Articles | Volume 21, issue 21
https://doi.org/10.5194/acp-21-16363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the Midwestern United States
Haoran Yu
Department of Civil and Environmental Engineering, University of
Illinois at Urbana–Champaign, Urbana, IL 61801, USA
Joseph Varghese Puthussery
Department of Civil and Environmental Engineering, University of
Illinois at Urbana–Champaign, Urbana, IL 61801, USA
Yixiang Wang
Department of Civil and Environmental Engineering, University of
Illinois at Urbana–Champaign, Urbana, IL 61801, USA
Vishal Verma
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
Illinois at Urbana–Champaign, Urbana, IL 61801, USA
Related authors
No articles found.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Sudheer Salana, Yixiang Wang, Joseph V. Puthussery, and Vishal Verma
Atmos. Meas. Tech., 14, 7579–7593, https://doi.org/10.5194/amt-14-7579-2021, https://doi.org/10.5194/amt-14-7579-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity. However, no automated instrument has ever been developed to provide a rapid high-throughput analysis of cell-based OP measurements. Here, we developed a semi-automated instrument, the first of its kind, for measuring oxidative potential using rat alveolar cells. We also developed a dataset on the intrinsic cellular OP of several compounds commonly known to be present in ambient PM.
Cited articles
Abbas, I., Verdin, A., Escande, F., Saint-Georges, F., Cazier, F., Mulliez,
P., Courcot, D., Shirali, P., Gosset, P., and Garçon, G.: In vitro short-term
exposure to air pollution PM2.5−0.3 induced cell cycle alterations and
genetic instability in a human lung cell coculture model, Environ. Res., 147, 146–158,
2016.
Abrams, J. Y., Weber, R. J., Klein, M., Samat, S. E., Chang, H. H.,
Strickland, M. J., Verma, V., Fang, T., Bates, J. T., and Mulholland, J. A.:
Associations between ambient fine particulate oxidative potential and
cardiorespiratory emergency department visits, Environ. Health Persp., 125, 107008,
https://doi.org/10.1289/ehp1545, 2017.
Allan, K., Kelly, F., and Devereux, G.: Antioxidants and allergic disease: a
case of too little or too much?, Clin. Exp. Allerg., 40, 370–380, 2010.
Apeagyei, E., Bank, M. S., and Spengler, J. D.: Distribution of heavy metals
in road dust along an urban-rural gradient in Massachusetts, Atmos. Environ., 45,
2310–2323, https://doi.org/10.1016/j.atmosenv.2010.11.015, 2011.
Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K.
W., Navab, M., Harkema, J., Sioutas, C., and Lusis, A. J.: Ambient
particulate pollutants in the ultrafine range promote early atherosclerosis
and systemic oxidative stress, Circ. Res., 102, 589–596, 2008.
Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio,
A., Harrison, R. M., Hider, R., Kelly, F., and Kooter, I. M.: Evaluating the
toxicity of airborne particulate matter and nanoparticles by measuring
oxidative stress potential – a workshop report and consensus statement,
Inhal. Toxicol., 20, 75–99, https://doi.org/10.1080/08958370701665517, 2008.
Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Fang, T., Klein, M.,
Strickland, M. J., Sarnat, S. E., Chang, H. H., and Mulholland, J. A.:
Reactive oxygen species generation linked to sources of atmospheric
particulate matter and cardiorespiratory effects, Environ. Sci. Technol., 49, 13605–13612,
https://doi.org/10.1021/acs.est.5b02967, 2015.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E.,
Abrams, J. Y., Sarnat, S. E., Klein, M., and Mulholland, J. A.: Review of
acellular assays of ambient particulate matter oxidative potential: Methods
and relationships with composition, sources, and health effects,
Environ. Sci. Technol., 53, 4003–4019, 2019.
Baumann, K., Jayanty, R., and Flanagan, J. B.: Fine particulate matter
source apportionment for the chemical speciation trends network site at
Birmingham, Alabama, using positive matrix factorization, J. Air Waste Manage. Assoc., 58, 27–44, 2008.
Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., and
Huang, Y.-C. T.: Seasonal variations in air pollution particle-induced
inflammatory mediator release and oxidative stress, Environ. Health Persp., 113, 1032–1038,
https://doi.org/10.1289/ehp.7996, 2005.
Borlaza, L. J. S., Weber, S., Jaffrezo, J.-L., Houdier, S., Slama, R., Rieux, C., Albinet, A., Micallef, S., Trébluchon, C., and Uzu, G.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM10 oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis, Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, 2021.
Buzcu-Guven, B., Brown, S. G., Frankel, A., Hafner, H. R., and Roberts, P.
