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Abstract. To provide long-term air pollutant exposure esti-
mates for epidemiological studies, it is essential to test the
feasibility of developing land-use regression (LUR) mod-
els using only routine air quality measurement data and to
evaluate the transferability of LUR models between nearby
cities. In this study, we developed and evaluated the inter-
city transferability of annual-average LUR models for ambi-
ent respirable suspended particulates (PM10), fine suspended
particulates (PM2.5), nitrogen dioxide (NO2) and ozone (O3)
in the Taipei–Keelung metropolitan area of northern Taiwan
in 2019. Ambient PM10, PM2.5, NO2 and O3 measurements
at 30 fixed-site stations were used as the dependent vari-
ables, and a total of 156 potential predictor variables in six
categories (i.e., population density, road network, land-use
type, normalized difference vegetation index, meteorology
and elevation) were extracted using buffer spatial analysis.
The LUR models were developed using the supervised for-
ward linear regression approach. The LUR models for am-
bient PM10, PM2.5, NO2 and O3 achieved relatively high
prediction performance, with R2 values of > 0.72 and leave-
one-out cross-validation (LOOCV) R2 values of > 0.53. The
intercity transferability of LUR models varied among the
air pollutants, with transfer-predictive R2 values of > 0.62
for NO2 and < 0.56 for the other three pollutants. The

LUR-model-based 500 m× 500 m spatial-distribution maps
of these air pollutants illustrated pollution hot spots and the
heterogeneity of population exposure, which provide valu-
able information for policymakers in designing effective air
pollution control strategies. The LUR-model-based air pol-
lution exposure estimates captured the spatial variability in
exposure for participants in a cohort study. This study high-
lights that LUR models can be reasonably established upon
a routine monitoring network, but there exist uncertainties
when transferring LUR models between nearby cities. To the
best of our knowledge, this study is the first to evaluate the
intercity transferability of LUR models in Asia.

1 Introduction

Air pollution has been reported to be positively associated
with a variety of health effect endpoints, such as lung func-
tion and respiratory and cardiovascular diseases (Çapraz et
al., 2017; Sun et al., 2010; Yin et al., 2020; Zhou et al.,
2020). Exposure assessment of air pollution is a critical com-
ponent of epidemiological studies (Cai et al., 2020; Hoek et
al., 2008; Li et al., 2017). Cohort studies focusing on the
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long-term effect on specific diseases of exposure to air pol-
lution require accurate exposure estimates for a large group
of participants (e.g., thousands or more) over a defined time
period (Brokamp et al., 2019; Morley and Gulliver, 2018;
Zhou et al., 2020). Different air quality prediction methods,
such as air dispersion models, atmospheric chemical trans-
port models, satellite remote sensing and various statistical
methods, have been developed and applied to estimate air
pollution (Yim et al., 2019a, b; Tong et al., 2018a, b; Luo
et al., 2018; Shi et al., 2020a) and population exposure (Gu
and Yim 2016; Gu et al., 2018; Hao et al., 2016; Li et al.,
2020; Hou et al., 2019; Michanowicz et al., 2016; Wang et
al., 2019, 2020; Yim et al., 2019c). Among these exposure
assessment methods, land-use regression (LUR) is a widely
used modeling approach to characterize long-term-average
air pollutant concentrations at a fine spatial scale, which pro-
vides high-spatial-resolution estimates of exposure for use in
epidemiological studies (Bertazzon et al., 2015; Eeftens et
al., 2016; Jones et al., 2020).

The LUR method is based on the principle that ambient air
pollutant concentrations at fixed-site measurement stations
are linearly associated with different environmental features
(e.g., land use, population density, road network and mete-
orological conditions) surrounding the stations (Anand and
Monks, 2017; Lu et al., 2020; Naughton et al., 2018; Wu et
al., 2017). In a city or even at a smaller-spatial-scale area,
the LUR method is comparable to or sometimes even bet-
ter than the approaches of satellite-remote-sensing-based air
quality retrievals and air dispersion models in characteriz-
ing spatiotemporal variation in air pollution (Marshall et al.,
2008; Shi et al., 2020b). Following feasible procedures of
data processing and analysis, established air pollution LUR
models can be applied to predict concentrations of air pol-
lutants at locations without measurements at multiple spatial
scales or at residential locations of participants in epidemi-
ological studies (Li et al., 2021; Liu et al., 2016; Shi et al.,
2020b).

In recent years, a large number of air pollution LUR stud-
ies have been conducted in different areas around the world
(Jones et al., 2020; Lee et al., 2017; Liu et al., 2016, 2019;
Lu et al., 2020; Miri et al., 2019; Ross et al., 2007; Wu
et al., 2017). However, the development and application of
LUR models in the Taiwan region were limited (Hsu et al.,
2019). In addition, most previous Taiwan LUR studies used
data from purpose-designed monitoring networks or com-
bined purpose-designed and routine monitoring networks
(Ho et al., 2015; Lee et al., 2014, 2015). For example, Lee et
al. (2015) established LUR models for ambient particles of
aerodynamic diameter less than or equal to 2.5 µm (PM2.5)
using a purpose-designed monitoring network of 20 sites
in the Taipei metropolis. The purpose-designed monitoring
campaign has the advantage of capturing short-term air pol-
lution exposure profiles (Jones et al., 2020), but it typically
requires extra human labor and resources (e.g., experimental
materials) (Hoek et al., 2008). Moreover, it is almost impos-

sible to conduct long-term measurement (e.g., over years) us-
ing purpose-designed monitoring networks (Ho et al., 2015;
Lee et al., 2017). As a result, a general limitation of LUR
models upon purpose-designed monitoring networks is that
the established models may only reflect the situation during
the measurement period (Hoek et al., 2008; Shi et al., 2020b).
Therefore, the development of long-term average LUR mod-
els for specific air pollutants using only routine monitoring
networks should be explored, which is especially critical for
epidemiological studies.

