Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O3 concentrations in northern Taiwan
Zhiyuan Li
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Kin-Fai Ho
The Jockey Club School of Public Health and Primary Care, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Hsiao-Chi Chuang
School of Respiratory Therapy, College of Medicine, Taipei Medical
University, Taipei, Taiwan
Department of Geography and Resource Management, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Stanley Ho Big Data Decision Analytics Research Centre, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative
Region
Related authors
No articles found.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Qingqing He, Mengya Wang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 18375–18391, https://doi.org/10.5194/acp-21-18375-2021, https://doi.org/10.5194/acp-21-18375-2021, 2021
Short summary
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Jianjun Li, Qi Zhang, Gehui Wang, Jin Li, Can Wu, Lang Liu, Jiayuan Wang, Wenqing Jiang, Lijuan Li, Kin Fai Ho, and Junji Cao
Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020, https://doi.org/10.5194/acp-20-4889-2020, 2020
Short summary
Short summary
We examined light absorption properties and molecular composition of water-soluble (WS) and water-insoluble (WI) BrC in PM2.5 collected from northwest China. We found that photochemical formation contributes significantly to light absorption of WI-BrC in summer, whereas aqueous-phase reactions play an important role in secondary WS-BrC formation in winter. BrC was estimated to account for 1.36 % and 3.74 %, respectively, of total down-welling solar radiation in the UV range in summer and winter.
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020, https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Steve Hung Lam Yim, Yefu Gu, Matthew A. Shapiro, and Brent Stephens
Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019, https://doi.org/10.5194/acp-19-13309-2019, 2019
Short summary
Short summary
This study assessed and quantified the transboundary air pollution (TAP) impact in Japan and South Korea. We found that ~70 % of annual ambient PM2.5 in Japan and South Korea was contributed by other countries in the region, and wet deposition had a greater impact on mixed forests in Japan and savannas in South Korea. Given these significant impacts of TAP in the region, it is paramount that cross–national efforts be taken to mitigate air pollution problems across East Asia.
Hongmei Xu, Jean-François Léon, Cathy Liousse, Benjamin Guinot, Véronique Yoboué, Aristide Barthélémy Akpo, Jacques Adon, Kin Fai Ho, Steven Sai Hang Ho, Lijuan Li, Eric Gardrat, Zhenxing Shen, and Junji Cao
Atmos. Chem. Phys., 19, 6637–6657, https://doi.org/10.5194/acp-19-6637-2019, https://doi.org/10.5194/acp-19-6637-2019, 2019
Short summary
Short summary
This paper discusses the personal exposure characteristics and health implication of PM2.5 and bounded chemical species based on three anthropogenic sources and related populations (domestic fires for women, waste burning for students and motorcycle traffic for drivers) in Abidjan and Cotonou in dry and wet seasons of 2016. This work can be regarded as the first attempt at measuring personal exposure to PM2.5 and its related health risks in underdeveloped countries of Africa.
Guicai Ning, Shigong Wang, Steve Hung Lam Yim, Jixiang Li, Yuling Hu, Ziwei Shang, Jinyan Wang, and Jiaxin Wang
Atmos. Chem. Phys., 18, 13601–13615, https://doi.org/10.5194/acp-18-13601-2018, https://doi.org/10.5194/acp-18-13601-2018, 2018
Short summary
Short summary
Under the effects of the Tibetan Plateau, dry low-pressure systems are often formed at 700 hPa in the Sichuan Basin, China, during winter. Here, we found that the activities of these dry low-pressure systems have significant influence on most winter heavy air pollution events in the Sichuan Basin. Influencing mechanisms have been summarized. The strong inversion layer above the atmospheric boundary layer induced by the low-pressure system plays a key role in the formation of heavy air pollution.
Hsiang-He Lee, Oussama Iraqui, Yefu Gu, Steve Hung-Lam Yim, Apisada Chulakadabba, Adam Yiu-Ming Tonks, Zhengyu Yang, and Chien Wang
Atmos. Chem. Phys., 18, 6141–6156, https://doi.org/10.5194/acp-18-6141-2018, https://doi.org/10.5194/acp-18-6141-2018, 2018
Short summary
Short summary
Our study shows that across ASEAN 50 cities, these model results reveal that 39 % of observed low-visibility days can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. The remaining 28 % of observed low-visibility days remains unexplained, likely due to emissions sources that have not been accounted for.