T.: Analysis and apportionment of organic carbon and fine particulate matter
sources at multiple sites in the midwestern United States, J. Air Waste Manage. Assoc., 57, 606–619,
2007.
Cachon, B. F., Firmin, S., Verdin, A., Ayi-Fanou, L., Billet, S., Cazier,
F., Martin, P. J., Aissi, F., Courcot, D., and Sanni, A.: Proinflammatory
effects and oxidative stress within human bronchial epithelial cells exposed
to atmospheric particulate matter (PM2.5 and PM>2.5) collected
from Cotonou, Benin, Environ. Pollut., 185, 340–351, 2014.
Calas, A., Uzu, G., Kelly, F. J., Houdier, S., Martins, J. M. F., Thomas, F., Molton, F., Charron, A., Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F., and Jaffrezo, J.-L.: Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France), Atmos. Chem. Phys., 18, 7863–7875, https://doi.org/10.5194/acp-18-7863-2018, 2018.
Calas, A., Uzu, G., Besombes, J.-L., Martins, J. M., Redaelli, M., Weber,
S., Charron, A., Albinet, A., Chevrier, F., and Brulfert, G.: Seasonal
variations and chemical predictors of oxidative potential (OP) of
particulate matter (PM), for seven urban French sites, Atmosphere, 10, 698, https://doi.org/10.3390/atmos10110698, 2019.
Cesari, D., Merico, E., Grasso, F. M., Decesari, S., Belosi, F., Manarini,
F., De Nuntiis, P., Rinaldi, M., Volpi, F., and Gambaro, A.: Source
apportionment of PM2.5 and of its oxidative potential in an industrial
suburban site in South Italy, Atmosphere, 10, 758, https://doi.org/10.3390/atmos10120758, 2019.
Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321–9333, https://doi.org/10.5194/acp-12-9321-2012, 2012.
Charrier, J. G. and Anastasio, C.: Rates of hydroxyl radical production
from transition metals and quinones in a surrogate lung fluid,
Environ. Sci. Technol., 49, 9317–9325, https://doi.org/10.1021/acs.est.5b01606, 2015.
Charrier, J. G., McFall, A. S., Richards-Henderson, N. K., and Anastasio,
C.: Hydrogen peroxide formation in a surrogate lung fluid by transition
metals and quinones present in particulate matter, Environ. Sci. Technol., 48, 7010–7017,
https://doi.org/10.1021/es501011w, 2014.
Charrier, J. G., McFall, A. S., Vu, K. K., Baroi, J., Olea, C., Hasson, A.,
and Anastasio, C.: A bias in the “mass-normalized” DTT response – An effect
of non-linear concentration-response curves for copper and manganese,
Atmos. Environ., 144, 325–334, https://doi.org/10.1016/j.atmosenv.2016.08.071, 2016.
Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh,
M., Eiguren-Fernandez, A., and Froines, J. R.: Redox activity of airborne
particulate matter at different sites in the Los Angeles Basin,
Environ. Res., 99, 40–47, https://doi.org/10.1016/j.envres.2005.01.003, 2005.
Chung, M. Y., Lazaro, R. A., Lim, D., Jackson, J., Lyon, J., Rendulic, D.,
and Hasson, A. S.: Aerosol-borne quinones and reactive oxygen species
generation by particulate matter extracts, Environ. Sci. Technol., 40, 4880–4886, 2006.
Councell, T. B., Duckenfield, K. U., Landa, E. R., and Callender, E.:
Tire-wear particles as a source of zinc to the environment, Environ. Sci. Technol., 38, 4206–4214,
2004.
Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou,
A., Stefenelli, G., Canonaco, F., Weber, S., and Segers, A.: Sources of
particulate-matter air pollution and its oxidative potential in Europe,
Nature, 587, 414–419, 2020.
Deng, X., Zhang, F., Rui, W., Long, F., Wang, L., Feng, Z., Chen, D., and
Ding, W.: PM2.5-induced oxidative stress triggers autophagy in human
lung epithelial A549 cells, Toxicol. Vitro, 27, 1762–1770, 2013.
Dominici, F., McDermott, A., Zeger, S. L., and Samet, J. M.: Airborne
particulate matter and mortality: timescale effects in four US cities,
Am. J. Epidemiol., 157, 1055–1065, 2003.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, 2015.
Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., and Weber, R. J.: Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays, Atmos. Chem. Phys., 16, 3865–3879, https://doi.org/10.5194/acp-16-3865-2016, 2016.
Feng, S., Gao, D., Liao, F., Zhou, F., and Wang, X.: The health effects of
ambient PM2.5 and potential mechanisms, Ecotoxicol. Environ. Safe., 128, 67–74,
https://doi.org/10.1016/j.ecoenv.2016.01.030, 2016.