The application of established LUR models to areas out-
side the study area can reduce extra efforts to develop new
models (Poplawski et al., 2009). To date, a few studies have
evaluated the transferability of air pollution LUR models
within a city and between cities or countries (Allen et al.,
2011; Patton et al., 2015; Vienneau et al., 2010; Yang et al.,
2020). Direct transferability refers to predictor variables and
coefficients of LUR models both being transferred (Allen et
al., 2011), whereas transferability with calibration means that
model coefficients are calibrated using air pollutant measure-
ments from the target areas (Yang et al., 2020). Direct trans-
ferability is more meaningful because it can be applied in
areas without air quality measurements (Allen et al., 2011;
Yang et al., 2020). Previous studies on the transferability of
LUR models concluded that the predictive performances of
LUR models from one area to another were not consistent,
ranging from poor (Marcon et al., 2015) to relatively accept-
able predictive accuracy (Poplawski et al., 2009; Wang et al.,
2014). Therefore, more studies should be conducted to assess
the transferability of air pollution LUR models.

In this study, annual-average LUR models and spatial-
distribution maps were developed for ambient particles of
aerodynamic diameter less than or equal to 10 µm (PM10),
PM2.5, nitrogen dioxide (NO2) and ozone (O3) in northern
Taiwan in 2019. In addition, the transferability of LUR mod-
els between cities in the study area was evaluated. The re-
mainder of this paper is organized as follows: the “Materi-
als and methods” section describes the study area, data col-
lection and processing, LUR model establishment and vali-
dation, and prediction of the air pollution exposure surface.
The “Results and discussion” section presents an overview of
measurement data; established LUR models and their com-
parison with previous LUR models in Taiwan; the transfer-
ability of LUR models; the spatial-distribution maps of ambi-
ent PM10, PM2.5, NO2 and O3 concentrations; and PM2.5 ex-
posure estimates for a cohort study. The “Conclusions” sec-
tion summarizes the main results and demonstrates the im-
plications of the present study.
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2 Materials and methods

2.1 Study area

The Taipei–Keelung metropolitan area (TKMA), located in
northern Taiwan, includes Taipei City, New Taipei City and
Keelung City. The TKMA is the political, cultural and so-
cioeconomic center of Taiwan. It covers an area of approx-
imately 2457 km2 and has 48 administrative districts (Chiu
et al., 2019; Wang et al., 2018). The TKMA had a popu-
lation of about 7.03 million in 2019 (TWMOI, 2020), ac-
counting for approximately 30 % of the total population of
Taiwan (Fig. 1a). The population densities of Taipei City,
New Taipei City and Keelung City were 10 175, 2021 and
2826 people km−2, respectively, in 2019 (TWMOI, 2020).
The numbers of registered motor vehicles were 1.76 mil-
lion, 3.21 million and 0.28 million in Taipei City, New Taipei
City and Keelung City, respectively, by the end of 2018
(TWMOTC, 2020).

The TKMA is situated in the subtropical region and on
the downwind side of mainland China. The built-up area of
the TKMA is located in the central part of the Tamsui River
basin, surrounded by mountains, agricultural land and forests
(Fig. 1b and c). The characteristics of the basin terrain can
constrain the diffusion of polluted air masses and thus fa-
vor the accumulation of air pollution in urban areas (Yu and
Wang, 2010). Local emission sources of air pollutants in the
TKMA include vehicular exhaust, industrial emissions and
various sources related to residential activities (e.g., cook-
ing) (Chen et al., 2020; Ho et al., 2018; Wu et al., 2017). In
winter time, the long-distance transport of dust and polluted
air masses under the northeast monsoon from the Asian con-
tinent results in a significant increase in concentrations of air
pollutants (Chi et al., 2017; Chou et al., 2010).

2.2 Data collection and processing

The Taiwan Environmental Protection Administration
(TWEPA) operates 20 central air-quality-monitoring stations
in the TKMA, of which 12 stations are in New Taipei
City, 7 are in Taipei City, and 1 station is in Keelung
City (https://airtw.epa.gov.tw/ENG/default.aspx, last ac-
cess: 9 July 2020). In addition, the Taipei Environmental
Protection Agency (TPEPA) operates 10 local air-quality-
monitoring stations (https://www.tldep.gov.taipei/EIACEP_
EN/Air_NormalStation.aspx, last access: 9 July 2020).
In total, these stations include 21 general stations, 6 traf-
fic stations, 2 background stations and 1 country park
station (Fig. 1a). Detailed descriptions of sampling sta-
tions, measurement instruments, and quality assurance
and control procedures are available in TWEPA (2020).
Hourly measurements of ambient PM10, PM2.5, NO2 and
O3 concentrations and the meteorological variables of
temperature, wind speed and relative humidity at the central
stations from 1 January to 31 December 2019 were col-

lected from the Environment Resource database of TWEPA
(https://erdb.epa.gov.tw/DataRepository/EnvMonitor/
AirQualityMonitorDayData.aspx, last access: 9 July 2020).
In addition, hourly concentrations of ambient PM10,
PM2.5, NO2 and O3 at the local stations from 1 January
to 31 December 2019 were downloaded from the TPEPA
website (https://www.tldep.gov.taipei/Public/DownLoad/
AirAutoHour.aspx, last access: 9 July 2020). We calculated
daily average values of air pollutant concentrations and
meteorological variables from hourly data and calculated
the annual-average values from daily averaged data for the
development of LUR models. Daily and annual-average
estimates for the air pollutants require at least 75 % data
completeness (Cai et al., 2020); otherwise there was no
value estimate for that day or year.