Yan-Lin Zhang, Imad El-Haddad, Ru-Jin Huang, Kin-Fai Ho, Jun-Ji Cao, Yongming Han, Peter Zotter, Carlo Bozzetti, Kaspar R. Daellenbach, Jay G. Slowik, Gary Salazar, André S. H. Prévôt, and Sönke Szidat
Atmos. Chem. Phys., 18, 4005–4017, https://doi.org/10.5194/acp-18-4005-2018, https://doi.org/10.5194/acp-18-4005-2018, 2018
Short summary
Short summary
Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time of flight aerosol mass spectrometer measurements. We demonstrate a dominant contribution of non-fossil emissions to WSOC aerosols in the Northern Hemisphere. However, the fossil fraction is substantially larger in aerosols from East Asia and the east Asian pollution outflow, especially during winter, due to increasing coal combustion.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Long Cui, Zhou Zhang, Yu Huang, Shun Cheng Lee, Donald Ray Blake, Kin Fai Ho, Bei Wang, Yuan Gao, Xin Ming Wang, and Peter Kwok Keung Louie
Atmos. Meas. Tech., 9, 5763–5779, https://doi.org/10.5194/amt-9-5763-2016, https://doi.org/10.5194/amt-9-5763-2016, 2016
Short summary
Short summary
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was investigated, and the Poly 2-D regression was found to be a good nonlinear surface simulation of R (RH, T) for correcting measured HCHO concentration. Intercomparisons between PTR-MS and other OVOC and VOC measuring techniques were conducted through a field study in urban roadside areas of Hong Kong primarily, and good agreements were found between these different techniques.
K. F. Ho, R.-J. Huang, K. Kawamura, E. Tachibana, S. C. Lee, S. S. H. Ho, T. Zhu, and L. Tian
Atmos. Chem. Phys., 15, 3111–3123, https://doi.org/10.5194/acp-15-3111-2015, https://doi.org/10.5194/acp-15-3111-2015, 2015
Short summary
Short summary
The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during the CAREBeijing-2007 in summer. This study demonstrates that even when primary exhaust was controlled by traffic restrictions, the contribution of secondary organic species formed from photochemical processes was critical with long-range atmospheric transport of pollutants.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, W. T. Jia, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann
Atmos. Meas. Tech., 7, 2027–2035, https://doi.org/10.5194/amt-7-2027-2014, https://doi.org/10.5194/amt-7-2027-2014, 2014
L. Xing, T.-M. Fu, J. J. Cao, S. C. Lee, G. H. Wang, K. F. Ho, M.-C. Cheng, C.-F. You, and T. J. Wang
Atmos. Chem. Phys., 13, 4307–4318, https://doi.org/10.5194/acp-13-4307-2013, https://doi.org/10.5194/acp-13-4307-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Multi-model effective radiative forcing of the 2020 sulphur cap for shipping
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454, https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides iron to promote marine primary production, yet its amount remains highly uncertain. This study demonstrates that iron-containing particle size at emission is a critical factor in regulating their input to open oceans by performing global aerosol simulations. Further observational constraints on this are needed to reduce modelling uncertainties.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
EGUsphere, https://doi.org/10.5194/egusphere-2024-1394, https://doi.org/10.5194/egusphere-2024-1394, 2024
Short summary
Short summary
In 2020 new regulations by the International Maritime Organization of sulphur emissions came into force that reduced emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate by how much the Earth energy balance changed due to the emission reduction, the so called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last two to three years.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Cited articles
Allen, R. W., Amram, O., Wheeler, A. J., and Brauer, M.: The transferability
of NO and NO2 land use regression models between cities and pollutants,
Atmos. Environ., 45, 369–378, 2011.
Anand, J. S. and Monks, P. S.: Estimating daily surface NO2 concentrations from satellite data – a case study over Hong Kong using land use regression models, Atmos. Chem. Phys., 17, 8211–8230, https://doi.org/10.5194/acp-17-8211-2017, 2017.
Bertazzon, S., Johnson, M., Eccles, K., and Kaplan, G. G.: Accounting for
spatial effects in land use regression for urban air pollution modeling,
Spatial and Spatiotemporal Epidemiology, 14, 9–21, 2015.
Brokamp, C., Brandt, E. B., and Ryan, P. H.: Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling
strategies, J. Allergy Clin. Immun., 143, 2002–2006, 2019.
Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W., Niu, C.,
Kan, L., Schikowski, T., and Yan, B.: Application of land use regression to
assess exposure and identify potential sources in PM2.5, BC, NO2
concentrations, Atmos. Environ., 223, 117267, https://doi.org/10.1016/j.atmosenv.2020.117267, 2020.
Çapraz, Ö., Deniz, A., and Doğan, N.: Effects of air pollution
on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015,
Chemosphere, 181, 544–550, 2017.
Chen, M., Dai, F., Yang, B., and Zhu, S.: Effects of neighborhood green
space on PM2.5 mitigation: Evidence from five megacities in China,
Build. Environ., 156, 33–45, 2019.
Chen, T. H., Hsu, Y. C., Zeng, Y. T., Lung, S. C. C., Su, H. J., Chao, H. J., and Wu, C. D.: A hybrid kriging/land-use regression model with Asian
culture-specific sources to assess NO2 spatial-temporal variations,
Environ. Pollut., 259, 113875,https://doi.org/10.1016/j.envpol.2019.113875,
2020.
Chi, K. H., Li, Y. N., and Hung, N. T.: Spatial and temporal variation of
PM2.5 and atmospheric PCDD/FS in Northern Taiwan during winter monsoon
and local pollution episodes, Aerosol Air Qual. Res., 17, 3151–3165, 2017.
Chiu, H. W., Lee, Y. C., Huang, S. L., and Hsieh, Y. C.: How does
periurbanization teleconnect remote areas? An emergy approach,
Ecol. Model., 403, 57–69, 2019.
Chou, C. C.-K., Lee, C. T., Cheng, M. T., Yuan, C. S., Chen, S. J., Wu, Y. L., Hsu, W. C., Lung, S. C., Hsu, S. C., Lin, C. Y., and Liu, S. C.: Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan, Atmos. Chem. Phys., 10, 9563–9578, https://doi.org/10.5194/acp-10-9563-2010, 2010.
De Hoogh, K., Gulliver, J., van Donkelaar, A., Martin, R. V., Marshall, J. D., Bechle, M. J., Cesaroni, G., Pradas, M. C., Dedele, A., Eeftens, M., and
Forsberg, B.: Development of West-European PM2.5 and NO2 land use
regression models incorporating satellite-derived and chemical transport
modelling data, Environ. Res., 151, 1–10, 2016.
De Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M.,
Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., and
Klompmaker, J.: Spatial PM2.5, NO2, O3 and BC models for
Western Europe–Evaluation of spatiotemporal stability, Environ. Int., 120,
81–92, 2018.
Eeftens, M., Meier, R., Schindler, C., Aguilera, I., Phuleria, H., Ineichen,
A., Davey, M., Ducret-Stich, R., Keidel, D., Probst-Hensch, N., and
Künzli, N.: Development of land use regression models for nitrogen
dioxide, ultrafine particles, lung deposited surface area, and four other
markers of particulate matter pollution in the Swiss SAPALDIA regions,
Environ. Health, 15, 53, https://doi.org/10.1186/s12940-016-0137-9, 2016.
Gu, Y. and Yim, S. H. L.: The air quality and health impacts of domestic
trans-boundary pollution in various regions of China, Environ. Int., 97,
117–124, 2016.
Gu, Y., Wong, T. W., Law, C. K., Dong, G. H., Ho, K. F., Yang, Y., and Yim,
S. H. L.: Impacts of sectoral emissions in China and the implications: air
quality, public health, crop production, and economic costs, Environ. Res.
Lett., 13, 084008, https://doi.org/10.1088/1748-9326/aad138, 2018.
Hao, H., Chang, H. H., Holmes, H. A., Mulholland, J. A., Klein, M., Darrow,
L. A., and Strickland, M. J.: Air pollution and preterm birth in the US State
of Georgia (2002–2006): associations with concentrations of 11 ambient air
pollutants estimated by combining Community Multiscale Air Quality Model
(CMAQ) simulations with stationary monitor measurements,
Environ. Health Persp., 124, 875–880, 2016.
Henderson, S. B., Beckerman, B., Jerrett, M., and Brauer, M.: Application of
land use regression to estimate long-term concentrations of traffic-related
nitrogen oxides and fine particulate matter, Environ. Sci. Technol., 41,
2422–2428, 2007.