Franco, R., Schoneveld, O., Georgakilas, A. G., and Panayiotidis, M. I.:
Oxidative stress, DNA methylation and carcinogenesis, Cancer Lett., 266, 6–11,
https://doi.org/10.1016/j.canlet.2008.02.026, 2008.
Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, Atmos. Meas. Tech., 10, 2821–2835, https://doi.org/10.5194/amt-10-2821-2017, 2017.
Gao, D., Godri Pollitt, K. J., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization and comparison of PM2.5 oxidative potential assessed by two acellular assays, Atmos. Chem. Phys., 20, 5197–5210, https://doi.org/10.5194/acp-20-5197-2020, 2020a.
Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.:
Characterization of water-insoluble oxidative potential of PM2.5 using
the dithiothreitol assay, Atmos. Environ., 224, 117327,
https://doi.org/10.1016/j.atmosenv.2020.117327, 2020b.
Garçon, G., Dagher, Z., Zerimech, F., Ledoux, F., Courcot, D., Aboukais,
A., Puskaric, E., and Shirali, P.: Dunkerque City air pollution particulate
matter-induced cytotoxicity, oxidative stress and inflammation in human
epithelial lung cells (L132) in culture, Toxicol. in vitro, 20, 519–528, 2006.
Garg, B. D., Cadle, S. H., Mulawa, P. A., Groblicki, P. J., Laroo, C., and
Parr, G. A.: Brake Wear Particulate Matter Emissions, Environ. Sci. Technol., 34, 4463–4469,
https://doi.org/10.1021/es001108h, 2000.
Gietl, J. K., Lawrence, R., Thorpe, A. J., and Harrison, R. M.:
Identification of brake wear particles and derivation of a quantitative
tracer for brake dust at a major road, Atmos. Environ., 44, 141–146, 2010.
Gildemeister, A. E., Hopke, P. K., and Kim, E.: Sources of fine urban
particulate matter in Detroit, MI, Chemosphere, 69, 1064–1074,
https://doi.org/10.1016/j.chemosphere.2007.04.027, 2007.
Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I.
S., and Kelly, F. J.: Increased oxidative burden associated with traffic
component of ambient particulate matter at roadside and urban background
schools sites in London, PloS One, 6, e21961, https://doi.org/10.1371/journal.pone.0021961, 2011.
Gonzalez, D. H., Cala, C. K., Peng, Q., and Paulson, S. E.: HULIS
enhancement of hydroxyl radical formation from Fe (II): kinetics of fulvic
acid-Fe (II) complexes in the presence of lung antioxidants, Environ. Sci. Technol., 51,
7676–7685, 2017.
Grevendonk, L., Janssen, B. G., Vanpoucke, C., Lefebvre, W., Hoxha, M.,
Bollati, V., and Nawrot, T. S.: Mitochondrial oxidative DNA damage and
exposure to particulate air pollution in mother-newborn pairs,
Environ. Health, 15, 1–8, 2016.
Gurgueira, S. A., Lawrence, J., Coull, B., Murthy, G. K., and
González-Flecha, B.: Rapid increases in the steady-state concentration
of reactive oxygen species in the lungs and heart after particulate air
pollution inhalation, Environ. Health Persp., 110, 749–755, 2002.
Haberzettl, P., O'Toole, T. E., Bhatnagar, A., and Conklin, D. J.: Exposure
to fine particulate air pollution causes vascular insulin resistance by
inducing pulmonary oxidative stress, Environ. Health Persp., 124, 1830–1839, 2016.
Hammond, D. M., Dvonch, J. T., Keeler, G. J., Parker, E. A., Kamal, A. S.,
Barres, J. A., Yip, F. Y., and Brakefield-Caldwell, W.: Sources of ambient
fine particulate matter at two community sites in Detroit, Michigan,
Atmos. Environ., 42, 720–732, 2008.
Held, K. D., Sylvester, F. C., Hopcia, K. L., and Biaglow, J. E.: Role of
Fenton chemistry in thiol-induced toxicity and apoptosis, Radiat. Res., 145, 542–553,
https://doi.org/10.2307/3579272, 1996.
Hu, S., Polidori, A., Arhami, M., Shafer, M. M., Schauer, J. J., Cho, A., and Sioutas, C.: Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor, Atmos. Chem. Phys., 8, 6439–6451, https://doi.org/10.5194/acp-8-6439-2008, 2008.
Hulskotte, J., Denier van der Gon, H., Visschedijk, A., and Schaap, M.:
Brake wear from vehicles as an important source of diffuse copper pollution,
Water Sci. Technol., 56, 223–231, https://doi.org/10.2166/wst.2007.456, 2007.