As presented in Table S1 in the Supplement and Fig. 1, the
potential predictor variables of the road network, land-use
data, normalized difference vegetation index (NDVI), pop-
ulation density and digital elevation data, which were fre-
quently used in previous LUR studies, were collected. Land-
use information was taken from the Land Use Investiga-
tion of Taiwan conducted by the National Land Surveying
and Mapping Center (https://www2.nlsc.gov.tw/LUI/Home/
Content_Home.aspx, last access: 9 July 2020). The Taiwan
land-use status is classified into nine main categories, 41 sub-
categories and 103 detailed items. As shown in Fig. 1c, the
nine main land-use categories are agriculture, forest, trans-
portation, water bodies, built-up areas, public utilities, recre-
ation, mining or salt production, and others (Chen et al.,
2020). The road network from the Taiwan Ministry of Trans-
portation and Communications includes three types of road:
local roads, major roads and expressways (Fig. 1d). The
NDVI and elevation data were extracted from the database
of the Resources and Environmental Sciences Data Center,
Chinese Academy of Sciences (http://www.resdc.cn, last ac-
cess: 9 July 2020).

The values of potential predictor variables in buffer sizes
of 50, 100, 300, 500, 700, 1000, 2000, 3000, 4000 and
5000 m surrounding the sampling stations were summarized
for use in LUR model development. To ensure the consis-
tency of results between model training and cross-validation,
we included only the potential predictor variables with at
least seven stations (i.e., around 25 % of all stations) exhibit-
ing different values and where the minimum or maximum
values lay within three times the 10th to the 90th percentile
range below or above the 10th and the 90th percentile (Wolf
et al., 2017).

2.3 Model development and validation

The LUR models of ambient PM10, PM2.5, NO2 and O3
for the entire study area (the area-specific LUR models)
were established using all 30 air-quality-monitoring stations.
In addition, city-specific LUR models for New Taipei City
and Keelung City were developed using the 13 air-quality-
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Figure 1. The characteristics of the study area. (a) Population density and the location of air-quality-monitoring stations. A total of 30
air-quality-monitoring stations were included in this study. (b) Digital elevation. (c) Land-use types. (d) The road network.

monitoring stations located in these two cities, and the estab-
lished models were directly transferred to Taipei City. Sim-
ilarly, city-specific LUR models for Taipei City were devel-
oped using the 17 quality-monitoring stations located in this
city, and the established models were directly transferred to
New Taipei City and Keelung City. In this study, we did
not consider the calibration of model coefficients because we
planned to evaluate the direct transferability of city-specific
LUR models to another nearby city area when there were no
routine air quality measurements.

There is no standard modeling method for developing
LUR models (Hoek et al., 2008). In this study, the supervised
forward linear regression method (Cai et al., 2020; Eeftens
et al., 2016; Xu et al., 2019) was used to develop the LUR
models. This modeling method can ensure that only predic-
tor variables following the plausible direction of effect are

included, and meanwhile the predictive accuracy of the es-
tablished model is maximized. In brief, all potential predic-
tor variables were included as candidate independent vari-
ables, and a prior direction was assigned for each category
of variable based on the atmospheric mechanism. The model
construction started by including the predictor variable with
the highest adjusted explained variance (R2). The remaining
predictor variables were entered into the model if they met
all of the following criteria: (1) the gain of the adjusted R2

was no less than 1 %; (2) the direction of effect of the predic-
tor variable was pre-defined; (3) variables were added into
the model when the probability of F was less than 0.05 and
removed when the probability of F was greater than 0.10;
(4) variables already included in the model retained the same
direction of effect; and (5) following previous studies (Chen
et al., 2020; Marcon et al., 2015; Wang et al., 2014), the
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predictor variables with variance inflation factor (VIF) val-
ues larger than 3 were dropped to make a tradeoff between
model interpretation and the predictive accuracy (Eeftens et
al., 2016). Multiple buffer sizes of a specific variable (e.g.,
the length of local roads) could be selected in the final model
as long as they followed the selection criteria (Henderson et
al., 2007).

Standard diagnostic tests were applied to ensure that the
LUR models were reasonably established (Li, 2020; Wolf
et al., 2017). The Cook’s distance value was calculated to
detect the outliers of data points (i.e., stations) (Jones et
al., 2020). Air pollutant observations with a Cook’s distance
value greater than 1 would be excluded, and the LUR model
for this air pollutant would be re-established (Weissert et al.,
2018; Wolf et al., 2017). In addition, Moran’s I values on
the concentration residuals of the final LUR models were
calculated using ArcGIS software to evaluate the spatial au-
tocorrelation (Bertazzon et al., 2015; Lee et al., 2017; Liu
et al., 2016). The R2 and root mean square error (RMSE)
were estimated to evaluate the performance of the models
(Li et al., 2021). Furthermore, leave-one-out cross-validation
(LOOCV) was employed to evaluate the predictive capacity
of the LUR models (Liu et al., 2019; Shi et al., 2020b; Yang
et al., 2020).

Spatial analysis and calculations were performed using
ArcGIS software, version 10.6 (ESRI Inc., Redlands, CA,
USA). The statistical analysis was performed using R soft-
ware, version 3.5.2 (R Core Team, 2018).

