Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the southeast Atlantic region
Alexandre Siméon
CORRESPONDING AUTHOR
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Fabien Waquet
CORRESPONDING AUTHOR
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Jean-Christophe Péré
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Fabrice Ducos
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
François Thieuleux
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Fanny Peers
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Solène Turquety
LMD/IPSL, Sorbonne Université, ENS, PSL Université, École Polytechnique, Institut Polytechnique de Paris, CNRS, Paris, France
Isabelle Chiapello
Université de Lille, CNRS, UMR 8518, LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Related authors
No articles found.
Mégane Ventura, Fabien Waquet, Isabelle Chiapello, Gérard Brogniez, Frédéric Parol, Frédérique Auriol, Rodrigue Loisil, Cyril Delegove, Luc Blarel, Oleg Dubovik, Marc Mallet, Cyrille Flamant, and Paola Formenti
Atmos. Meas. Tech., 18, 4005–4024, https://doi.org/10.5194/amt-18-4005-2025, https://doi.org/10.5194/amt-18-4005-2025, 2025
Short summary
Short summary
Biomass-burning aerosols (BBAs) from Central Africa are transported above stratocumulus clouds. The absorption of solar energy by aerosols induces warming, altering the cloud dynamics. We developed an approach that combines polarimeter and lidar to quantify this. This methodology is assessed during the AEROCLO-sA (AErosol RadiatiOn and CLOud in Southern Africa) campaign. To validate it, we used irradiance measurements acquired during aircraft spiral descents. A major perspective is the generalization of this method to the global level.
Maria Fernanda Sanchez-Barrero, Philippe Goloub, Luc Blarel, Ioana Elisabeta Popovici, Benjamin Torres, Gaël Dubois, Thierry Podvin, Fabrice Ducos, Romain de Filippi, Michaël Sicard, Viviane Bout Roumazeilles, and Charlotte Skonieczny
EGUsphere, https://doi.org/10.5194/egusphere-2025-3481, https://doi.org/10.5194/egusphere-2025-3481, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The TRANSAMA ship-based campaign (April–May 2023) aboard Marion Dufresne II investigated aerosols from La Réunion to Barbados using photometers and lidar. Observations revealed clean conditions over the South Atlantic, with thin transported aerosol plumes from Southern Africa. Clouds were detected in 53 % of lidar profiles with higher occurrence in the first 2 km. Results highlight aerosol-cloud interactions over remote oceans and support the development of mobile lidar-photometer systems.
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2822, https://doi.org/10.5194/egusphere-2025-2822, 2025
Short summary
Short summary
We developed a new method to automatically identify types of particles in the air, such as smoke, dust, or pollution, using a specialized laser system. This helps monitor air quality more efficiently and in greater detail. Our method uses real data collected over three years in northern France and can detect changes caused by weather conditions. It offers a faster and more accurate way to understand what is in the air we breathe.
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
Atmos. Chem. Phys., 25, 6787–6821, https://doi.org/10.5194/acp-25-6787-2025, https://doi.org/10.5194/acp-25-6787-2025, 2025
Short summary
Short summary
Our study retrieved dust aerosol microphysical properties from lidar measurements using different scattering models. Numeric simulations and real data applications revealed the importance of considering depolarization measurements and the superiority of the irregular–hexahedral model in the retrieval of dust aerosols from lidar measurements.
Antoine Ehret, Solène Turquety, Maya George, Juliette Hadji-Lazaro, and Cathy Clerbaux
Atmos. Chem. Phys., 25, 6365–6394, https://doi.org/10.5194/acp-25-6365-2025, https://doi.org/10.5194/acp-25-6365-2025, 2025
Short summary
Short summary
Biomass burning has a considerable effect on the chemical composition of the atmosphere and climate, due to the emission of trace gases and aerosols. We examine the relationship between fire variability and the values of carbon monoxide and aerosol optical depth observed by satellites. The observed increase in wildfires has led to a corresponding rise in the mean and extreme values of carbon monoxide and aerosol optical depth during the summer and early autumn across the Northern Hemisphere.
Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, and Véronique Riffault
Atmos. Chem. Phys., 25, 1307–1331, https://doi.org/10.5194/acp-25-1307-2025, https://doi.org/10.5194/acp-25-1307-2025, 2025
Short summary
Short summary
The ALADIN regional climate model at 12.5 km resolution allows us to study the evolution of surface solar radiation (SSR) and key associated atmospheric parameters. Over northern France and Benelux, influenced by anthropogenic aerosols and cloudy conditions, regional evaluation of recent hindcast simulations shows satisfying results and high spatial variability. Future SSR evolution by the end of the century for two contrasting CMIP6 scenarios highlights large decreases in SSR for SSP3-7.0.
Huihui Wu, Fanny Peers, Jonathan W. Taylor, Chenjie Yu, Steven J. Abel, Paul A. Barrett, Jamie Trembath, Keith Bower, Jim M. Haywood, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-3975, https://doi.org/10.5194/egusphere-2024-3975, 2025
Short summary
Short summary
This study investigates the transport history of African Biomass-Burning aerosols (BBAs) over the southeast Atlantic (SEA), and the relationship between transported BBAs and clouds around Ascension Island using in-situ airborne measurements. The work provides critical simplified parameterizations of aerosol-cloud interaction for improving the evaluation of radiative forcing over the SEA. It also identifies key entrainment regions for understanding the vertical transport process of African BBAs.
Gabriel Chesnoiu, Nicolas Ferlay, Isabelle Chiapello, Frédérique Auriol, Diane Catalfamo, Mathieu Compiègne, Thierry Elias, and Isabelle Jankowiak
Atmos. Chem. Phys., 24, 12375–12407, https://doi.org/10.5194/acp-24-12375-2024, https://doi.org/10.5194/acp-24-12375-2024, 2024
Short summary
Short summary
The measured ground-based surface solar irradiance variability and its sensitivity to scene parameters are analysed with a filtering of sky conditions at a given site. Its multivariate analysis is applied to observed trends over 2010–2022. The recorded values show, in addition to the dominant effects of cloud occurrence, the variable effects of aerosol and geometry. Clear-sun-with-cloud situations are highlighted by SSI levels close to those of aerosol- and cloud-free situations.
Perla Alalam, Fabrice Ducos, and Hervé Herbin
Atmos. Chem. Phys., 24, 12277–12294, https://doi.org/10.5194/acp-24-12277-2024, https://doi.org/10.5194/acp-24-12277-2024, 2024
Short summary
Short summary
This study dives into the impact of mineral dust laboratory complex refractive indices (CRIs) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using CRIs obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate.