Janssen, N. A., Yang, A., Strak, M., Steenhof, M., Hellack, B.,
Gerlofs-Nijland, M. E., Kuhlbusch, T., Kelly, F., Harrison, R., and
Brunekreef, B.: Oxidative potential of particulate matter collected at sites
with different source characteristics, Sci. Total Environ., 472, 572–581,
https://doi.org/10.1016/j.scitotenv.2013.11.099, 2014.
Jeong, C.-H., Traub, A., Huang, A., Hilker, N., Wang, J. M., Herod, D.,
Dabek-Zlotorzynska, E., Celo, V., and Evans, G. J.: Long-term analysis of
PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative
potential, Environ. Pollut., 263, 114652, https://doi.org/10.1016/j.envpol.2020.114652, 2020.
Kampfrath, T., Maiseyeu, A., Ying, Z., Shah, Z., Deiuliis, J. A., Xu, X.,
Kherada, N., Brook, R. D., Reddy, K. M., and Padture, N. P.: Chronic fine
particulate matter exposure induces systemic vascular dysfunction via NADPH
oxidase and TLR4 pathways, Circulation Res., 108, 716–726, 2011.
Kaufman, J. A., Wright, J. M., Rice, G., Connolly, N., Bowers, K., and
Anixt, J.: Ambient ozone and fine particulate matter exposures and autism
spectrum disorder in metropolitan Cincinnati, Ohio, Environ. Res., 171, 218–227,
https://doi.org/10.1016/j.envres.2019.01.013, 2019.
Kelly, F. J.: Oxidative stress: its role in air pollution and adverse health
effects, Occup. Environ. Med., 60, 612–616, 2003.
Kim, E., Hopke, P. K., Kenski, D. M., and Koerber, M.: Sources of fine
particles in a rural midwestern U.S. Area, Environ. Sci. Technol., 39, 4953–4960,
https://doi.org/10.1021/es0490774, 2005.
Kleinman, M. T., Hamade, A., Meacher, D., Oldham, M., Sioutas, C.,
Chakrabarti, B., Stram, D., Froines, J. R., and Cho, A. K.: Inhalation of
concentrated ambient particulate matter near a heavily trafficked road
stimulates antigen-induced airway responses in mice, J. Air Waste Manage. Assoc., 55, 1277–1288, 2005.
Kodavanti, U. P., Schladweiler, M. C., Ledbetter, A. D., Watkinson, W. P.,
Campen, M. J., Winsett, D. W., Richards, J. R., Crissman, K. M., Hatch, G.
E., and Costa, D. L.: The spontaneously hypertensive rat as a model of human
cardiovascular disease: evidence of exacerbated cardiopulmonary injury and
oxidative stress from inhaled emission particulate matter, Toxicol. Appl. Pharmacol., 164, 250–263,
https://doi.org/10.1006/taap.2000.8899, 2000.
Kumagai, Y., Koide, S., Taguchi, K., Endo, A., Nakai, Y., Yoshikawa, T., and
Shimojo, N.: Oxidation of proximal protein sulfhydryls by phenanthraquinone,
a component of diesel exhaust particles, Chem. Res. Toxicol., 15, 483–489, 2002.
Kumar, N., Liang, D., Comellas, A., Chu, A. D., and Abrams, T.:
Satellite-based PM concentrations and their application to COPD in
Cleveland, OH, J. Exp. Sci. Env. Epid., 23, 637–646, 2013.
Kundu, S., and Stone, E. A.: Composition and sources of fine particulate
matter across urban and rural sites in the Midwestern United States,
Environ. Sci.-Processes & Impacts, 16, 1360–1370, 2014.
Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook,
S., Burney, P., Forsberg, B., Gauderman, J. W., and Hazenkamp, M. E.:
Comparison of oxidative properties, light absorbance, and total and
elemental mass concentration of ambient PM2.5 collected at 20 European
sites, Environ. Health Persp., 114, 684–690, https://doi.org/10.1289/ehp.8584, 2006.
Lee, C.-W., Lin, Z.-C., Hu, S. C.-S., Chiang, Y.-C., Hsu, L.-F., Lin, Y.-C.,
Lee, I. T., Tsai, M.-H., and Fang, J.-Y.: Urban particulate matter
down-regulates filaggrin via COX2 expression/PGE2 production leading to skin
barrier dysfunction, Sci. Rep.-UK, 6, 27995, https://doi.org/10.1038/srep27995, 2016.
Lee, J. H. and Hopke, P. K.: Apportioning sources of PM2.5 in St.
Louis, MO using speciation trends network data, Atmos. Environ., 40, 360–377, 2006.