2.4 Air pollution surface prediction

The entire study area of the TKMA was divided into 9839
500 m× 500 m grid cells. The air pollutant concentrations at
the centroids of the grid cells were estimated using the estab-
lished area-specific LUR models. When the LUR models es-
timated negative concentration values, the concentration val-
ues of the grid cells were set to 0; when air pollutant con-
centration estimates exceeded the maximum observed con-
centrations by more than 20 %, the concentrations of grid
cells were set to 120 % of the maximum observed concen-
trations (Henderson et al., 2007). The area-specific LUR-
model-based negative and high concentration estimates ac-
counted for only 0 %, 4 %, 2 % and 0 % of PM10, PM2.5, NO2
and O3 estimates, respectively. Then the spatial-distribution
maps of ambient PM10, PM2.5, NO2 and O3 concentrations
were created using the kriging interpolation method (Cai et
al., 2020).

3 Results and discussion

3.1 Descriptive statistics of the air quality data

In general, the included air-quality-monitoring stations were
situated at different types of land use across the TKMA (Ta-
ble 1 and Fig. 1c), which suggests that the collected data set

Table 1. Statistical description of measured air pollutants by differ-
ent types of stations.

Air pollutant Station type N Mean SD Min Max

PM10 (µg m−3) General 21 28.5 2.84 22.3 35.0
Traffic 6 33.6 4.57 27.3 40.3
Background 2 39.3 2.11 37.8 40.8
Country park∗ 1 15.7 – – –

PM2.5 (µg m−3) General 21 13.7 1.36 10.6 15.4
Traffic 6 16.8 2.98 13.3 21.3
Background 2 13.2 0.44 12.9 13.6
Country park 1 8.06 – – –

NO2 (ppb) General 21 14.3 3.32 7.86 21.7
Traffic 6 24.6 6.16 17.1 32.2
Background 2 3.81 1.28 2.90 4.71
Country park 1 1.89 – – –

O3 (ppb) General 21 29.4 3.51 23.6 35.5
Traffic 4 21.6 5.48 15.2 28.0
Background 2 41.7 0.70 41.2 42.2
Country park 1 39.8 – – –

N means the number of stations for this type; SD means the standard deviation; min and max
refer to the minimum and maximum values of the air pollutant concentrations, respectively.
∗ There is only one country park station; therefore there are no estimates of SD, min and max
values.

has relatively good representativeness. The annual-average
PM10 concentration of 39.3 µg m−3 at background stations
was the highest, followed in descending order by traffic sta-
tions with 33.6 µg m−3, general stations with 28.5 µg m−3

and the country park station with 15.7 µg m−3. The traffic
stations and country park station had the highest and low-
est annual-average PM2.5 concentrations, respectively. The
annual-average PM2.5 concentrations at general stations of
13.7 µg m−3 and background stations of 13.2 µg m−3 were
comparable. Except for the country park station, the annual-
average PM10 and PM2.5 concentrations at other types of
stations were higher than the air quality guidelines (AQGs)
for PM10 and PM2.5 of 20.0 and 10.0 µg m−3, respectively,
proposed by the World Health Organization (WHO) (WHO,
2006). The annual-average NO2 concentration of 24.6 ppb at
the traffic stations was the highest, followed by general sta-
tions with 14.3 ppb. The annual-average NO2 concentrations
at background stations (3.81 ppb) and the country park sta-
tion (1.89 ppb) were significantly lower than those of gen-
eral and traffic stations because they were farther away from
traffic emissions. The annual-average NO2 concentration at
traffic stations (24.6 ppb) was slightly higher than the WHO
NO2 AQG of 40.0 µg m−3 (about 21.3 ppb) (WHO, 2006),
while other types of stations had annual-average NO2 con-
centrations lower than this AQG. In contrast to NO2, the
background stations (41.7 ppb) and the country park sta-
tion (39.8 ppb) had higher annual-average O3 concentrations
than those of traffic stations (21.6 ppb) or general stations
(29.4 ppb) (Table 1).
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3.2 The area-specific LUR models

Figure S1 in the Supplement shows that Cook’s distance val-
ues were below 1 for all the stations of the area-specific
LUR models, suggesting that there were no station outliers
in developing these LUR models. For PM10 and PM2.5 LUR
models, Cook’s distance values ranged from almost 0.00 to
around 0.72. The Cook’s distance values of the NO2 LUR
model were between almost 0.00 and 0.28, whereas the
Cook’s distance values of the O3 LUR model were between
almost 0.00 and 0.38 (Fig. S1). The final area-specific LUR
models and their corresponding predictive accuracy are sum-
marized in Table 2 and Fig. 2. The model R2 values ranged
from 0.72 for PM2.5 to 0.91 for NO2, indicating a good fit
for all air pollutants. PM10, NO2 and O3 LUR models per-
formed well, with LOOCV R2 values being < 0.10 lower
than the model R2 values. For PM2.5, the model was not
as robust as those of other air pollutants, with the LOOCV
R2 value being 0.19 lower than the model R2 value (Fig. 2).
The reason for this is that the PM2.5 concentrations among
the stations were not as discrete as those of other air pollu-
tants (Table 1 and Fig. 2). The significance of the predictor
variables (p value) and VIF values all met the requirements
for LUR model development. Moran’s I values were 0.0047,
−0.072, 0.023 and −0.055 for the LUR models of ambient
PM10, PM2.5, NO2 and O3. In addition, z-score values were
0.83, −0.79, 1.2 and −0.34 for ambient PM10, PM2.5, NO2
and O3 LUR models, respectively, indicating that the spatial
patterns of concentration residuals of the LUR models do not
appear to be significantly different from random (Fig. S2).