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech., 17, 4041–4063, https://doi.org/10.5194/amt-17-4041-2024, https://doi.org/10.5194/amt-17-4041-2024, 2024
Short summary
Short summary
In the solar energy application field, it is key to simulate solar resources anywhere on the globe. We conceived the Solar Resource estimate (SolaRes) tool to provide precise and accurate estimates of solar resources for any solar plant technology. We present the validation of SolaRes by comparing estimates with measurements made on two ground-based platforms in northern France for 2 years at 1 min resolution. Validation is done in clear-sky conditions where aerosols are the main factors.
Raphaël Peroni, Céline Cornet, Olivier Pujol, Guillaume Penide, Clémence Pierangelo, and François Thieuleux
EGUsphere, https://doi.org/10.5194/egusphere-2024-1560, https://doi.org/10.5194/egusphere-2024-1560, 2024
Preprint withdrawn
Short summary
Short summary
A new retrieval algorithm to measure integrated water vapor content above clouds using shortwave infrared (SWIR) observations has been developed and evaluated through both idealized and realistic atmospheric profiles. For the latter, the algorithm shows a positive bias in retrieving water vapor content above low/mid-level clouds, with an error margin of about 2.6 kg.m-2.
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024, https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Short summary
This paper focuses on the use of fluorescence to study aerosols with lidar. An innovative method for aerosol hygroscopic growth study using fluorescence is presented. The paper presents case studies to showcase the effectiveness and potential of the proposed approach. These advancements will contribute to better understanding the interactions between aerosols and water vapor, with future work expected to be dedicated to aerosol–cloud interaction.
Alejandra Velazquez-Garcia, Joel F. de Brito, Suzanne Crumeyrolle, Isabelle Chiapello, and Véronique Riffault
Aerosol Research, 2, 107–122, https://doi.org/10.5194/ar-2-107-2024, https://doi.org/10.5194/ar-2-107-2024, 2024
Short summary
Short summary
Multi-annual in situ observations were combined with back trajectory and emissions inventories to study black and brown carbon (BC, BrC) sources in the north of France. Results show BC to be mainly originated from vehicular traffic (31 %), shipping (25 %), and residential heating (21 %). Also, a significant decrease of the BrC component from residential heating is observed after 24 h of atmospheric aging. These results should lead to better climate and air pollution mitigation strategies.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Abhinna K. Behera, Marie Boichu, François Thieuleux, Nicolas Henriot, and Souichiro Hioki
EGUsphere, https://doi.org/10.5194/egusphere-2023-2545, https://doi.org/10.5194/egusphere-2023-2545, 2023
Preprint archived
Short summary
Short summary
Volcanic eruptions release sulfur dioxide (SO2), affecting air quality, ecosystems, and aviation. Current global observations lack high temporal-resolution quantitative information, which limits our understanding of volcanic SO2 emissions and their impacts. This study uses advanced satellite data and inverse modeling to track and comprehend emissions from the 2018 Ambrym eruption, the world's leading SO2 emitter. It enhances our ability to effectively monitor and respond to volcanic activity.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Short summary
This paper presents numerical simulations using two regional climate models to study the impact of biomass fire plumes from central Africa on the radiative balance of this region. The results indicate that biomass fires can either warm the regional climate when they are located above low clouds or cool it when they are located above land. They can also alter sea and land surface temperatures by decreasing solar radiation at the surface. Finally, they can also modify the atmospheric dynamics.
Cited articles
Abel, S. J., Haywood, J. M., Highwood, E. J., Li, J., and Buseck, P. R.: Evolution
of biomass burning aerosol properties from an agricultural fire in southern
Africa, Geophys. Res. Lett., 30, 1783, https://doi.org/10.1029/2003GL017342, 2003.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown Carbon
Spheres in East Asian Outflow and Their Optical Properties, Science, 321,
833–836, https://doi.org/10.1126/science.1155296, 2008.
Allen, D. J., Kasibhatla, P., Thompson, A. M., Rood, R. B., Doddridge, B.
G., Pickering, K. E., Hudson, R. D., and Lin, S.-J.: Transport-induced
interannual variability of carbon monoxide determined using a chemistry and
transport model, J. Geophys. Res.-Atmos., 101, 28655–28669,
https://doi.org/10.1029/96JD02984, 1996.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Ångström, A.: On the Atmospheric Transmission of Sun Radiation and
on Dust in the Air, Geogr. Ann. A, 11, 156–166,
https://doi.org/10.1080/20014422.1929.11880498, 1929.
Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225, https://doi.org/10.5194/acp-11-215-2011, 2011.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and
Turekian, K. K.: Transport and residence times of tropospheric aerosols
inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res.-Atmos., 98, 20573–20586, https://doi.org/10.1029/93JD02456, 1993.
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007.
Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Intergovernmental Panel on Climate Change, Clouds and aerosols, in: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Cahoon, D. R., Stocks, B. J., Levine, J. S., Cofer, W. R., and O'Neill, K.
P.: Seasonal distribution of African savanna fires, Nature, 359, 812–815,
https://doi.org/10.1038/359812a0, 1992.
Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and
Coe, H.: Aging of biomass burning aerosols over West Africa: Aircraft
measurements of chemical composition, microphysical properties, and emission
ratios, J. Geophys. Res.-Atmos., 113, D00C15,
https://doi.org/10.1029/2008JD009845, 2008.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Chen, C., Dubovik, O., Henze, D. K., Lapyonak, T., Chin, M., Ducos, F., Litvinov, P., Huang, X., and Li, L.: Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm, Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, 2018.
Chen, C., Dubovik, O., Henze, D. K., Chin, M., Lapyonok, T., Schuster, G. L., Ducos, F., Fuertes, D., Litvinov, P., Li, L., Lopatin, A., Hu, Q., and Torres, B.: Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, 2019.
Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A.,
Ducos, F., Derimian, Y., Herman, M., Tanré, D., Remer, L. A., Lyapustin,
A., Sayer, A. M., Levy, R. C., Hsu, N. C., Descloitres, J., Li, L., Torres,
B., Karol, Y., Herrera, M., Herreras, M., Aspetsberger, M., Wanzenboeck, M.,
Bindreiter, L., Marth, D., Hangler, A., and Federspiel, C.: Validation of
GRASP algorithm product from POLDER/PARASOL data and assessment of
multi-angular polarimetry potential for aerosol monitoring, Earth Syst. Sci.
Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, 2020.