Lee, J. H., Hopke, P. K., and Turner, J. R.: Source identification of
airborne PM2.5 at the St. Louis-Midwest Supersite, J. Geophys. Res.-Atmos, 111, D10S10, https://doi.org/10.1029/2005JD006329, 2006.
Li, N. and Nel, A. E.: Role of the Nrf2-mediated signaling pathway as a
negative regulator of inflammation: implications for the impact of
particulate pollutants on asthma, Antioxid. Redox Sign., 8, 88–98, 2006.
Li, Y., Fu, S., Li, E., Sun, X., Xu, H., Meng, Y., Wang, X., Chen, Y., Xie,
C., and Geng, S.: Modulation of autophagy in the protective effect of
resveratrol on PM2.5-induced pulmonary oxidative injury in mice,
Phytother. Res., 32, 2480–2486, 2018.
Lin, M. and Yu, J. Z.: Assessment of interactions between transition metals
and atmospheric organics: ascorbic acid depletion and hydroxyl radical
formation in organic-metal mixtures, Environ. Sci. Technol., 54, 1431–1442,
https://doi.org/10.1021/acs.est.9b07478, 2020.
Liu, Q., Baumgartner, J., Zhang, Y., Liu, Y., Sun, Y., and Zhang, M.:
Oxidative potential and inflammatory impacts of source apportioned ambient
air pollution in Beijing, Environ. Sci. Technol., 48, 12920–12929, 2014.
Liu, W., Xu, Y., Liu, W., Liu, Q., Yu, S., Liu, Y., Wang, X., and Tao, S.:
Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai
Sea, northern China: Seasonal variation and source apportionment,
Environ. Pollut., 236, 514–528, 2018.
Ma, S., Ren, K., Liu, X., Chen, L., Li, M., Li, X., Yang, J., Huang, B.,
Zheng, M., and Xu, Z.: Production of hydroxyl radicals from Fe-containing
fine particles in Guangzhou, China, Atmos. Environ., 123, 72–78,
https://doi.org/10.1016/j.atmosenv.2015.10.057, 2015.
Milando, C., Huang, L., and Batterman, S.: Trends in PM2.5 emissions,
concentrations and apportionments in Detroit and Chicago, Atmos. Environ., 129, 197–209,
2016.
Moreno, T., Kelly, F. J., Dunster, C., Oliete, A., Martins, V., Reche, C.,
Minguillón, M. C., Amato, F., Capdevila, M., and de Miguel, E.:
Oxidative potential of subway PM2. 5, Atmos. Environ., 148, 230–238, 2017.
Mudway, I., Kelly, F., and Holgate, S.: Oxidative stress in air pollution
research, Free Radical Bio. Med., 151, 2–6, https://doi.org/10.1016/j.freeradbiomed.2020.04.031, 2020.
Mudway, I. S., Duggan, S. T., Venkataraman, C., Habib, G., Kelly, F. J., and
Grigg, J.: Combustion of dried animal dung as biofuel results in the
generation of highly redox active fine particulates, Part. Fibre Toxicol., 2, 6,
https://doi.org/10.1186/1743-8977-2-6, 2005.
Oh, S. M., Kim, H. R., Park, Y. J., Lee, S. Y., and Chung, K. H.: Organic
extracts of urban air pollution particulate matter (PM2.5)-induced
genotoxicity and oxidative stress in human lung bronchial epithelial cells
(BEAS-2B cells), Mutat. Res.-Gen. Tox. En., 723, 142–151,
https://doi.org/10.1016/j.mrgentox.2011.04.003, 2011.
Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M.,
Liakakou, E., Gerasopoulos, E., Weber, R., Nenes, A., and Mihalopoulos, N.:
Yearlong variability of oxidative potential of particulate matter in an
urban Mediterranean environment, Atmos. Environ., 206, 183–196, 2019.
Pei, Y., Jiang, R., Zou, Y., Wang, Y., Zhang, S., Wang, G., Zhao, J., and
Song, W.: Effects of Fine Particulate Matter (PM2.5) on Systemic
Oxidative Stress and Cardiac Function in ApoE-/- Mice, Int. J. Environ. Res. Pub. Health, 13, 484, https://doi.org/10.3390/ijerph13050484, 2016.
Perrone, M. R., Bertoli, I., Romano, S., Russo, M., Rispoli, G., and
Pietrogrande, M. C.: PM2.5 and PM10 oxidative potential at a Central
Mediterranean Site: Contrasts between dithiothreitol-and ascorbic
acid-measured values in relation with particle size and chemical
composition, Atmos. Environ., 210, 143–155, 2019.