The final area-specific LUR models consisted of three (for
O3), four (for NO2) and five predictor variables (for PM10
and PM2.5) (Table 2). Consistent with the previous LUR
studies of De Hoogh et al. (2018), Eeftens et al. (2016), Jones
et al. (2020), Weissert et al. (2018) and Wolf et al. (2017),
the established LUR models contained at least one traffic-
related predictor variable in buffer sizes ranging from 50 to
3000 m. Traffic emission is a major source of air pollution
in urban areas of the TKMA (Lee et al., 2014; Wu et al.,
2017). For instance, it was reported that gasoline and diesel
vehicle emissions contributed approximately half of PM2.5
concentrations in Taipei City based on source apportionment
analysis (Ho et al., 2018). Several previous LUR studies se-
lected the population density variable as the final explanatory
variable in their PM2.5 and NO2 LUR models (Ji et al., 2019;
Meng et al., 2015; Rahman et al., 2017). However, it was not
included in our final LUR models. A possible explanation is
that the population density variable is moderately or highly
correlated with the variables (e.g., the area of recreational
land) included in our final LUR models.

As shown in Table 2, PM10 and PM2.5 LUR models in-
cluded predictor variables of both small and large buffer
sizes. The LUR model for PM10 included the area of for-
est land in a buffer size of 300 m, the area of built-up land in
a buffer size of 50 m, the area of recreational land in a buffer

size of 2000 m, the area of transportation land in a buffer size
of 100 m and the area of water body land in a buffer size
of 500 m. The PM2.5 LUR model included the area of trans-
portation land within a 300 m buffer, the area of major roads
within a 100 m buffer, the area of forest land within a 700 m
buffer, the area of recreational land within a 2000 m buffer
and the distance to the nearest major roads. For PM10 and
PM2.5 LUR models, the direction of effect for transportation
land and traffic roads was positive, while the direction of ef-
fect of other predictor variables was negative. Forest and ur-
ban green space land (i.e., recreational land) were included in
both PM10 and PM2.5 LUR models (Table 2). Ji et al. (2019),
Jones et al. (2020) and Miri et al. (2020) included forest land
or urban green space as the predictor variables in their final
city-scale PM LUR models, demonstrating the mitigation ef-
fect of these land-use types on PM concentrations. Chen et
al. (2019) and Jeanjean et al. (2016) reported the effective-
ness of urban green space in mitigating PM pollution. The
water body type of land use reduced PM10 concentrations,
as evidenced by the negative regression coefficient (Table 2).
The water bodies can make PM10 absorb moisture and in-
crease sedimentation. In addition, large areas of water pro-
vide good conditions for the dispersion of air pollutants (Zhu
and Zhou, 2019).

For the NO2 LUR model, the four predictor variables in-
cluded were the area of transportation land in buffer sizes
of 3000 and 50 m, the area of recreational land in a 1000 m
buffer, and the sum of the length of local roads in a 1000 m
buffer. The direction of effect for the recreational land was
negative, while other predictor variables showed a positive
effect (Table 2). The O3 LUR model included predictor vari-
ables with relatively small buffer sizes of less than 700 m.
The three predictor variables were the area of transportation
land in buffer sizes of 700 and 50 m and the area of public
utilization land within a 300 m buffer. The directions of ef-
fect for these three variables were all negative (Table 2). The
traffic-related predictor variables were important variables in
predicting NO2 and O3 concentrations but in different direc-
tions of effect. Consistent with previous studies by De Hoogh
et al. (2016), Eeftens et al. (2016), Lee et al. (2014) and Liu
et al. (2019), the established NO2 LUR model also revealed
the mitigation effect of urban green space (i.e., recreational
land) on NO2 concentration.

A comparison of this study with previous LUR studies
in Taiwan is presented in Table S2. The predictive perfor-
mance of the LUR model for ambient PM10 in this study was
slightly worse than that of Lee et al. (2015), with an R2 value
of 0.87. In addition, the R2 and LOOCV R2 values (0.72
and 0.53, respectively) of the PM2.5 LUR model in this study
were lower than those of Ho et al. (2015) (an R2 value of
0.75 and an LOOCV R2 value of 0.62), Lee et al. (2015) (an
R2 value of 0.95 and an LOOCV R2 value of 0.91) and Wu
et al. (2017) (an R2 value of 0.90 and an LOOCV R2 value
of 0.83) but higher than that of Wu et al. (2018), with an R2

value of 0.66. The NO2 LUR model performed better than

Atmos. Chem. Phys., 21, 5063–5078, 2021 https://doi.org/10.5194/acp-21-5063-2021



Z. Li et al.: Development and intercity transferability of land-use regression models 5069

Table 2. Description of the 2019 annual-average LUR models for ambient PM10, PM2.5, NO2 and O3 in the TKMA.

Air pollutant Variables Coefficient Standard error p VIF Predictive accuracy

PM10 (constant) 38.5 1.4 < 0.001 NA
R2
= 0.80;

RMSE = 2.25;
LOOCV R2

= 0.72;
LOOCV RMSE = 2.83.

LU2_300 −7.71E-05 1.20E-05 < 0.001 1.4
LU5_50 1.01E-03 4.39E-04 0.031 1.3
LU7_2000 −7.06E-06 1.29E-06 < 0.001 1.8
LU3_100 5.33E-04 1.19E-04 < 0.001 1.7
LU4_500 −2.97E-05 9.82E-06 0.006 1.1

PM2.5 (constant) 13.7 1.0 < 0.001 NA
R2
= 0.72;

RMSE = 1.25;
LOOCV R2

= 0.53;
LOOCV RMSE = 1.69.