Ho, C. C., Chan, C. C., Cho, C. W., Lin, H. I., Lee, J. H., and Wu, C. F.: Land
use regression modeling with vertical distribution measurements for fine
particulate matter and elements in an urban area, Atmos. Environ., 104,
256–263, 2015.
Ho, C. C., Chen, L. J., and Hwang, J. S.: Estimating ground-level PM2.5
levels in Taiwan using data from air quality monitoring stations and high
coverage of microsensors, Environ. Pollut., 264, 114810, https://doi.org/10.1016/j.envpol.2020.114810, 2020.
Ho, W. Y., Tseng, K. H., Liou, M. L., Chan, C. C., and Wang, C. H.: Application
of positive matrix factorization in the identification of the sources of
PM2.5 in Taipei City, Int. J. Env. Res. Pub. He., 15, 1305, https://doi.org/10.3390/ijerph15071305, 2018.
Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P.,
and Briggs, D.: A review of land-use regression models to assess spatial
variation of outdoor air pollution, Atmos. Environ., 42, 7561–7578, 2008.
Hou, X., Chan, C. K., Dong, G. H., and Yim, S. H. L.: Impacts of transboundary
air pollution and local emissions on PM2.5 pollution in the Pearl
River Delta region of China and the public health, and the policy
implications, Environ. Res. Lett., 14, 034005, https://doi.org/10.1088/1748-9326/aaf493, 2019.
Hsu, C. Y., Wu, J. Y., Chen, Y. C., Chen, N. T., Chen, M. J., Pan, W. C., Lung, S. C. C., Guo, Y. L., and Wu, C. D.: Asian culturally specific predictors in a large-scale land use regression model to predict spatial-temporal variability of ozone concentration, Int. J. Env. Res. Pub. He., 16, 1300, https://doi.org/10.3390/ijerph16071300, 2019.
Jeanjean, A. P. R., Monks, P. S., and Leigh, R. J.: Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale, Atmos. Environ., 147, 1–10, 2016.
Ji, W., Wang, Y., and Zhuang, D.: Spatial distribution differences in
PM2.5 concentration between heating and non-heating seasons in Beijing,
China, Environ. Pollut., 248, 574–583, 2019.
Jones, R. R., Hoek, G., Fisher, J. A., Hasheminassab, S., Wang, D., Ward,
M. H., Sioutas, C., Vermeulen, R., and Silverman, D. T.: Land use regression
models for ultrafine particles, fine particles, and black carbon in southern
California, Sci. Total Environ., 699, 134234, https://doi.org/10.1016/j.scitotenv.2019.134234, 2020.
Jung, C. R., Hwang, B. F., and Chen, W. T.: Incorporating long-term
satellite-based aerosol optical depth, localized land use data, and
meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015, Environ. Pollut., 237, 1000–1010, 2018.
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., and Chan, C. C.: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population, Sci. Total Environ., 472, 1163–1171, 2014.
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., and Chan, C. C.: LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and
construction, Sci. Total Environ., 514, 178–184, 2015.
Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T. H., Choi, C., Cheng, W.,
Lai, P. C., Tian, L., Thach, T. Q., and Allen, R.: Land use regression
modelling of air pollution in high density high rise cities: A case study in
Hong Kong, Sci. Total Environ., 592, 306–315, 2017.
Li, Q. X.: Statistical modelling experiment of land precipitation variations
since the start of the 20th century with external forcing factors,
China Sci. Bull., 65, 2266–2278, 2020 (in Chinese).
Li, Z., Che, W., Frey, H. C., Lau, A. K., and Lin, C.: Characterization of
PM2.5 exposure concentration in transport microenvironments using
portable monitors, Environ. Pollut., 228, 433–442, 2017.
Li, Z., Yim, S. H. L., and Ho, K. F.: High temporal resolution prediction of
street-level PM2.5 and NOx concentrations using machine learning
approach, J. Clean. Prod., 268, 121975, https://doi.org/10.1016/j.jclepro.2020.121975, 2020.
Li, Z., Tong, X., Ho, J. M. W., Kwok, T. C., Dong, G., Ho, K. F., and Yim,
S. H. L.: A practical framework for predicting residential indoor PM2.5
concentration using land-use regression and machine learning methods,
Chemosphere, 265, 129140, https://doi.org/10.1016/j.chemosphere.2020.129140, 2021.