Chin, M., Savoie, D. L., Huebert, B. J., Bandy, A. R., Thornton, D. C.,
Bates, T. S., Quinn, P. K., Saltzman, E. S., and Bruyn, W. J. D.:
Atmospheric sulfur cycle simulated in the global model GOCART: Comparison
with field observations and regional budgets, J. Geophys. Res.-Atmos.,
105, 24689–24712, https://doi.org/10.1029/2000JD900385, 2000a.
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.:
Atmospheric sulfur cycle simulated in the global model GOCART: Model
description and global properties, J. Geophys. Res.-Atmos., 105,
24671–24687, https://doi.org/10.1029/2000JD900384, 2000b.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
Aerosol Optical Thickness from the GOCART Model and Comparisons with
Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59,
461–483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
Chou, M.-D. and Suarez, M. J.: An efficient thermal infrared radiation parameterization for use in general circulation models, 92, 1994.
Costantino, L. and Bréon, F.-M.: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations, Atmos. Chem. Phys., 13, 69–88, https://doi.org/10.5194/acp-13-69-2013, 2013.
de Graaf, M., Tilstra, L. G., Wang, P., and Stammes, P.: Retrieval of the
aerosol direct radiative effect over clouds from spaceborne spectrometry, J.
Geophys. Res.-Atmos., 117, D07207, https://doi.org/10.1029/2011JD017160, 2012.
de Graaf, M., Bellouin, N., Tilstra, L. G., Haywood, J., and Stammes, P.:
Aerosol direct radiative effect of smoke over clouds over the southeast
Atlantic Ocean from 2006 to 2009, Geophys. Res. Lett., 41,
7723–7730, https://doi.org/10.1002/2014GL061103, 2014.
de Graaf, M., Schulte, R., Peers, F., Waquet, F., Tilstra, L. G., and Stammes, P.: Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI–MODIS, Atmos. Chem. Phys., 20, 6707–6723, https://doi.org/10.5194/acp-20-6707-2020, 2020.
Deaconu, L. T., Waquet, F., Josset, D., Ferlay, N., Peers, F., Thieuleux, F., Ducos, F., Pascal, N., Tanré, D., Pelon, J., and Goloub, P.: Consistency of aerosols above clouds characterization from A-Train active and passive measurements, Atmos. Meas. Tech., 10, 3499–3523, https://doi.org/10.5194/amt-10-3499-2017, 2017.
Deaconu, L. T., Ferlay, N., Waquet, F., Peers, F., Thieuleux, F., and Goloub, P.: Satellite inference of water vapour and above-cloud aerosol combined effect on radiative budget and cloud-top processes in the southeastern Atlantic Ocean, Atmos. Chem. Phys., 19, 11613–11634, https://doi.org/10.5194/acp-19-11613-2019, 2019.
Denjean, C., Bourrianne, T., Burnet, F., Mallet, M., Maury, N., Colomb, A., Dominutti, P., Brito, J., Dupuy, R., Sellegri, K., Schwarzenboeck, A., Flamant, C., and Knippertz, P.: Overview of aerosol optical properties over southern West Africa from DACCIWA aircraft measurements, Atmos. Chem. Phys., 20, 4735–4756, https://doi.org/10.5194/acp-20-4735-2020, 2020.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.
D., Tanré, D., and Slutsker, I.: Variability of Absorption and Optical
Properties of Key Aerosol Types Observed in Worldwide Locations, J.
Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F.,
Torres, B., Derimian, Y., Huang, X., Lopatin, A., Chaikovsky, A.,
Aspetsberger, M., and Federspiel, C.: GRASP: a versatile algorithm for
characterizing the atmosphere, SPIE Newsroom, 25, 10.1117, 2–1201408
https://doi.org/10.1117/2.1201408.005558, 2014.
Eck, T. F., Holben, B. N., Reid, J. S., Mukelabai, M. M., Piketh, S. J.,
Torres, O., Jethva, H. T., Hyer, E. J., Ward, D. E., Dubovik, O., Sinyuk,
A., Schafer, J. S., Giles, D. M., Sorokin, M., Smirnov, A., and Slutsker,
I.: A seasonal trend of single scattering albedo in southern African
biomass-burning particles: Implications for satellite products and estimates
of emissions for the world's largest biomass-burning source, J. Geophys.
Res.-Atmos., 118, 6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Emmons, L. K., Arnold, S. R., Monks, S. A., Huijnen, V., Tilmes, S., Law, K. S., Thomas, J. L., Raut, J.-C., Bouarar, I., Turquety, S., Long, Y., Duncan, B., Steenrod, S., Strode, S., Flemming, J., Mao, J., Langner, J., Thompson, A. M., Tarasick, D., Apel, E. C., Blake, D. R., Cohen, R. C., Dibb, J., Diskin, G. S., Fried, A., Hall, S. R., Huey, L. G., Weinheimer, A. J., Wisthaler, A., Mikoviny, T., Nowak, J., Peischl, J., Roberts, J. M., Ryerson, T., Warneke, C., and Helmig, D.: The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, 2015.
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J.
Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant
atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13,
8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Ferlay, N., Thieuleux, F., Cornet, C., Davis, A. B., Dubuisson, P., Ducos,
F., Parol, F., Riédi, J., and Vanbauce, C.: Toward New Inferences about
Cloud Structures from Multidirectional Measurements in the Oxygen A Band:
Middle-of-Cloud Pressure and Cloud Geometrical Thickness from
POLDER-3/PARASOL, J. Appl. Meteorol. Clim., 49, 2492–2507,
https://doi.org/10.1175/2010JAMC2550.1, 2010.
Flamant, C., Knippertz, P., Fink, A. H., Akpo, A., Brooks, B., Chiu, C. J.,
Coe, H., Danuor, S., Evans, M., Jegede, O., Kalthoff, N., Konaré, A.,
Liousse, C., Lohou, F., Mari, C., Schlager, H., Schwarzenboeck, A., Adler,
B., Amekudzi, L., Aryee, J., Ayoola, M., Batenburg, A. M., Bessardon, G.,
Borrmann, S., Brito, J., Bower, K., Burnet, F., Catoire, V., Colomb, A.,
Denjean, C., Fosu-Amankwah, K., Hill, P. G., Lee, J., Lothon, M., Maranan,
M., Marsham, J., Meynadier, R., Ngamini, J.-B., Rosenberg, P., Sauer, D.,
Smith, V., Stratmann, G., Taylor, J. W., Voigt, C., and Yoboué, V.: The
Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field
Campaign: Overview and Research Highlights, B. Am. Meteorol. Soc., 99,
83–104, https://doi.org/10.1175/BAMS-D-16-0256.1, 2017.