Pietrogrande, M. C., Perrone, M. R., Manarini, F., Romano, S., Udisti, R.,
and Becagli, S.: PM10 oxidative potential at a Central Mediterranean Site:
Association with chemical composition and meteorological parameters,
Atmos. Environ., 188, 97–111, 2018.
Pietrogrande, M. C., Bertoli, I., Manarini, F., and Russo, M.: Ascorbate
assay as a measure of oxidative potential for ambient particles: Evidence
for the importance of cell-free surrogate lung fluid composition,
Atmos. Environ., 211, 103–112, https://doi.org/10.1016/j.atmosenv.2019.05.012, 2019.
Poljšak, B. and Fink, R.: The protective role of antioxidants in the
defence against ROS/RNS-mediated environmental pollution, Oxidative Medicine and Cellular Longevity, 2014, 671539, https://doi.org/10.1155/2014/671539, 2014.
Puthussery, J. V., Zhang, C., and Verma, V.: Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay, Atmos. Meas. Tech., 11, 5767–5780, https://doi.org/10.5194/amt-11-5767-2018, 2018.
Qin, G., Xia, J., Zhang, Y., Guo, L., Chen, R., and Sang, N.: Ambient fine
particulate matter exposure induces reversible cardiac dysfunction and
fibrosis in juvenile and older female mice, Part. Fibre Toxicol., 15, 1–14, 2018.
Rao, X., Zhong, J., Brook, R. D., and Rajagopalan, S.: Effect of particulate
matter air pollution on cardiovascular oxidative stress pathways,
Antioxid. Redox Sign., 28, 797–818, 2018.
Risom, L., Møller, P., and Loft, S.: Oxidative stress-induced DNA damage
by particulate air pollution, Mutat. Res.-Fund. Mol. M., 592, 119–137, 2005.
Riva, D. R., Magalhães, C. B., Lopes, A. A., Lanças, T., Mauad, T.,
Malm, O., Valença, S. S., Saldiva, P. H., Faffe, D. S., and Zin, W. A.:
Low dose of fine particulate matter (PM2.5) can induce acute oxidative
stress, inflammation and pulmonary impairment in healthy mice, Inhalat. Toxicol., 23,
257–267, https://doi.org/10.3109/08958378.2011.566290, 2011.
Rosenthal, F. S., Carney, J. P., and Olinger, M. L.: Out-of-hospital cardiac
arrest and airborne fine particulate matter: a case–crossover analysis of
emergency medical services data in Indianapolis, Indiana, Environ. Health Persp., 116, 631–636,
2008.
Rossner, P., Svecova, V., Milcova, A., Lnenickova, Z., Solansky, I., and
Sram, R. J.: Seasonal variability of oxidative stress markers in city bus
drivers: Part II. Oxidative damage to lipids and proteins, Mutat. Res.-Fund. Mol. M., 642, 21–27,
https://doi.org/10.1016/j.mrfmmm.2008.03.004, 2008.
Sørensen, M., Daneshvar, B., Hansen, M., Dragsted, L. O., Hertel, O.,
Knudsen, L., and Loft, S.: Personal PM2.5 exposure and markers of
oxidative stress in blood, Environ. Health Persp., 111, 161–166, 2003.
Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., and Sioutas, C.:
Seasonal and spatial variation in reactive oxygen species activity of
quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area
and its association with chemical composition, Atmos. Environ., 79, 566–575, 2013.
Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., and Sioutas, C.:
Seasonal and spatial variation in dithiothreitol (DTT) activity of
quasi-ultrafine particles in the Los Angeles Basin and its association with
chemical species, J. Environ. Sci. Heal. A, 49, 441–451, https://doi.org/10.1080/10934529.2014.854677, 2014.
Sancini, G., Farina, F., Battaglia, C., Cifola, I., Mangano, E., Mantecca,
P., Camatini, M., and Palestini, P.: Health risk assessment for air
pollutants: alterations in lung and cardiac gene expression in mice exposed
to Milano winter fine particulate matter (PM2.5), PLoS One, 9, e109685,
https://doi.org/10.1371/journal.pone.0109685, 2014.
Sarnat, S. E., Winquist, A., Schauer, J. J., Turner, J. R., and Sarnat, J.
A.: Fine particulate matter components and emergency department visits for
cardiovascular and respiratory diseases in the St. Louis,
Missouri–Illinois, metropolitan area, Environ. Health Persp., 123, 437–444, 2015.
Shen, H., Barakat, A. I., and Anastasio, C.: Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution, Atmos. Chem. Phys., 11, 753–765, https://doi.org/10.5194/acp-11-753-2011, 2011.