LU3_300 4.26E-05 1.25E-05 0.002 1.7
R2_100 3.52E-04 1.05E-04 0.003 1.2
LU2_700 −4.65E-06 1.34E-06 0.002 1.6
LU7_2000 −2.20E-06 8.03E-07 0.012 2.2
Dis_Major −5.70E+01 2.69E+01 0.045 1.1

NO2 (constant) 0.70 1.21 0.570 NA
R2
= 0.91;

RMSE = 2.01;
LOOCV R2

= 0.88;
LOOCV RMSE = 2.40.

LU3_3000 1.77E-06 2.80E-07 < 0.001 2.4
LU3_50 2.35E-03 2.68E-04 < 0.001 1.3
LU7_1000 −1.88E-05 3.30E-06 < 0.001 1.5
RL3_1000 4.91E-05 1.55E-05 0.004 2.0

O3 (constant) 44.0 1.7 < 0.001 NA R2
= 0.80;

RMSE = 2.64;
LOOCV R2

= 0.72;
LOOCV RMSE = 3.15.

LU3_700 −2.88E-05 4.00E-06 < 0.001 1.1
LU3_50 −2.00E-03 3.65E-04 < 0.001 1.1
LU6_300 −3.07E-05 1.20E-05 0.018 1.0

LU2_300, LU2_700: the area of forest in buffer sizes of 300 m and 700 m. LU5_50: the area of built-up land in a buffer size of 50 m. LU7_1000 and
LU7_2000: the area of recreational land in buffer sizes of 1000 and 2000 m. LU3_50, LU3_100, LU3_300, LU3_700 and LU3_3000: the area of
transportation land in buffer sizes of 50, 100, 300, 700 and 3000 m. LU4_500: the area of water body in a buffer size of 500 m. R2_100: the area of
major roads in a buffer size of 100 m. Dis_Major: the distance to the nearest major roads. RL3_1000: the length of local roads in a buffer size of
1000 m. LU6_300: the area of public utilization land in a buffer size of 300 m. VIF: the variance inflation factor. LOOCV: leave-one-out
cross-validation. RMSE: root mean square error. NA: not available.

that of Lee et al. (2014) and was comparable to that of Chen
et al. (2020). Hsu et al. (2019) developed an O3 LUR model
for the whole Taiwan region, with an R2 value of 0.74 (Hsu
et al., 2019). Our study established a reasonable LUR model
for ambient O3 in the TKMA with an R2 value of 0.80 and an
LOOCV R2 value of 0.70, which is a relatively high predic-
tive performance. Compared with PM10, PM2.5 and NO2, the
establishment of O3 LUR models has been limited in these
previous Taiwan LUR studies (Table S2) or in most of the
LUR studies in other areas, but it is essential to establish O3
LUR models given that O3 is a toxic photochemical pollu-
tant threatening human health and the ecosystem (Ning et
al., 2020; Yim et al., 2019b).

3.3 Transferability of the city-specific LUR models

The city-specific LUR models for ambient PM10, PM2.5,
NO2 and O3 in Taipei City, New Taipei City and Keelung
City are shown in Tables S3 and S4, respectively. The model
R2 values of the Taipei City PM10, PM2.5, NO2 and O3
LUR models were 0.91, 0.64, 0.89 and 0.76, respectively
(Table S3), while the New Taipei City and Keelung City
PM10, PM2.5, NO2 and O3 LUR models had R2 values of
0.63, 0.65, 0.95 and 0.93, respectively (Table S4). In general,

for each specific air pollutant, the predictive performance
of these city-specific LUR models can be slightly higher or
lower than those of the area-specific LUR models. Figure 3
shows the transferability of LUR models between Taipei City
and New Taipei City and Keelung City. The city-specific
LUR models performed worse in another city area than in
the city where these models were established. For instance,
the transfer-predictive R2 values of the Taipei LUR models
were 0.31, 0.04, 0.62 and 0.56 for predicting ambient PM10,
PM2.5, NO2 and O3 in New Taipei City and Keelung City,
respectively (Fig. 3). These values were substantially lower
than the corresponding R2 values of the Taipei LUR models.
The NO2 LUR models showed good transferability between
the two city areas, with transfer-predictive R2 values higher
than 0.62. However, the PM10, PM2.5 and O3 LUR models
performed poorly when they were transferred between the
two city areas, with transfer-predictive R2 values of < 0.31,
< 0.37 and < 0.56, respectively (Fig. 3). Similar to the pre-
vious studies of Marcon et al. (2015) and Yang et al. (2020),
these results suggested that there may be large uncertainties
in transferring LUR models between cities and even between
nearby cities with similar geographic and urban-design char-
acteristics. The use of novel cost-effective methods (e.g.,
low-cost air quality sensors or a satellite remote-sensing ap-
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Figure 2. A comparison of LUR-predicted concentrations and observed concentrations of the studied air pollutants and the LOOCV-predicted
concentrations and observed concentrations of the studied air pollutants. (a) PM10, (b) PM2.5, (c) NO2 and (d) O3. N is the sample size, and
the solid line is the 1 : 1 line.
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Figure 3. The changes in R2 values for direct transfer of ambient PM10, PM2.5, NO2 and O3 LUR models between Taipei City and New
Taipei City and Keelung City.

proach) is therefore recommended to assess air pollution and
associated population exposure in cities with limited fixed-
site measurement stations.