Flaounas, E., Kotroni, V., Lagouvardos, K., Klose, M., Flamant, C., and Giannaros, T. M.: Assessing atmospheric dust modelling performance of WRF-Chem over the semi-arid and arid regions around the Mediterranean, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2016-307, 2016.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and
Andreae, M. O.: Inorganic and carbonaceous aerosols during the Southern
African Regional Science Initiative (SAFARI 2000) experiment: Chemical
characteristics, physical properties, and emission data for smoke from
African biomass burning, J. Geophys. Res.-Atmos., 108, 8488,
https://doi.org/10.1029/2002JD002408, 2003.
Formenti, P., D'Anna, B., Flamant, C., Mallet, M., Piketh, S. J.,
Schepanski, K., Waquet, F., Auriol, F., Brogniez, G., Burnet, F.,
Chaboureau, J.-P., Chauvigné, A., Chazette, P., Denjean, C., Desboeufs,
K., Doussin, J.-F., Elguindi, N., Feuerstein, S., Gaetani, M., Giorio, C.,
Klopper, D., Mallet, M. D., Nabat, P., Monod, A., Solmon, F., Namwoonde, A.,
Chikwililwa, C., Mushi, R., Welton, E. J., and Holben, B.: The Aerosols,
Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview,
Illustrative Observations, and Way Forward, B. Am. Meteorol. Soc., 100,
1277–1298, https://doi.org/10.1175/BAMS-D-17-0278.1, 2019.
Freitas, S. R., Longo, K. M., and Andreae, M. O.: Impact of including the
plume rise of vegetation fires in numerical simulations of associated
atmospheric pollutants, Geophys. Res. Lett., 33, L17808,
https://doi.org/10.1029/2006GL026608, 2006.
Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385–3398, https://doi.org/10.5194/acp-7-3385-2007, 2007.
Fuchs, N., Daisley, R., Fuchs, M., Davies, C., and Straumanis, M.: The
mechanics of aerosols, Phys. Today, 18, 73, https://doi.org/10.1063/1.3047354, 1965.
Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chapman, E.,
Zhang, Y., and Leung, R.: Evaluation of aerosol direct radiative forcing in
MIRAGE, J. Geophys. Res.-Atmos., 106, 5295–5316,
https://doi.org/10.1029/2000JD900502, 2001.
Giglio, L., Kendall, J. D., and Mack, R.: A multi-year active fire dataset
for the tropics derived from the TRMM VIRS, Int. J. Remote Sens., 24,
4505–4525, https://doi.org/10.1080/0143116031000070283, 2003.
Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P.: Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957–974, https://doi.org/10.5194/acp-6-957-2006, 2006.
Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, 7, 1171–1186, https://doi.org/10.5194/bg-7-1171-2010, 2010.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273,
https://doi.org/10.1029/2000JD000053, 2001.
Giorgi, F. and Chameides, W. L.: Rainout lifetimes of highly soluble
aerosols and gases as inferred from simulations with a general circulation
model, J. Geophys. Res.-Atmos., 91, 14367–14376,
https://doi.org/10.1029/JD091iD13p14367, 1986.
Gordon, H., Field, P. R., Abel, S. J., Dalvi, M., Grosvenor, D. P., Hill, A. A., Johnson, B. T., Miltenberger, A. K., Yoshioka, M., and Carslaw, K. S.: Large simulated radiative effects of smoke in the south-east Atlantic, Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, 2018.
Grasp Open: Homepage, available at: https://www.grasp-open.com, last access: 30 November 2021.
Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus
Parameterizations, Mon. Weather Rev., 121, 764–787,
https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Grell, G. A. and Baklanov, A.: Integrated modeling for forecasting weather and
air quality: A call for fully coupled approaches, Atmos. Environ., 45,
6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 38-1-38-4,
https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A., Knoche, R., Peckham, S. E., and McKeen, S. A.: Online versus
offline air quality modeling on cloud-resolving scales, Geophys. Res. Lett.,
31, L16117, https://doi.org/10.1029/2004GL020175, 2004.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Grell, G. A., Freitas, S. R., Stuefer, M., and Fast, J.: Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts, Atmos. Chem. Phys., 11, 5289–5303, https://doi.org/10.5194/acp-11-5289-2011, 2011.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res.-Atmos., 102, 6831–6864,
https://doi.org/10.1029/96JD03436, 1997.
Haslett, S. L., Taylor, J. W., Deetz, K., Vogel, B., Babić, K., Kalthoff, N., Wieser, A., Dione, C., Lohou, F., Brito, J., Dupuy, R., Schwarzenboeck, A., Zieger, P., and Coe, H.: The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa, Atmos. Chem. Phys., 19, 1505–1520, https://doi.org/10.5194/acp-19-1505-2019, 2019.
Haywood, J. M., Osborne, S. R., Francis, P. N., Keil, A., Formenti, P.,
Andreae, M. O., and Kaye, P. H.: The mean physical and optical properties of
regional haze dominated by biomass burning aerosol measured from the C-130
aircraft during SAFARI 2000, J. Geophys. Res.-Atmos., 108, 8473,
https://doi.org/10.1029/2002JD002226, 2003.
Haywood, J. M., Abel, S. J., Barrett, P. A., Bellouin, N., Blyth, A., Bower, K. N., Brooks, M., Carslaw, K., Che, H., Coe, H., Cotterell, M. I., Crawford, I., Cui, Z., Davies, N., Dingley, B., Field, P., Formenti, P., Gordon, H., de Graaf, M., Herbert, R., Johnson, B., Jones, A. C., Langridge, J. M., Malavelle, F., Partridge, D. G., Peers, F., Redemann, J., Stier, P., Szpek, K., Taylor, J. W., Watson-Parris, D., Wood, R., Wu, H., and Zuidema, P.: The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign, Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, 2021.
Helfand, H. M. and Labraga, J. C.: Design of a Nonsingular Level 2.5
Second-Order Closure Model for the Prediction of Atmospheric Turbulence, J.
Atmos. Sci., 45, 113–132,
https://doi.org/10.1175/1520-0469(1988)045<0113:DOANLS>2.0.CO;2, 1988.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006.
Hoffer, A., Tóth, A., Nyirõ-Kósa, I., Pósfai, M., and
Gelencsér, A.: Light absorption properties of laboratory-generated tar
ball particles, Atmos. Chem. Phys., 16, 239–246,
https://doi.org/10.5194/acp-16-239-2016, 2016.
