel, D., Probst-Hensch, N., and
Künzli, N.: Development of land use regression models for nitrogen
dioxide, ultrafine particles, lung deposited surface area, and four other
markers of particulate matter pollution in the Swiss SAPALDIA regions,
Environ. Health, 15, 53, https://doi.org/10.1186/s12940-016-0137-9, 2016.
Gu, Y. and Yim, S. H. L.: The air quality and health impacts of domestic
trans-boundary pollution in various regions of China, Environ. Int., 97,
117–124, 2016.
Gu, Y., Wong, T. W., Law, C. K., Dong, G. H., Ho, K. F., Yang, Y., and Yim,
S. H. L.: Impacts of sectoral emissions in China and the implications: air
quality, public health, crop production, and economic costs, Environ. Res.
Lett., 13, 084008, https://doi.org/10.1088/1748-9326/aad138, 2018.
Hao, H., Chang, H. H., Holmes, H. A., Mulholland, J. A., Klein, M., Darrow,
L. A., and Strickland, M. J.: Air pollution and preterm birth in the US State
of Georgia (2002–2006): associations with concentrations of 11 ambient air
pollutants estimated by combining Community Multiscale Air Quality Model
(CMAQ) simulations with stationary monitor measurements,
Environ. Health Persp., 124, 875–880, 2016.
Henderson, S. B., Beckerman, B., Jerrett, M., and Brauer, M.: Application of
land use regression to estimate long-term concentrations of traffic-related
nitrogen oxides and fine particulate matter, Environ. Sci. Technol., 41,
2422–2428, 2007.
Ho, C. C., Chan, C. C., Cho, C. W., Lin, H. I., Lee, J. H., and Wu, C. F.: Land
use regression modeling with vertical distribution measurements for fine
particulate matter and elements in an urban area, Atmos. Environ., 104,
256–263, 2015.
Ho, C. C., Chen, L. J., and Hwang, J. S.: Estimating ground-level PM2.5
levels in Taiwan using data from air quality monitoring stations and high
coverage of microsensors, Environ. Pollut., 264, 114810, https://doi.org/10.1016/j.envpol.2020.114810, 2020.
Ho, W. Y., Tseng, K. H., Liou, M. L., Chan, C. C., and Wang, C. H.: Application
of positive matrix factorization in the identification of the sources of
PM2.5 in Taipei City, Int. J. Env. Res. Pub. He., 15, 1305, https://doi.org/10.3390/ijerph15071305, 2018.
Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P.,
and Briggs, D.: A review of land-use regression models to assess spatial
variation of outdoor air pollution, Atmos. Environ., 42, 7561–7578, 2008.
Hou, X., Chan, C. K., Dong, G. H., and Yim, S. H. L.: Impacts of transboundary
air pollution and local emissions on PM2.5 pollution in the Pearl
River Delta region of China and the public health, and the policy
implications, Environ. Res. Lett., 14, 034005, https://doi.org/10.1088/1748-9326/aaf493, 2019.
Hsu, C. Y., Wu, J. Y., Chen, Y. C., Chen, N. T., Chen, M. J., Pan, W. C., Lung, S. C. C., Guo, Y. L., and Wu, C. D.: Asian culturally specific predictors in a large-scale land use regression model to predict spatial-temporal variability of ozone concentration, Int. J. Env. Res. Pub. He., 16, 1300, https://doi.org/10.3390/ijerph16071300, 2019.
Jeanjean, A. P. R., Monks, P. S., and Leigh, R. J.: Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale, Atmos. Environ., 147, 1–10, 2016.
Ji, W., Wang, Y., and Zhuang, D.: Spatial distribution differences in
PM2.5 concentration between heating and non-heating seasons in Beijing,
China, Environ. Pollut., 248, 574–583, 2019.
Jones, R. R., Hoek, G., Fisher, J. A., Hasheminassab, S., Wang, D., Ward,
M. H., Sioutas, C., Vermeulen, R., and Silverman, D. T.: Land use regression
models for ultrafine particles, fine particles, and black carbon in southern
California, Sci. Total Environ., 699, 134234, https://doi.org/10.1016/j.scitotenv.2019.134234, 2020.
Jung, C. R., Hwang, B. F., and Chen, W. T.: Incorporating long-term
satellite-based aerosol optical depth, localized land use data, and
meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015, Environ. Pollut., 237, 1000–1010, 2018.
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., and Chan, C. C.: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population, Sci. Total Environ., 472, 1163–1171, 2014.
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., and Chan, C. C.: LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and
construction, Sci. Total Environ., 514, 178–184, 2015.
Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T. H., Choi, C., Cheng, W.,
Lai, P. C., Tian, L., Thach, T. Q., and Allen, R.: Land use regression
modelling of air pollution in high density high rise cities: A case study in
Hong Kong, Sci. Total Environ., 592, 306–315, 2017.