3.4 Spatial maps

LUR-model-derived air-pollution-spatial-distribution maps
provide valuable and useful air pollutant concentration sur-
faces in the TKMA. In general, there was a good agreement
between LUR-model-based concentration estimates and ob-
servations for PM10, PM2.5, NO2 and O3 (Fig. 4). For PM10
and PM2.5, there were certain differences between LUR-
model-based concentration estimates and observations at the
country park station (Fig. 4). A possible reason for this differ-
ence may be that the kriging interpolation method removed
low-concentration estimates at this small area when the con-
centration estimates at nearby areas were higher.

High concentrations of ambient PM10, PM2.5 and NO2
were predicted in the urban areas of Taipei City, New Taipei
City and Keelung City and along the road network. The es-
timated PM10 and PM2.5 concentrations in urban areas were
around 35.0 to 40.9 µg m−3 and around 12.0 to 17.0 µg m−3,
respectively, whereas the urban areas had NO2 concentra-
tions of around 12.0 to 31.7 ppb (Fig. 4). This spatial-
distribution pattern is understandable given that the traffic-
related predictor variables were included in the final PM10,
PM2.5 and NO2 LUR models. A similar spatial pattern of
PM2.5 concentrations was reported by Wu et al. (2017),

Table 3. Pearson correlation coefficients (PCCs) among the esti-
mated concentrations of ambient PM10, PM2.5, NO2 and O3.

Air pollutant PM10 PM2.5 NO2 O3

PM10 1 0.775∗∗ 0.719∗∗ −0.730∗∗

PM2.5 1 0.761∗∗ −0.775∗∗

NO2 1 −0.920∗∗

O3 1

∗∗ Correlation is significant at the 0.01 level (two-tailed).

which documented that high PM2.5 concentrations were dis-
tributed mainly in the urban areas of the TKMA, and there
were also scattered points of high PM2.5 concentrations in
its outer ring. However, the estimated 2019 annual-average
PM2.5 concentrations in this study were significantly lower
than those for 2006–2012 estimated by Wu et al. (2017).
There was a clear decreasing trend in PM2.5 concentrations
in the whole of Taiwan over the past decade (Ho et al., 2020;
Jung et al., 2018). For example, Jung et al. (2018) reported
that the estimated PM2.5 concentrations declined by 1.7 and
1.6 µg m−3 in the morning and afternoon, respectively, per
year over the whole of Taiwan during the period 2005–2015.
O3 showed a generally opposite spatial-variability pattern
compared with the other three air pollutants, with lower con-
centrations (< about 32.0 ppb) in urban areas than in rural
areas (Fig. 4). A possible explanation for this finding is that
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Figure 4. The spatial distribution of ambient air pollutant concentrations derived from established LUR models. (a) PM10, (b) PM2.5,
(c) NO2 and (d) O3. The colored circles represent the observations from stations.

high concentrations of NO and NO2 in urban areas react with
O3, resulting in a decrease in O3 concentration (Hsu et al.,
2019; Vardoulakis et al., 2011).

Correlations of estimated concentrations of PM10, PM2.5,
NO2 and O3 in the TKMA are shown in Table 3. Consistent
with previous studies by Hoek et al. (2008), Lu et al. (2020),
Vardoulakis et al. (2011) and Wolf et al. (2017), the spatial-
distribution maps revealed high spatial correlations among
the four air pollutants. PM10 concentrations had strong pos-
itive correlations with PM2.5 and NO2, suggesting common
sources of these three air pollutants. In contrast to this, PM10
concentrations were negatively correlated with O3 concentra-
tions, with a Pearson correlation coefficient (PCC) value of
−0.730. Similarly, PM2.5 concentrations had a strong posi-
tive correlation with NO2 concentrations but showed a sig-
nificant negative correlation with O3 concentrations. The
concentrations of NO2 and O3 were negatively correlated
because of the NOx titration effect in urban areas, with a
PCC value of −0.920. Similar findings were reported by
De Hoogh et al. (2018) and Lu et al. (2020).

3.5 Air pollutant exposure estimates for a cohort study

Air pollutant concentrations measured at nearby fixed-site
stations are often used to represent exposures in epidemi-
ological studies (Lin et al., 2016; Shi et al., 2020c), but
the spatial resolution of these estimates is relatively coarse
due to the limited number of sampling stations (Bertazzon
et al., 2015). In recent years, LUR modeling has become
a more widely applied method to estimate air pollution ex-
posures at a fine spatial scale (Lee et al., 2014; Wolf et
al., 2017). Figure S3 shows that there are differences be-
tween LUR-model-based air pollution exposure estimates
and nearby-station measurements at residential locations of
participants in a cohort study conducted in the TKMA. The
average values of the LUR-estimated PM10, PM2.5, NO2 and
O3 exposure concentrations were 36.0 µg m−3, 14.2 µg m−3,
18.0 ppb and 29.2 ppb, respectively, whereas the corre-
sponding nearby-station measurements were 27.7 µg m−3,
13.8 µg m−3, 16.3 ppb and 28.6 ppb, respectively (Table S5).
Compared with LUR-model-based estimates, the nearby-
station measurements underestimated PM10, PM2.5, NO2
and O3 exposures of cohort participants by 8.23 µg m−3,
0.41 µg m−3, 1.73 ppb and 0.60 ppb, respectively (Table S5).
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Figure 5. Box plots of nearby-station air pollutant measurements
and LUR-model-based estimates of air pollutant concentration.
(a) PM10, (b) PM2.5, (c) NO2 and (d) O3. The triangle symbol in
each box is the mean value, the solid line is the median value, the
box extends from the 25th to the 75th percentile, the whiskers (er-
ror bars) below and above the box are the 10th and 90th percentiles,
and the lower and upper cycle symbols are outliers.