Hoffer, A., Tóth, A., Pósfai, M., Chung, C. E., and
Gelencsér, A.: Brown carbon absorption in the red and near-infrared
spectral region, Atmospheric Meas. Tech., 10, 2353–2359,
https://doi.org/10.5194/amt-10-2353-2017, 2017.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with
an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner,
D., Yang, P., Nasiri, S. L., Baum, B., Holz, R., Sun, W., Liu, Z., Wang, Z.,
Young, S., Stamnes, K., Huang, J., and Kuehn, R.: CALIPSO/CALIOP Cloud Phase
Discrimination Algorithm, J. Atmos. Ocean. Tech., 26, 2293–2309,
https://doi.org/10.1175/2009JTECHA1280.1, 2009.
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J.,
Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T.,
Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L.,
Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R.,
Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura,
T., and Zender, C. S.: Global dust model intercomparison in AeroCom phase I,
Atmos. Chem. Phys., 11, 7781–7816,
https://doi.org/10.5194/acp-11-7781-2011, 2011.
Johnson, B. T., Haywood, J. M., Langridge, J. M., Darbyshire, E., Morgan, W. T., Szpek, K., Brooke, J. K., Marenco, F., Coe, H., Artaxo, P., Longo, K. M., Mulcahy, J. P., Mann, G. W., Dalvi, M., and Bellouin, N.: Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657–14685, https://doi.org/10.5194/acp-16-14657-2016, 2016.
Jones, S., Creighton, G., Kuchera, E., George, K., and Elliott, A.: Adapting WRF-CHEM GOCART for Fine-Scale Dust Forecasting, AGU Fall Meeting Abstracts, San Francisco, California, USA, 13–17 December 2010, NH53A-1258, 2010.
Jones, S. L., Adams-Selin, R., Hunt, E. D., Creighton, G. A., and Cetola, J. D.: Update on modifications to WRF-CHEM GOCART for fine-scale dust forecasting at AFWA, AGU Fall Meeting, San Francisco, California, USA, 3–7 December 2012, A33D-0188, 2012.
Kacarab, M., Thornhill, K. L., Dobracki, A., Howell, S. G., O'Brien, J. R., Freitag, S., Poellot, M. R., Wood, R., Zuidema, P., Redemann, J., and Nenes, A.: Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region, Atmos. Chem. Phys., 20, 3029–3040, https://doi.org/10.5194/acp-20-3029-2020, 2020.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N.,
Jones, L., Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and
van der Werf, G. R.: Biomass burning emissions estimated with a global fire
assimilation system based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40 Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning
aerosol particles during SAFARI 2000: A case study based on measured aerosol
and cloud properties, J. Geophys. Res.-Atmos., 108, 8467,
https://doi.org/10.1029/2002JD002315, 2003.
Kirchstetter, T. W., Novakov, T., Hobbs, P. V., and Magi, B.: Airborne
measurements of carbonaceous aerosols in southern Africa during the dry
biomass burning season, J. Geophys. Res.-Atmos., 108, 8476,
https://doi.org/10.1029/2002JD002171, 2003.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the
spectral dependence of light absorption by aerosols is affected by organic
carbon, J. Geophys. Res.-Atmos., 109, D21208,
https://doi.org/10.1029/2004JD004999, 2004.
Knippertz, P., Fink, A. H., Deroubaix, A., Morris, E., Tocquer, F., Evans, M. J., Flamant, C., Gaetani, M., Lavaysse, C., Mari, C., Marsham, J. H., Meynadier, R., Affo-Dogo, A., Bahaga, T., Brosse, F., Deetz, K., Guebsi, R., Latifou, I., Maranan, M., Rosenberg, P. D., and Schlueter, A.: A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016, Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017, 2017.
Koffi, B., Schulz, M., Bréon, F.-M., Griesfeller, J., Winker, D.,
Balkanski, Y., Bauer, S., Berntsen, T., Chin, M., Collins, W. D., Dentener,
F., Diehl, T., Easter, R., Ghan, S., Ginoux, P., Gong, S., Horowitz, L. W.,
Iversen, T., Kirkevåg, A., Koch, D., Krol, M., Myhre, G., Stier, P., and
Takemura, T.: Application of the CALIOP layer product to evaluate the
vertical distribution of aerosols estimated by global models: AeroCom phase
I results, J. Geophys. Res.-Atmos., 117, D10201,
https://doi.org/10.1029/2011JD016858, 2012.
Koffi, B., Schulz, M., Bréon, F.-M., Dentener, F., Steensen, B. M.,
Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T., Bian, H., Chin, M., Diehl, T., Easter, R., Ghan, S.,
Hauglustaine, D. A., Iversen, T., Kirkevåg, A., Liu, X., Lohmann, U.,
Myhre, G., Rasch, P., Seland, Ø., Skeie, R. B., Steenrod, S. D., Stier,
P., Tackett, J., Takemura, T., Tsigaridis, K., Vuolo, M. R., Yoon, J., and
Zhang, K.: Evaluation of the aerosol vertical distribution in global aerosol
models through comparison against CALIOP measurements: AeroCom phase II
results, J. Geophys. Res.-Atmos., 121, 7254–7283,
https://doi.org/10.1002/2015JD024639, 2016.
Laing, J. R., Jaffe, D. A., and Hee, J. R.: Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 16, 15185–15197, https://doi.org/10.5194/acp-16-15185-2016, 2016.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Lassman, W., Ford, B., Gan, R. W., Pfister, G., Magzamen, S., Fischer, E. V., and Pierce, J. R.: Spatial and temporal estimates of population exposure
to wildfire smoke during the Washington state 2012 wildfire season using
blended model, satellite, and in situ data, GeoHealth, 1, 106–121,
https://doi.org/10.1002/2017GH000049, 2017.
Leahy, L. V., Anderson, T. L., Eck, T. F., and Bergstrom, R. W.: A synthesis
of single scattering albedo of biomass burning aerosol over southern Africa
during SAFARI 2000, Geophys. Res. Lett., 34, L12814,
https://doi.org/10.1029/2007GL029697, 2007.
Lee, J., Hsu, N. C., Bettenhausen, C., Sayer, A. M., Seftor, C. J., Jeong,
M.-J., Tsay, S.-C., Welton, E. J., Wang, S.-H., and Chen, W.-N.: Evaluating
the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use
of Multiple Satellite Sensors over Southeast Asia, Aerosol Air Qual. Res.,
16, 2831–2842, https://doi.org/10.4209/aaqr.2015.08.0506, 2016.
Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, 2019.
Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2, 1996.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the
Snow Field in a Cloud Model, J. Clim. Appl. Meteorol., 22, 1065–1092,
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Lindesay, J. A., Andreae, M. O., Goldammer, J. G., Harris, G., Annegarn, H.
J., Garstang, M., Scholes, R. J., and van Wilgen, B. W.: International
geosphere-biosphere programme/international global atmospheric chemistry
SAFARI-92 field experiment: Background and overview, J. Geophys. Res.-Atmos., 101, 23521–23530, https://doi.org/10.1029/96JD01512, 1996.
Lingard, J., Labrador, L., Brookes, D., and Fraser, A.: Statistical evaluation of the input meteorological data used for the UK air quality forecast (UK-AQF), Ricardo-AEA Ltd., Harwell, UK, RICARDO-AEA/R/3388, 34 pp., 2013.
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., Akpo, A., Bedou, M., Castéra, P., Dungall, L., Gardrat, E., Granier, C., Konaré, A., Malavelle, F., Mariscal, A., Mieville, A., Rosset, R., Serça, D., Solmon, F., Tummon, F., Assamoi, E., Yoboué, V., and Van Velthoven, P.: Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols, Atmos. Chem. Phys., 10, 9631–9646, https://doi.org/10.5194/acp-10-9631-2010, 2010.
Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption
Ångström exponent of black carbon: from numerical aspects,
Atmos. Chem. Phys., 18, 6259–6273,
https://doi.org/10.5194/acp-18-6259-2018, 2018.
Liu, F., Yon, J., Fuentes, A., Lobo, P., Smallwood, G. J., and Corbin, J.
C.: Review of recent literature on the light absorption properties of black
carbon: Refractive index, mass absorption cross section, and absorption
function, Aerosol Sci. Tech., 54, 33–51,
https://doi.org/10.1080/02786826.2019.1676878, 2020.
Lu, Z., Liu, X., Zhang, Z., Zhao, C., Meyer, K., Rajapakshe, C., Wu, C.,
Yang, Z., and Penner, J. E.: Biomass smoke from southern Africa can
significantly enhance the brightness of stratocumulus over the southeastern
Atlantic Ocean, Proc. Natl. Acad. Sci., 115, 2924–2929,
https://doi.org/10.1073/pnas.1713703115, 2018.
Mallet, M., Solmon, F., Nabat, P., Elguindi, N., Waquet, F., Bouniol, D., Sayer, A. M., Meyer, K., Roehrig, R., Michou, M., Zuidema, P., Flamant, C., Redemann, J., and Formenti, P.: Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study, Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, 2020.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1.
Design of a soil-derived dust emission scheme, J. Geophys. Res.-Atmos.,
100, 16415–16430, https://doi.org/10.1029/95JD00690, 1995.
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct
radiative effect of absorbing aerosols overlying marine boundary layer
clouds in the southeast Atlantic using MODIS and CALIOP: ABOVE-CLOUD DARE
FROM MODIS AND CALIOP, J. Geophys. Res.-Atmos., 118, 4801–4815,
https://doi.org/10.1002/jgrd.50449, 2013.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13a, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013a.
Myhre, G., Shindell, D., Bréon, F.-M. , Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013b.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, 2020.
Peckham, S. E.: WRF/Chem version 3.3 user’s guide, Earth System Research Laboratory (U.S.), Global Systems Division, NOAA technical memorandum OAR GSD, 40, available at: https://repository.library.noaa.gov/view/noaa/11119 (last access: 30 November 2021), 2012.
Peers, F., Waquet, F., Cornet, C., Dubuisson, P., Ducos, F., Goloub, P.,
Szczap, F., Tanré, D., and Thieuleux, F.: Absorption of aerosols above
clouds from POLDER/PARASOL measurements and estimation of their direct
radiative effect, Atmos. Chem. Phys., 15, 4179–4196,
https://doi.org/10.5194/acp-15-4179-2015, 2015.
Peers, F., Bellouin, N., Waquet, F., Ducos, F., Goloub, P., Mollard, J.,
Myhre, G., Skeie, R. B., Takemura, T., Tanré, D., Thieuleux, F., and
Zhang, K.: Comparison of aerosol optical properties above clouds between
POLDER and AeroCom models over the South East Atlantic Ocean during the fire
season, Geophys. Res. Lett., 43, 3991–4000,
https://doi.org/10.1002/2016GL068222, 2016.
Peers, F., Francis, P., Fox, C., Abel, S. J., Szpek, K., Cotterell, M. I.,
Davies, N. W., Langridge, J. M., Meyer, K. G., Platnick, S. E., and Haywood,
J. M.: Observation of absorbing aerosols above clouds over the south-east
Atlantic Ocean from the geostationary satellite SEVIRI – Part 1: Method
description and sensitivity, Atmos. Chem. Phys., 19, 9595–9611,
https://doi.org/10.5194/acp-19-9595-2019, 2019.
Peers, F., Francis, P., Abel, S. J., Barrett, P. A., Bower, K. N., Cotterell, M. I., Crawford, I., Davies, N. W., Fox, C., Fox, S., Langridge, J. M., Meyer, K. G., Platnick, S. E., Szpek, K., and Haywood, J. M.: Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign, Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, 2021.
Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K.,
Diskin, G. D., Podolske, J., and Wisthaler, A.: CO source contribution
analysis for California during ARCTAS-CARB, Atmos. Chem. Phys., 11,
7515–7532, https://doi.org/10.5194/acp-11-7515-2011, 2011.
Pistone, K., Redemann, J., Doherty, S., Zuidema, P., Burton, S., Cairns, B.,
Cochrane, S., Ferrare, R., Flynn, C., Freitag, S., Howell, S. G.,
Kacenelenbogen, M., LeBlanc, S., Liu, X., Schmidt, K. S., Sedlacek III, A.
J., Segal-Rozenhaimer, M., Shinozuka, Y., Stamnes, S., Diedenhoven, B., van,
Harten, G. V., and Xu, F.: Intercomparison of biomass burning aerosol
optical properties from in situ and remote-sensing instruments in
ORACLES-2016, Atmos. Chem. Phys., 19, 9181–9208,
https://doi.org/10.5194/acp-19-9181-2019, 2019.
Podgorny, I. A. and Ramanathan, V.: A modeling study of the direct effect of
aerosols over the tropical Indian Ocean, J. Geophys. Res.-Atmos., 106,
24097–24105, https://doi.org/10.1029/2001JD900214, 2001.