Li, Q. X.: Statistical modelling experiment of land precipitation variations
since the start of the 20th century with external forcing factors,
China Sci. Bull., 65, 2266–2278, 2020 (in Chinese).
Li, Z., Che, W., Frey, H. C., Lau, A. K., and Lin, C.: Characterization of
PM2.5 exposure concentration in transport microenvironments using
portable monitors, Environ. Pollut., 228, 433–442, 2017.
Li, Z., Yim, S. H. L., and Ho, K. F.: High temporal resolution prediction of
street-level PM2.5 and NOx concentrations using machine learning
approach, J. Clean. Prod., 268, 121975, https://doi.org/10.1016/j.jclepro.2020.121975, 2020.
Li, Z., Tong, X., Ho, J. M. W., Kwok, T. C., Dong, G., Ho, K. F., and Yim,
S. H. L.: A practical framework for predicting residential indoor PM2.5
concentration using land-use regression and machine learning methods,
Chemosphere, 265, 129140, https://doi.org/10.1016/j.chemosphere.2020.129140, 2021.
Lin, H., Liu, T., Xiao, J., Zeng, W., Li, X., Guo, L., Zhang, Y., Xu, Y.,
Tao, J., Xian, H., and Syberg, K. M.: Mortality burden of ambient fine
particulate air pollution in six Chinese cities: results from the Pearl
River Delta study, Environ. Int., 96, 91–97, 2016.
Liu, C., Henderson, B. H., Wang, D., Yang, X., and Peng, Z. R.: A land use
regression application into assessing spatial variation of intra-urban fine
particulate matter (PM2.5) and nitrogen dioxide (NO2)
concentrations in City of Shanghai, China, Sci. Total Environ., 565, 607–615, 2016.
Liu, Z., Guan, Q., Luo, H., Wang, N., Pan, N., Yang, L., Xiao, S., and Lin,
J.: Development of land use regression model and health risk assessment for
NO2 in different functional areas: A case study of Xi'an, China, Atmos. Environ., 213, 515–525, 2019.
Lu, M., Soenario, I., Helbich, M., Schmitz, O., Hoek, G., van der Molen, M.,
and Karssenberg, D.: Land use regression models revealing spatiotemporal
co-variation in NO2, NO, and O3 in the Netherlands, Atmos. Environ., 223, 117238, https://doi.org/10.1016/j.atmosenv.2019.117238, 2020.
Luo, M., Hou, X., Gu, Y., Lau, N. C., and Yim, S. H. L.: Trans-boundary air
pollution in a city under various atmospheric conditions, Sci. Total Environ., 618, 132–141, 2018.
Marcon, A., de Hoogh, K., Gulliver, J., Beelen, R., and Hansell, A. L.:
Development and transferability of a nitrogen dioxide land use regression
model within the Veneto region of Italy, Atmos. Environ., 122, 696–704, 2015.
Marshall, J. D., Nethery, E., and Brauer, M.: Within-urban variability in
ambient air pollution: comparison of estimation methods, Atmos. Environ., 42, 1359–1369, 2008.
Meng, X., Chen, L., Cai, J., Zou, B., Wu, C. F., Fu, Q., Zhang, Y., Liu, Y.,
and Kan, H.: A land use regression model for estimating the NO2
concentration in Shanghai, China, Environ. Res., 137, 308–315, 2015.
Michanowicz, D. R., Shmool, J. L., Tunno, B. J., Tripathy, S., Gillooly, S.,
Kinnee, E., and Clougherty, J. E.: A hybrid land use regression/AERMOD model
for predicting intra-urban variation in PM2.5, Atmos. Environ., 131,
307–315, 2016.
Miri, M., Ghassoun, Y., Dovlatabadi, A., Ebrahimnejad, A., and Löwner,
M. O.: Estimate annual and seasonal PM1, PM2.5 and PM10
concentrations using land use regression
model, Ecotox. Environ. Safe., 174, 137–145, 2019.
Morley, D. W. and Gulliver, J.: A land use regression variable generation,
modelling and prediction tool for air pollution exposure assessment,
Environ. Modell. Softw., 105, 17–23, 2018.
Naughton, O., Donnelly, A., Nolan, P., Pilla, F., Misstear, B. D., and
Broderick, B.: A land use regression model for explaining spatial variation
in air pollution levels using a wind sector based approach, Sci. Total Environ., 630, 1324–1334, 2018.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.: Modulations of
synoptic and climatic changes on ozone pollution and its health risks in
mountain-basin areas, Atmos. Environ., 240, 117808, https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Patton, A. P., Zamore, W., Naumova, E. N., Levy, J. I., Brugge, D., and Durant, J. L.: Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston
area, Environ. Sci. Technol, 49, 6051–6060, 2015.