In addition, the concentration ranges of LUR-estimated
annual-average PM10 (13.0–45.2 µg m−3), PM2.5 (6.96–
19.9 µg m−3), NO2 (0.70–32.2 ppb) and O3 (17.5–44.0 ppb)
exposure concentrations were larger than those of nearby-
station measurements for PM10 (22.3–40.3 µg m−3), PM2.5
(10.6–21.3 µg m−3), NO2 (2.90–32.2 ppb) and O3 (15.2–
42.2 ppb) (Table S5 and Fig. 5). This indicates that the LUR-
model-based exposure estimates can capture the large spatial
variability in air pollutant exposure among the cohort par-
ticipants. Similar findings have been reported in studies of
Lee et al. (2014) and Marshall et al. (2008). Furthermore, the
LUR-model-based PM10, PM2.5, NO2 and O3 exposure esti-
mates and nearby-station measurements were weakly corre-
lated, with linear regression R2 values ranging from 0.05 for
PM10 to 0.19 for NO2 (Fig. 6). A possible explanation is that
LUR-model-based exposure estimates generally accounted
for neighborhood-scale variations in air pollutant concentra-
tions, while the nearby-station measurements usually only
revealed the urban-scale variability in air pollution (e.g., ur-
ban area versus suburban area versus rural area) (Marshall
et al., 2008). The LUR-model-based exposure estimates and
nearby-station measurements should be further validated if
the air quality measurement data at residential locations of
cohort participants (if not all, at least some of the partici-
pants) are available.

3.6 Limitations

This study is subject to several limitations. First, apart from
the variables used in this study, more predictor variables
(e.g., localized emission data and urban building morphology
data) should be included and tested to develop LUR models.
For example, Wu et al. (2017) and Chen et al. (2020) assessed
the roles of two culturally specific emission sources, Chi-
nese restaurants and temples, on the development of ambient
PM2.5 and NO2 LUR models in Taiwan. More studies should
be conducted to test the influence of different potential pre-
dictor variables on the development of LUR models (Hoek
et al., 2008). Second, like most linear regression techniques,
the supervised forward linear regression method is not pro-
ficient in modeling extreme values (Jones et al., 2020). In
addition, there may be complex and non-linear relationships
between the explanatory variables and air pollutant concen-
trations (Wang et al., 2020). Other types of linear regres-
sion methods (Hoek et al., 2008; Shi et al., 2020b) and the
novel machine learning algorithms (Wang et al., 2020) can be
tested in estimating surface-level air pollutant concentrations
in the further study. Third, the kriging interpolation method
tends to remove air pollutant peak concentrations, resulting
in an underestimation of air pollution exposure at pollution
hot spots. Other spatial-mapping methods should be consid-
ered in further studies. It is recommended that air pollutant
concentrations at residential locations of participants should
be estimated directly for cohort studies. Fourth, there may
be uncertainty in spatial estimations of air pollutant concen-
trations with a limited number of sampling stations. Further
studies are warranted to evaluate the influence of the number
of sampling stations and their spatial distributions on the de-
velopment of LUR models and the air pollution spatial maps.

4 Conclusions

Following standard development procedures, the annual-
average LUR models of ambient PM10, PM2.5, NO2 and
O3 were established in the TKMA of northern Taiwan using
only data from the routine monitoring network. These LUR
models were reasonable, based on the evaluation metrics of
Cook’s distance, VIF, Moran’s I and p values. The R2 val-
ues of the LUR models for ambient PM10, PM2.5, NO2 and
O3 were 0.80, 0.72, 0.91 and 0.80, respectively. The traffic-
related predictor variables were the major explanatory factors
in the LUR models for all the studied air pollutants.

The predictive performance varied greatly among air pol-
lutants in examining the transferability of city-specific LUR
models between New Taipei City and Keelung City and
Taipei City, with relatively high transfer-predictive R2 values
for NO2. Therefore, this study highlights that the established
LUR models in a city area can result in a large estimation
bias when applied to another nearby city area with similar
geographic and urbanization conditions. The transferability
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Figure 6. The linear regression of nearby-station air pollutant measurements and LUR-model-based air pollutant concentration estimates.
(a) PM10, (b) PM2.5, (c) NO2 and (d) O3.

may even be uncertain in a city with complex terrain (Yim
et al., 2007, 2014). It is necessary to conduct more studies
to evaluate and improve the intercity transferability of LUR
models.

The spatial-distribution maps of the four air pollutants
showed that the developed LUR models are reasonable in
modeling the spatial variabilities in air pollution. Ambient
PM10, PM2.5 and NO2 shared similar spatial variations, with
relatively high concentrations in urban areas and along the
road network. Ambient O3 presented a generally opposite
spatial variability compared with PM10, PM2.5 and NO2.
These estimated air pollution concentration surfaces provide
information for the management of air pollution and expo-
sure estimates for epidemiological studies. Compared with
nearby-station measurements, the LUR-model-based con-
centration estimates captured a wider range of exposure to
PM10, PM2.5, NO2 and O3 for participants in a cohort study
in the TKMA. Further studies should pay more attention
to utilizing other data sources (e.g., satellite remote-sensing
data) with comprehensive spatiotemporal coverage to vali-
date the LUR-model-based estimations of air pollutant con-
centrations.
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