Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-5063-2021
https://doi.org/10.5194/acp-21-5063-2021
Research article
 | 
31 Mar 2021
Research article |  | 31 Mar 2021

Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O3 concentrations in northern Taiwan

Zhiyuan Li, Kin-Fai Ho, Hsiao-Chi Chuang, and Steve Hung Lam Yim

Related authors

Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024,https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022,https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022,https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021,https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021,https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary

Cited articles

Allen, R. W., Amram, O., Wheeler, A. J., and Brauer, M.: The transferability of NO and NO2 land use regression models between cities and pollutants, Atmos. Environ., 45, 369–378, 2011. 
Anand, J. S. and Monks, P. S.: Estimating daily surface NO2 concentrations from satellite data – a case study over Hong Kong using land use regression models, Atmos. Chem. Phys., 17, 8211–8230, https://doi.org/10.5194/acp-17-8211-2017, 2017. 
Bertazzon, S., Johnson, M., Eccles, K., and Kaplan, G. G.: Accounting for spatial effects in land use regression for urban air pollution modeling, Spatial and Spatiotemporal Epidemiology, 14, 9–21, 2015. 
Brokamp, C., Brandt, E. B., and Ryan, P. H.: Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling strategies, J. Allergy Clin. Immun., 143, 2002–2006, 2019. 
Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W., Niu, C., Kan, L., Schikowski, T., and Yan, B.: Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations, Atmos. Environ., 223, 117267, https://doi.org/10.1016/j.atmosenv.2020.117267, 2020. 
Download
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
Share
Altmetrics
Final-revised paper
Preprint