Popp, T., De Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klüser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei,
L., North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva,
L., Stebel, K., Stein Zweers, D., Thomas, G., Tilstra, L. G., Vandenbussche,
S., Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European Satellite
Observations (Aerosol_cci), Remote Sens., 8, 421,
https://doi.org/10.3390/rs8050421, 2016.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J.,
Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell,
G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R.,
Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder,
C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.: The Weather Research
and Forecasting Model: Overview, System Efforts, and Future Directions,
B. Am. Meteorol. Soc., 98, 1717–1737,
https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Reddington, C. L., Spracklen, D. V., Artaxo, P., Ridley, D. A., Rizzo, L.
V., and Arana, A.: Analysis of particulate emissions from tropical biomass
burning using a global aerosol model and long-term surface observations,
Atmos. Chem. Phys., 16, 11083–11106, 2016.
Redemann, J., Wood, R., Zuidema, P., Doherty, S. J., Luna, B., LeBlanc, S. E., Diamond, M. S., Shinozuka, Y., Chang, I. Y., Ueyama, R., Pfister, L., Ryoo, J.-M., Dobracki, A. N., da Silva, A. M., Longo, K. M., Kacenelenbogen, M. S., Flynn, C. J., Pistone, K., Knox, N. M., Piketh, S. J., Haywood, J. M., Formenti, P., Mallet, M., Stier, P., Ackerman, A. S., Bauer, S. E., Fridlind, A. M., Carmichael, G. R., Saide, P. E., Ferrada, G. A., Howell, S. G., Freitag, S., Cairns, B., Holben, B. N., Knobelspiesse, K. D., Tanelli, S., L'Ecuyer, T. S., Dzambo, A. M., Sy, O. O., McFarquhar, G. M., Poellot, M. R., Gupta, S., O'Brien, J. R., Nenes, A., Kacarab, M., Wong, J. P. S., Small-Griswold, J. D., Thornhill, K. L., Noone, D., Podolske, J. R., Schmidt, K. S., Pilewskie, P., Chen, H., Cochrane, S. P., Sedlacek, A. J., Lang, T. J., Stith, E., Segal-Rozenhaimer, M., Ferrare, R. A., Burton, S. P., Hostetler, C. A., Diner, D. J., Seidel, F. C., Platnick, S. E., Myers, J. S., Meyer, K. G., Spangenberg, D. A., Maring, H., and Gao, L.: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, 2021.
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J.,
Christopher, S. A., Curtis, C. A., Schmidt, C. C., Eleuterio, D. P.,
Richardson, K. A., and Hoffman, J. P.: Global Monitoring and Forecasting of
Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and
Modeling of Burning Emissions (FLAMBE) Program, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2, 144–162,
https://doi.org/10.1109/JSTARS.2009.2027443, 2009.
Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal african biomass burning temporal dynamics, Biogeosciences, 6, 849–866, https://doi.org/10.5194/bg-6-849-2009, 2009.
Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate Effects of
Aerosol-Cloud Interactions, Science, 343, 379–380,
https://doi.org/10.1126/science.1247490, 2014.
Ruellan, S., Cachier, H., Gaudichet, A., Masclet, P., and Lacaux, J.-P.:
Airborne aerosols over central Africa during the Experiment for Regional
Sources and Sinks of Oxidants (EXPRESSO), J. Geophys. Res.-Atmos., 104,
30673–30690, https://doi.org/10.1029/1999JD900804, 1999.
Sakaeda, N., Wood, R., and Rasch, P. J.: Direct and semidirect aerosol
effects of southern African biomass burning aerosol, J. Geophys.-Atmos., 116, D12205, https://doi.org/10.1029/2010JD015540, 2011.
Samset, B. H., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki, N., Koike, M., Oshima, N., Schwarz, J. P., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., Bian, H., Chin, M., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Schulz, M., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, 2014.
Schultz, M. G., Backman, L., Balkanski, Y., Bjoerndalsaeter, S., Brand, R., Burrows, J. P., Dalsoeren, S., Vasconcelos, M., Grodtmann, B., Hauglustaine, D. A., Heil, A., Hoelzemann, J., Isaksen, I. S. A., Kaurola, J., Knorr, W., Ladstaetter-Weissenmayer, A., Mota, B., Oom, D., Pacyna, J., and Wittrock, F.: REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO) - A long-term global modeling study of tropospheric chemistry, Final Report, Max Planck Institute for Meteorology, Reports on Earth System Science, Hamburg, Germany, 48/2007, ISSN 1614-1199, 2007.
Shinozuka, Y., Saide, P. E., Ferrada, G. A., Burton, S. P., Ferrare, R., Doherty, S. J., Gordon, H., Longo, K., Mallet, M., Feng, Y., Wang, Q., Cheng, Y., Dobracki, A., Freitag, S., Howell, S. G., LeBlanc, S., Flynn, C., Segal-Rosenhaimer, M., Pistone, K., Podolske, J. R., Stith, E. J., Bennett, J. R., Carmichael, G. R., da Silva, A., Govindaraju, R., Leung, R., Zhang, Y., Pfister, L., Ryoo, J.-M., Redemann, J., Wood, R., and Zuidema, P.: Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, 2020.
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D., Duda, G., Huang, X., Wang, W., and Powers, G.: A Description of the Advanced Research WRF Version 3, University Corporation for Atmospheric Research, NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH, 2008.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2, https://doi.org/10.5065/D6DZ069T, 2005.
Sorensen, C. M.: Light Scattering by Fractal Aggregates: A Review, Aerosol
Sci. Tech., 35, 648–687, https://doi.org/10.1080/02786820117868, 2001.
Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., Ghan, S., Huneeus, N., Kinne, S., Lin, G., Ma, X., Myhre, G., Penner, J. E., Randles, C. A., Samset, B., Schulz, M., Takemura, T., Yu, F., Yu, H., and Zhou, C.: Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study, Atmos. Chem. Phys., 13, 3245–3270, https://doi.org/10.5194/acp-13-3245-2013, 2013.
Sumlin, B., Heinson, Y., Shetty, N., Pandey, A., Pattison, R., Baker, S.,
Hao, W., and Chakrabarty, R.: UV-Vis-IR Spectral Complex Refractive Indices
and Optical Properties of Brown Carbon Aerosol from Biomass Burning, J. Quant. Spectrosc. RA, 206, 392-398, https://doi.org/10.1016/j.jqsrt.2017.12.009, 2017.