Lin, H., Liu, T., Xiao, J., Zeng, W., Li, X., Guo, L., Zhang, Y., Xu, Y.,
Tao, J., Xian, H., and Syberg, K. M.: Mortality burden of ambient fine
particulate air pollution in six Chinese cities: results from the Pearl
River Delta study, Environ. Int., 96, 91–97, 2016.
Liu, C., Henderson, B. H., Wang, D., Yang, X., and Peng, Z. R.: A land use
regression application into assessing spatial variation of intra-urban fine
particulate matter (PM2.5) and nitrogen dioxide (NO2)
concentrations in City of Shanghai, China, Sci. Total Environ., 565, 607–615, 2016.
Liu, Z., Guan, Q., Luo, H., Wang, N., Pan, N., Yang, L., Xiao, S., and Lin,
J.: Development of land use regression model and health risk assessment for
NO2 in different functional areas: A case study of Xi'an, China, Atmos. Environ., 213, 515–525, 2019.
Lu, M., Soenario, I., Helbich, M., Schmitz, O., Hoek, G., van der Molen, M.,
and Karssenberg, D.: Land use regression models revealing spatiotemporal
co-variation in NO2, NO, and O3 in the Netherlands, Atmos. Environ., 223, 117238, https://doi.org/10.1016/j.atmosenv.2019.117238, 2020.
Luo, M., Hou, X., Gu, Y., Lau, N. C., and Yim, S. H. L.: Trans-boundary air
pollution in a city under various atmospheric conditions, Sci. Total Environ., 618, 132–141, 2018.
Marcon, A., de Hoogh, K., Gulliver, J., Beelen, R., and Hansell, A. L.:
Development and transferability of a nitrogen dioxide land use regression
model within the Veneto region of Italy, Atmos. Environ., 122, 696–704, 2015.
Marshall, J. D., Nethery, E., and Brauer, M.: Within-urban variability in
ambient air pollution: comparison of estimation methods, Atmos. Environ., 42, 1359–1369, 2008.
Meng, X., Chen, L., Cai, J., Zou, B., Wu, C. F., Fu, Q., Zhang, Y., Liu, Y.,
and Kan, H.: A land use regression model for estimating the NO2
concentration in Shanghai, China, Environ. Res., 137, 308–315, 2015.
Michanowicz, D. R., Shmool, J. L., Tunno, B. J., Tripathy, S., Gillooly, S.,
Kinnee, E., and Clougherty, J. E.: A hybrid land use regression/AERMOD model
for predicting intra-urban variation in PM2.5, Atmos. Environ., 131,
307–315, 2016.
Miri, M., Ghassoun, Y., Dovlatabadi, A., Ebrahimnejad, A., and Löwner,
M. O.: Estimate annual and seasonal PM1, PM2.5 and PM10
concentrations using land use regression
model, Ecotox. Environ. Safe., 174, 137–145, 2019.
Morley, D. W. and Gulliver, J.: A land use regression variable generation,
modelling and prediction tool for air pollution exposure assessment,
Environ. Modell. Softw., 105, 17–23, 2018.
Naughton, O., Donnelly, A., Nolan, P., Pilla, F., Misstear, B. D., and
Broderick, B.: A land use regression model for explaining spatial variation
in air pollution levels using a wind sector based approach, Sci. Total Environ., 630, 1324–1334, 2018.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.: Modulations of
synoptic and climatic changes on ozone pollution and its health risks in
mountain-basin areas, Atmos. Environ., 240, 117808, https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Patton, A. P., Zamore, W., Naumova, E. N., Levy, J. I., Brugge, D., and Durant, J. L.: Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston
area, Environ. Sci. Technol, 49, 6051–6060, 2015.
Poplawski, K., Gould, T., Setton, E., Allen, R., Su, J., Larson, T.,
Henderson, S., Brauer, M., Hystad, P., Lightowlers, C., and Keller, P.:
Intercity transferability of land use regression models for estimating
ambient concentrations of nitrogen
dioxide, J. Expo. Sci. Env. Epid., 19, 107–117, 2009.
R Core Team: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, available at:
https://www.Rproject.org/ (last access: 9 July 2020), 2018.
Rahman, M. M., Yeganeh, B., Clifford, S., Knibbs, L. D., and Morawska, L.:
Development of a land use regression model for daily NO2 and NOx
concentrations in the Brisbane metropolitan area, Australia, Environ.