Son, Y., Mishin, V., Welsh, W., Lu, S.-E., Laskin, J. D., Kipen, H., and
Meng, Q.: A novel high-throughput approach to measure hydroxyl radicals
induced by airborne particulate matter, Int. J. Environ. Res. Publ. Health, 12, 13678–13695,
https://doi.org/10.3390/ijerph121113678, 2015.
Sun, B., Shi, Y., Li, Y., Jiang, J., Liang, S., Duan, J., and Sun, Z.:
Short-term PM2.5 exposure induces sustained pulmonary fibrosis
development during post-exposure period in rats, J. Hazardous Mat., 385, 121566, https://doi.org/10.1016/j.jhazmat.2019.121566, 2020.
Szigeti, T., Dunster, C., Cattaneo, A., Cavallo, D., Spinazzè, A.,
Saraga, D. E., Sakellaris, I. A., de Kluizenaar, Y., Cornelissen, E. J., and
Hänninen, O.: Oxidative potential and chemical composition of PM2.5
in office buildings across Europe – The OFFICAIR study, Environ. Int., 92, 324–333,
https://doi.org/10.1016/j.envint.2016.04.015, 2016.
Tuet, W. Y., Fok, S., Verma, V., Rodriguez, M. S. T., Grosberg, A.,
Champion, J. A., and Ng, N. L.: Dose-dependent intracellular reactive oxygen
and nitrogen species (ROS/RNS) production from particulate matter exposure:
comparison to oxidative potential and chemical composition, Atmos. Environ., 144, 335–344,
2016.
Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W.,
and Weber, R. J.: Contribution of water-soluble and insoluble components and
their hydrophobic/hydrophilic subfractions to the reactive oxygen
species-generating potential of fine ambient aerosols, Environ. Sci. Technol., 46, 11384–11392,
https://doi.org/10.1021/es302484r, 2012.
Verma, V., Fang, T., Guo, H., King, L., Bates, J. T., Peltier, R. E., Edgerton, E., Russell, A. G., and Weber, R. J.: Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment, Atmos. Chem. Phys., 14, 12915–12930, https://doi.org/10.5194/acp-14-12915-2014, 2014.
Vidrio, E., Phuah, C. H., Dillner, A. M., and Anastasio, C.: Generation of
hydroxyl radicals from ambient fine particles in a surrogate lung fluid
solution, Environ. Sci. Technol., 43, 922–927, https://doi.org/10.1021/es801653u, 2009.
Visentin, M., Pagnoni, A., Sarti, E., and Pietrogrande, M. C.: Urban
PM2.5 oxidative potential: Importance of chemical species and
comparison of two spectrophotometric cell-free assays, Environ. Pollut., 219, 72–79,
https://doi.org/10.1016/j.envpol.2016.09.047, 2016.
Wang, Y., Plewa, M. J., Mukherjee, U. K., and Verma, V.: Assessing the
cytotoxicity of ambient particulate matter (PM) using Chinese hamster ovary
(CHO) cells and its relationship with the PM chemical composition and
oxidative potential, Atmos. Environ., 179, 132–141, https://doi.org/10.1016/j.atmosenv.2018.02.025, 2018.
Weber, S., Uzu, G., Calas, A., Chevrier, F., Besombes, J.-L., Charron, A., Salameh, D., Ježek, I., Močnik, G., and Jaffrezo, J.-L.: An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France, Atmos. Chem. Phys., 18, 9617–9629, https://doi.org/10.5194/acp-18-9617-2018, 2018.
Weber, S., Uzu, G., Favez, O., Borlaza, L. J. S., Calas, A., Salameh, D., Chevrier, F., Allard, J., Besombes, J.-L., Albinet, A., Pontet, S., Mesbah, B., Gille, G., Zhang, S., Pallares, C., Leoz-Garziandia, E., and Jaffrezo, J.-L.: Source apportionment of atmospheric PM10 oxidative potential: synthesis of 15 year-round urban datasets in France, Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, 2021.
Wei, J., Yu, H., Wang, Y., and Verma, V.: Complexation of iron and copper in
ambient particulate matter and its effect on the oxidative potential
measured in a surrogate lung fluid, Environ. Sci. Technol., 53, 1661–1671, 2018.
Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K., and Burnett, R. T.:
Ambient PM2.5 and risk of emergency room visits for myocardial
infarction: impact of regional PM2.5 oxidative potential: a
case-crossover study, Environ. Health, 15, 46, https://doi.org/10.1186/s12940-016-0129-9, 2016.
Weichenthal, S., Shekarrizfard, M., Traub, A., Kulka, R., Al-Rijleh, K.,
Anowar, S., Evans, G., and Hatzopoulou, M.: Within-city spatial variations
in multiple measures of PM2.5 oxidative potential in Toronto, Canada,
Environ. Sci. Technol., 53, 2799–2810, https://doi.org/10.1186/s12940-016-0129-9, 2019.