Poplawski, K., Gould, T., Setton, E., Allen, R., Su, J., Larson, T.,
Henderson, S., Brauer, M., Hystad, P., Lightowlers, C., and Keller, P.:
Intercity transferability of land use regression models for estimating
ambient concentrations of nitrogen
dioxide, J. Expo. Sci. Env. Epid., 19, 107–117, 2009.
R Core Team: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, available at:
https://www.Rproject.org/ (last access: 9 July 2020), 2018.
Rahman, M. M., Yeganeh, B., Clifford, S., Knibbs, L. D., and Morawska, L.:
Development of a land use regression model for daily NO2 and NOx
concentrations in the Brisbane metropolitan area, Australia, Environ.
Modell. Softw., 95, 168–179, 2017.
Ross, Z., Jerrett, M., Ito, K., Tempalski, B., and Thurston, G. D.: A land
use regression for predicting fine particulate matter concentrations in the
New York City region, Atmos. Environ., 41, 2255–2269, 2007.
Shi, C., Nduka, I. C., Yang, Y., Huang, Y., Yao, R., Zhang, H., He, B., Xie,
C., Wang, Z., and Yim, S. H. L.: Characteristics and meteorological mechanisms
of transboundary air pollution in a persistent heavy PM2.5 pollution
episode in Central-East China, Atmos. Environ., 223, 117239, https://doi.org/10.1016/j.atmosenv.2019.117239, 2020a.
Shi, T., Dirienzo, N., Requia, W. J., Hatzopoulou, M., and Adams, M. D.:
Neighbourhood scale nitrogen dioxide land use regression modelling with
regression kriging in an urban transportation corridor, Atmos. Environ., 223,
117218, https://doi.org/10.1016/j.atmosenv.2019.117218, 2020b.
Shi, W., Sun, Q., Du, P., Tang, S., Chen, C., Sun, Z., Wang, J., Li, T., and
Shi, X.: Modification Effects of Temperature on the Ozone–Mortality
Relationship: A Nationwide Multicounty Study in China, Environ. Sci.
Technol., 54, 2859–2868, 2020c.
Sun, Q., Hong, X., and Wold, L. E.: Cardiovascular effects of ambient
particulate air pollution exposure, Circulation, 121, 2755–2765, 2010.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C. Y., Chen, Y. D., and Lau, N. C.: Assessing the impacts of seasonal and vertical atmospheric
conditions on air auality over the Pearl River Delta Region, Atmos. Environ., 180, 69–78, 2018a.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C. Y., Chen, Y. D., and Lau, N. C.: Projecting the impacts of atmospheric conditions under
climate change on air quality over Pearl River Delta region, Atmos. Environ., 193, 79–87, 2018b.
TWEPA (Taiwan Environmental Protection Administration): Air Quality Annual
Report of R. O. C. (Taiwan), available at: https://airtw.epa.gov.tw/CHT/Themes/LinkOut.aspx, last access: 9 July 2020.
TWMOI (Taiwan Ministry of the Interior): Statistical Yearbook of Interior,
available at: https://www.moi.gov.tw/files/site_stuff/321/2/year/year_en.html#2Population, last access: 9 July 2020.
TWMOTC (Taiwan Ministry of Transportation and Communications): Annual
Transportation Report, available at: https://www.motc.gov.tw/en/home.jsp?id=610&parentpath=0,154, last access: 9 July 2020.
Vardoulakis, S., Solazzo, E., and Lumbreras, J.: Intra-urban and street
scale variability of BTEX, NO2 and O3 in Birmingham, UK:
Implications for exposure assessment, Atmos. Environ., 45, 5069–5078,
2011.
Vienneau, D., De Hoogh, K., Beelen, R., Fischer, P., Hoek, G., and Briggs,
D.: Comparison of land-use regression models between Great Britain and the
Netherlands, Atmos. Environ., 44, 688–696, 2010.
Wang, J., Cohan, D.S., and Xu, H.: Spatiotemporal ozone pollution LUR
models: Suitable statistical algorithms and time scales for a megacity
scale, Atmos. Environ., 237, 117671, 2020.
Wang, M., Beelen, R., Bellander, T., Birk, M., Cesaroni, G., Cirach, M.,
Cyrys, J., de Hoogh, K., Declercq, C., Dimakopoulou, K., and Eeftens, M.:
Performance of multi-city land use regression models for nitrogen dioxide
and fine particles, Environ. Health Persp., 122, 843–849, 2014.