Modell. Softw., 95, 168–179, 2017.
Ross, Z., Jerrett, M., Ito, K., Tempalski, B., and Thurston, G. D.: A land
use regression for predicting fine particulate matter concentrations in the
New York City region, Atmos. Environ., 41, 2255–2269, 2007.
Shi, C., Nduka, I. C., Yang, Y., Huang, Y., Yao, R., Zhang, H., He, B., Xie,
C., Wang, Z., and Yim, S. H. L.: Characteristics and meteorological mechanisms
of transboundary air pollution in a persistent heavy PM2.5 pollution
episode in Central-East China, Atmos. Environ., 223, 117239, https://doi.org/10.1016/j.atmosenv.2019.117239, 2020a.
Shi, T., Dirienzo, N., Requia, W. J., Hatzopoulou, M., and Adams, M. D.:
Neighbourhood scale nitrogen dioxide land use regression modelling with
regression kriging in an urban transportation corridor, Atmos. Environ., 223,
117218, https://doi.org/10.1016/j.atmosenv.2019.117218, 2020b.
Shi, W., Sun, Q., Du, P., Tang, S., Chen, C., Sun, Z., Wang, J., Li, T., and
Shi, X.: Modification Effects of Temperature on the Ozone–Mortality
Relationship: A Nationwide Multicounty Study in China, Environ. Sci.
Technol., 54, 2859–2868, 2020c.
Sun, Q., Hong, X., and Wold, L. E.: Cardiovascular effects of ambient
particulate air pollution exposure, Circulation, 121, 2755–2765, 2010.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C. Y., Chen, Y. D., and Lau, N. C.: Assessing the impacts of seasonal and vertical atmospheric
conditions on air auality over the Pearl River Delta Region, Atmos. Environ., 180, 69–78, 2018a.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C. Y., Chen, Y. D., and Lau, N. C.: Projecting the impacts of atmospheric conditions under
climate change on air quality over Pearl River Delta region, Atmos. Environ., 193, 79–87, 2018b.
TWEPA (Taiwan Environmental Protection Administration): Air Quality Annual
Report of R. O. C. (Taiwan), available at: https://airtw.epa.gov.tw/CHT/Themes/LinkOut.aspx, last access: 9 July 2020.
TWMOI (Taiwan Ministry of the Interior): Statistical Yearbook of Interior,
available at: https://www.moi.gov.tw/files/site_stuff/321/2/year/year_en.html#2Population, last access: 9 July 2020.
TWMOTC (Taiwan Ministry of Transportation and Communications): Annual
Transportation Report, available at: https://www.motc.gov.tw/en/home.jsp?id=610&parentpath=0,154, last access: 9 July 2020.
Vardoulakis, S., Solazzo, E., and Lumbreras, J.: Intra-urban and street
scale variability of BTEX, NO2 and O3 in Birmingham, UK:
Implications for exposure assessment, Atmos. Environ., 45, 5069–5078,
2011.
Vienneau, D., De Hoogh, K., Beelen, R., Fischer, P., Hoek, G., and Briggs,
D.: Comparison of land-use regression models between Great Britain and the
Netherlands, Atmos. Environ., 44, 688–696, 2010.
Wang, J., Cohan, D.S., and Xu, H.: Spatiotemporal ozone pollution LUR
models: Suitable statistical algorithms and time scales for a megacity
scale, Atmos. Environ., 237, 117671, 2020.
Wang, M., Beelen, R., Bellander, T., Birk, M., Cesaroni, G., Cirach, M.,
Cyrys, J., de Hoogh, K., Declercq, C., Dimakopoulou, K., and Eeftens, M.:
Performance of multi-city land use regression models for nitrogen dioxide
and fine particles, Environ. Health Persp., 122, 843–849, 2014.
Wang, M. Y., Yim, S. H., Wong, D. C., and Ho, K. F.: Source contributions of
surface ozone in China using an adjoint sensitivity analysis, Sci. Total Environ., 662, 385–392, 2019.
Wang, M. Y., Yim, S. H., Dong, G. H., Ho, K. F., and Wong, D. C.: Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis, Atmos. Environ., 222, 117026, https://doi.org/10.1016/j.atmosenv.2019.117026, 2020.
