Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2491-2021
https://doi.org/10.5194/acp-21-2491-2021
Research article
 | 
19 Feb 2021
Research article |  | 19 Feb 2021

Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing

Xiaoyan Wang, Renhe Zhang, Yanke Tan, and Wei Yu

Related authors

Effects of atmospheric circulations on the interannual variation in PM2.5 concentrations over the Beijing–Tianjin–Hebei region in 2013–2018
Xiaoyan Wang and Renhe Zhang
Atmos. Chem. Phys., 20, 7667–7682, https://doi.org/10.5194/acp-20-7667-2020,https://doi.org/10.5194/acp-20-7667-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024,https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024,https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement​​​​​​​
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024,https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024,https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024,https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary

Cited articles

Air pollution targeted in 28 cities, available at: http://www.chinadaily.com.cn/china/2017-08/26/content_31131288.htm (last access: 4 August 2020), 2017. 
Bi, J., Huang, J., Hu, Z., Holben, B., and Guo, Z.: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013, J. Geophys. Res.-Atmos., 119, 9884–9900, 2014. 
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, 2017. 
Cai, W., Xu, X., Cheng, X., Wei, F., Qiu, X., and Zhu, W.: Impact of “blocking” structure in the troposphere on the wintertime persistent heavy air pollution in northern China, Sci. Total Environ., 741, 140325, https://doi.org/10.1016/j.scitotenv.2020.140325, 2020. 
Cavazos, T.: Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans, J. Clim., 13, 1718–1732, 2000. 
Download
Short summary
The physical mechanisms of synoptic patterns affecting the decay process of air pollution episodes are investigated in this work. Three dominant circulation patterns are identified, which usually decrease the ambient PM2.5 concentrations by 27%–41% after they arrive around Beijing. Emission reductions led to a 4.3–5.7 μg (m3 yr-1)-1 decrease in PM2.5 concentrations around Beijing during 2014 to 2020.
Altmetrics
Final-revised paper
Preprint