Wang, M. Y., Yim, S. H., Wong, D. C., and Ho, K. F.: Source contributions of
surface ozone in China using an adjoint sensitivity analysis, Sci. Total Environ., 662, 385–392, 2019.
Wang, M. Y., Yim, S. H., Dong, G. H., Ho, K. F., and Wong, D. C.: Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis, Atmos. Environ., 222, 117026, https://doi.org/10.1016/j.atmosenv.2019.117026, 2020.
Wang, S. H., Huang, S. L., and Huang, P. J.: Can spatial planning really
mitigate carbon dioxide emissions in urban areas? A case study in Taipei,
Taiwan, Landscape Urban Plan., 169, 22–36, 2018.
Weissert, L. F., Salmond, J. A., Miskell, G., Alavi-Shoshtari, M., and
Williams, D. E.: Development of a microscale land use regression model for
predicting NO2 concentrations at a heavy trafficked suburban area in
Auckland, New Zealand, Sci. Total Environ., 619, 112–119, 2018.
WHO (World Health Organization): WHO Air quality guidelines for particulate
matter, ozone, nitrogen dioxide and sulfur dioxide – global update
2005, WHO/SDE/PHE/OEH/06.02, available at:
https://www.who.int/airpollution/publications/aqg2005/en/ (last access: 9 July 2020), 2006.
Wolf, K., Cyrys, J., Harciníková, T., Gu, J., Kusch, T., Hampel,
R., Schneider, A., and Peters, A.: Land use regression modeling of ultrafine
particles, ozone, nitrogen oxides and markers of particulate matter
pollution in Augsburg, Germany, Sci. Total Environ., 579, 1531–1540, 2017.
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., and
Lung, S. C. C.: Land-use regression with long-term satellite-based greenness
index and culture-specific sources to model PM2.5 spatial-temporal
variability, Environ. Pollut., 224, 148–157, 2017.
Wu, C. D., Zeng, Y. T., and Lung, S. C. C.: A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability, Sci. Total Environ., 645, 1456–1464, 2018.
Xu, M., Sbihi, H., Pan, X., and Brauer, M.: Local variation of PM2.5
and NO2 concentrations within metropolitan Beijing, Atmos. Environ., 200, 254–263, 2019.
Yang, Z., Freni-Sterrantino, A., Fuller, G. W., and Gulliver, J.: Development
and transferability of ultrafine particle land use regression models in
London, Sci. Total Environ., 740, 140059, https://doi.org/10.1016/j.scitotenv.2020.140059, 2020.
Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., and Kot, S. C.: Developing a
high-resolution wind map for a complex terrain with a coupled MM5/CALMET
system, J. Geophys. Res., 112, D05106, https://doi.org/10.1029/2006JD007752, 2007.
Yim, S. H. L., Fung, J. C. H., and Ng, E. Y. Y.: An assessment indicator for air
ventilation and pollutant dispersion potential in an urban canopy with
complex natural terrain and significant wind variations, Atmos. Environ., 94,
297–306, 2014.
Yim, S. H. L., Gu, Y., Shapiro, M. A., and Stephens, B.: Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea, Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019, 2019a.
Yim, S. H. L., Hou, X., Guo, J., and Yang, Y.: Contribution of local emissions
and transboundary air pollution to air quality in Hong Kong during El
Niño-Southern Oscillation and heatwaves, Atmos. Res., 218, 50–58, 2019b.
Yim, S. H. L., Wang, M., Gu, Y., Yang, Y., Dong, G., and Li, Q.: Effect of
urbanization on ozone and resultant health effects in the Pearl River Delta
region of China, J. Geophys. Res.-Atmos., 124, 11568–11579, 2019c.
Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S. B., Wang,
Y., Wang, H., Zhou, M., and Dong, Z.: Higher risk of cardiovascular disease
associated with smaller size-fractioned particulate matter,
Environ. Sci. Tech. Let., 7, 95–101, 2020.
Yu, H. L. and Wang, C. H.: Retrospective prediction of intraurban
spatiotemporal distribution of PM2.5 in Taipei, Atmos. Environ., 44,
3053–3065, 2010.
Zhou, Y., Ma, J., Wang, B., Liu, Y., Xiao, L., Ye, Z., Fan, L., Wang, D., Mu, G., and Chen, W.:
Long-term effect of personal PM2.5 exposure on lung function: A panel
study in China, J. Hazard. Mater., 393, 122457, https://doi.org/10.1016/j.jhazmat.2020.122457, 2020.
Zhu, D. and Zhou, X.: Effect of urban water bodies on distribution
characteristics of particulate matters and NO2, Sustain. Cities Soc.,
50, 101679, https://doi.org/10.1016/j.scs.2019.101679, 2019.
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
This study established land-use regression (LUR) models using only routine air quality...
Altmetrics
Final-revised paper
Preprint