Swap, R. J., Annegarn, H. J., Suttles, J. T., Haywood, J., Helmlinger, M.
C., Hely, C., Hobbs, P. V., Holben, B. N., Ji, J., King, M. D., Landmann,
T., Maenhaut, W., Otter, L., Pak, B., Piketh, S. J., Platnick, S., Privette,
J., Roy, D., Thompson, A. M., Ward, D., and Yokelson, R.: The Southern
African Regional Science Initiative (SAFARI 2000): overview of the dry
season field campaign, S. Afr. J. Sci., 98, 125–130, 2002.
Taylor, J. W., Wu, H., Szpek, K., Bower, K., Crawford, I., Flynn, M. J., Williams, P. I., Dorsey, J., Langridge, J. M., Cotterell, M. I., Fox, C., Davies, N. W., Haywood, J. M., and Coe, H.: Absorption closure in highly aged biomass burning smoke, Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, 2020.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Gayno, G.,
Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model, in: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 1115, 6, 2004.
Thunis, P., Georgieva, E., and Galmarini, S.: A procedure for air quality models benchmarking Version 2, European Commission, Joint Research Centre, Ispra, Italy, 2011.
Turquety, S., Menut, L., Bessagnet, B., Anav, A., Viovy, N., Maignan, F., and Wooster, M.: APIFLAME v1.0: high-resolution fire emission model and application to the Euro-Mediterranean region, Geosci. Model Dev., 7, 587–612, https://doi.org/10.5194/gmd-7-587-2014, 2014.
Vanbauce, C., Cadet, B., and Marchand, R. T.: Comparison of POLDER apparent
and corrected oxygen pressure to ARM/MMCR cloud boundary pressures, Geophys.
Res. Lett., 30, 1212, https://doi.org/10.1029/2002GL016449, 2003.
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, 2014.
Waquet, F., Peers, F., Ducos, F., Goloub, P., Platnick, S., Riedi, J.,
Tanré, D., and Thieuleux, F.: Global analysis of aerosol properties
above clouds, Geophys. Res. Lett., 40, 5809–5814,
https://doi.org/10.1002/2013GL057482, 2013a.
Waquet, F., Cornet, C., Deuzé, J.-L., Dubovik, O., Ducos, F., Goloub,
P., Herman, M., Lapyonok, T., Labonnote, L. C., Riedi, J., Tanré, D.,
Thieuleux, F., and Vanbauce, C.: Retrieval of aerosol microphysical and
optical properties above liquid clouds from POLDER/PARASOL polarization
measurements, Atmos. Meas. Tech., 6, 991–1016,
https://doi.org/10.5194/amt-6-991-2013, 2013b.
Waquet, F., Peers, F., Ducos, F., Thieuleux, F., Deaconu, L. T.,
Chauvigné, A., and Riedi, J.: Aerosols above clouds products from
POLDER/PARASOL satellite observations, AERO-AC products [data set],
https://doi.org/10.25326/82, 2020.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ.,
23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wiedinmyer, C., Akagi, S., Yokelson, R., Emmons, L., Al-Saadi, J., Orlando,
J., and Soja, A.: The Fire INventory from NCAR (FINN): A High Resolution
Global Model to Estimate the Emissions from Open Burning, Geosci. Model
Dev., 625–641, 2011.
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, 2012.
Williams, T. C., Shaddix, C. R., Jensen, K. A., and Suo-Anttila, J. M.:
Measurement of the dimensionless extinction coefficient of soot within
laminar diffusion flames, Int. J. Heat Mass Tran., 50, 1616–1630,
https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.024, 2007.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Wu, H., Taylor, J. W., Szpek, K., Langridge, J. M., Williams, P. I., Flynn, M., Allan, J. D., Abel, S. J., Pitt, J., Cotterell, M. I., Fox, C., Davies, N. W., Haywood, J., and Coe, H.: Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017, Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, 2020.
Zhang, J. and Zuidema, P.: Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic, Atmos. Chem. Phys., 21, 11179–11199, https://doi.org/10.5194/acp-21-11179-2021, 2021.
Zuidema, P., Chang, P., Medeiros, B., Kirtman, B. P., Mechoso, R.,
Schneider, E. K., Toniazzo, T., Richter, I., Small, R. J., Bellomo, K.,
Brandt, P., de Szoeke, S., Farrar, J. T., Jung, E., Kato, S., Li, M.,
Patricola, C., Wang, Z., Wood, R., and Xu, Z.: Challenges and Prospects for
Reducing Coupled Climate Model SST Biases in the Eastern Tropical Atlantic
and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis
Working Group, B. Am. Meteorol. Soc., 97, 2305–2328,
https://doi.org/10.1175/BAMS-D-15-00274.1, 2016a.
Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M.,
and Formenti, P.: Smoke and Clouds above the Southeast Atlantic: Upcoming
Field Campaigns Probe Absorbing Aerosol's Impact on Climate, B. Am.
Meteorol. Soc., 97, 1131–1135, https://doi.org/10.1175/BAMS-D-15-00082.1,
2016b.
Zuidema, P., Alvarado, M., Chiu, C., De Szoeke, S., Fairall, C., Feingold, G., Freedman, A., Ghan, S., Haywood, J., and Kollias, P.: Layered Atlantic Smoke Interactions with Clouds (LASIC) Field Campaign Report, edited by: Stafford, R., DOE/SC-ARM-18-018, ARM Climate Research Facility, Report DOE/SC-ARM-18-018, US Department of Energy, Office of Science, available at: https://www.osti.gov/servlets/purl/1437446 (last access: 30 November 2021), 2018a.
Zuidema, P., Sedlacek, A. J., Flynn, C., Springston, S., Delgadillo, R.,
Zhang, J., Aiken, A. C., Koontz, A., and Muradyan, P.: The Ascension Island
Boundary Layer in the Remote Southeast Atlantic is Often Smoky, Geophys.
Res. Lett., 45, 4456–4465, https://doi.org/10.1002/2017GL076926, 2018b.
Short summary
For the first time, we accurately modelled the optical properties of the biomass burning aerosols (BBA) observed over the Southeast Atlantic region during their transport above clouds and over their source regions, combining a meteorology coupled with chemistry model (WRF-Chem) with innovative satellite absorbing aerosol retrievals (POLDER-3). Our results suggest a low but non-negligible brown carbon fraction (3 %) for the chemical composition of the BBA plumes observed over the source regions.
For the first time, we accurately modelled the optical properties of the biomass burning...
Altmetrics
Final-revised paper
Preprint