Wang, S. H., Huang, S. L., and Huang, P. J.: Can spatial planning really
mitigate carbon dioxide emissions in urban areas? A case study in Taipei,
Taiwan, Landscape Urban Plan., 169, 22–36, 2018.
Weissert, L. F., Salmond, J. A., Miskell, G., Alavi-Shoshtari, M., and
Williams, D. E.: Development of a microscale land use regression model for
predicting NO2 concentrations at a heavy trafficked suburban area in
Auckland, New Zealand, Sci. Total Environ., 619, 112–119, 2018.
WHO (World Health Organization): WHO Air quality guidelines for particulate
matter, ozone, nitrogen dioxide and sulfur dioxide – global update
2005, WHO/SDE/PHE/OEH/06.02, available at:
https://www.who.int/airpollution/publications/aqg2005/en/ (last access: 9 July 2020), 2006.
Wolf, K., Cyrys, J., Harciníková, T., Gu, J., Kusch, T., Hampel,
R., Schneider, A., and Peters, A.: Land use regression modeling of ultrafine
particles, ozone, nitrogen oxides and markers of particulate matter
pollution in Augsburg, Germany, Sci. Total Environ., 579, 1531–1540, 2017.
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., and
Lung, S. C. C.: Land-use regression with long-term satellite-based greenness
index and culture-specific sources to model PM2.5 spatial-temporal
variability, Environ. Pollut., 224, 148–157, 2017.
Wu, C. D., Zeng, Y. T., and Lung, S. C. C.: A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability, Sci. Total Environ., 645, 1456–1464, 2018.
Xu, M., Sbihi, H., Pan, X., and Brauer, M.: Local variation of PM2.5
and NO2 concentrations within metropolitan Beijing, Atmos. Environ., 200, 254–263, 2019.
Yang, Z., Freni-Sterrantino, A., Fuller, G. W., and Gulliver, J.: Development
and transferability of ultrafine particle land use regression models in
London, Sci. Total Environ., 740, 140059, https://doi.org/10.1016/j.scitotenv.2020.140059, 2020.
Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., and Kot, S. C.: Developing a
high-resolution wind map for a complex terrain with a coupled MM5/CALMET
system, J. Geophys. Res., 112, D05106, https://doi.org/10.1029/2006JD007752, 2007.
Yim, S. H. L., Fung, J. C. H., and Ng, E. Y. Y.: An assessment indicator for air
ventilation and pollutant dispersion potential in an urban canopy with
complex natural terrain and significant wind variations, Atmos. Environ., 94,
297–306, 2014.
Yim, S. H. L., Gu, Y., Shapiro, M. A., and Stephens, B.: Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea, Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019, 2019a.
Yim, S. H. L., Hou, X., Guo, J., and Yang, Y.: Contribution of local emissions
and transboundary air pollution to air quality in Hong Kong during El
Niño-Southern Oscillation and heatwaves, Atmos. Res., 218, 50–58, 2019b.
Yim, S. H. L., Wang, M., Gu, Y., Yang, Y., Dong, G., and Li, Q.: Effect of
urbanization on ozone and resultant health effects in the Pearl River Delta
region of China, J. Geophys. Res.-Atmos., 124, 11568–11579, 2019c.
Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S. B., Wang,
Y., Wang, H., Zhou, M., and Dong, Z.: Higher risk of cardiovascular disease
associated with smaller size-fractioned particulate matter,
Environ. Sci. Tech. Let., 7, 95–101, 2020.
Yu, H. L. and Wang, C. H.: Retrospective prediction of intraurban
spatiotemporal distribution of PM2.5 in Taipei, Atmos. Environ., 44,
3053–3065, 2010.
Zhou, Y., Ma, J., Wang, B., Liu, Y., Xiao, L., Ye, Z., Fan, L., Wang, D., Mu, G., and Chen, W.:
Long-term effect of personal PM2.5 exposure on lung function: A panel
study in China, J. Hazard. Mater., 393, 122457, https://doi.org/10.1016/j.jhazmat.2020.122457, 2020.
Zhu, D. and Zhou, X.: Effect of urban water bodies on distribution
characteristics of particulate matters and NO2, Sustain. Cities Soc.,
50, 101679, https://doi.org/10.1016/j.scs.2019.101679, 2019.
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
This study established land-use regression (LUR) models using only routine air quality...
Altmetrics
Final-revised paper
Preprint