Weichenthal, S. A., Lavigne, E., Evans, G. J., Godri Pollitt, K. J., and
Burnett, R. T.: Fine particulate matter and emergency room visits for
respiratory illness. Effect modification by oxidative potential, Am. J. Resp. Crit. Care, 194, https://doi.org/10.1164/rccm.201512-2434OC,
577–586, 2016.
Wessels, A., Birmili, W., Albrecht, C., Hellack, B., Jermann, E., Wick, G.,
Harrison, R. M., and Schins, R. P.: Oxidant generation and toxicity of
size-fractionated ambient particles in human lung epithelial cells,
Environ. Sci. Technol., 44, 3539–3545,, 2010.
Xiang, S., Yu, Y. T., Hu, Z., and Noll, K. E.: Characterization of
dispersion and ultrafine-particle emission factors based on near-roadway
monitoring Part II: Heavy duty vehicles, Aerosol Air Quality Res., 19, 2421–2431, 2019.
Xing, Y.-F., Xu, Y.-H., Shi, M.-H., and Lian, Y.-X.: The impact of
PM2.5 on the human respiratory system, J. Thor. Dis., 8, E69–E74, 2016.
Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking the
dithiothreitol-based particulate matter oxidative potential: measuring
dithiothreitol consumption versus reactive oxygen species generation,
Environ. Sci. Technol., 51, 6507–6514, https://doi.org/10.1021/acs.est.7b01272, 2017.
Xu, Z., Xu, X., Zhong, M., Hotchkiss, I. P., Lewandowski, R. P., Wagner, J.
G., Bramble, L. A., Yang, Y., Wang, A., and Harkema, J. R.: Ambient
particulate air pollution induces oxidative stress and alterations of
mitochondria and gene expression in brown and white adipose tissues,
Part. Fibre Toxicol., 8, 1–14, 2011.
Yan, Z., Wang, J., Li, J., Jiang, N., Zhang, R., Yang, W., Yao, W., and Wu,
W.: Oxidative stress and endocytosis are involved in upregulation of
interleukin-8 expression in airway cells exposed to PM2.5,
Environ. Toxicol., 31, 1869–1878, https://doi.org/10.1002/tox.22188, 2016.
Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B.,
Kuhlbusch, T. A., Cassee, F. R., and Janssen, N. A.: Measurement of the
oxidative potential of PM2.5 and its constituents: The effect of
extraction solvent and filter type, Atmos. Environ., 83, 35–42,
https://doi.org/10.1016/j.atmosenv.2013.10.049, 2014.
Yang, A., Hellack, B., Leseman, D., Brunekreef, B., Kuhlbusch, T. A.,
Cassee, F. R., Hoek, G., and Janssen, N. A.: Temporal and spatial variation
of the metal-related oxidative potential of PM2.5 and its relation to
PM2.5 mass and elemental composition, Atmos. Environ., 102, 62–69, 2015a.
Yang, A., Wang, M., Eeftens, M., Beelen, R., Dons, E., Leseman, D. L.,
Brunekreef, B., Cassee, F. R., Janssen, N. A., and Hoek, G.: Spatial
variation and land use regression modeling of the oxidative potential of
fine particles, Environ. Health Persp., 123, 1187–1192, 2015b.
Yang, A., Janssen, N. A., Brunekreef, B., Cassee, F. R., Hoek, G., and
Gehring, U.: Children's respiratory health and oxidative potential of
PM2.5: the PIAMA birth cohort study, Occup. Environ. Med., 73, 154–160,
https://doi.org/10.1136/oemed-2015-103175, 2016.
Yu, H., Wei, J., Cheng, Y., Subedi, K., and Verma, V.: Synergistic and
antagonistic interactions among the particulate matter components in
generating reactive oxygen species based on the dithiothreitol assay,
Environ. Sci. Technol., 52, 2261–2270, https://doi.org/10.1021/acs.est.7b04261, 2018.
Yu, H., Puthussery, J. V., and Verma, V.: A semi-automated multi-endpoint
reactive oxygen species activity analyzer (SAMERA) for measuring the
oxidative potential of ambient PM2.5 aqueous extracts, Aerosol Sci. Technol., 54, 304–320,
2020.
Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.:
Characteristics and oxidative potential of atmospheric PM2.5 in
Beijing: Source apportionment and seasonal variation, Sci. Total Environ., 650, 277–287, 2019.
Zhang, Y., Schauer, J. J., Shafer, M. M., Hannigan, M. P., and Dutton, S.
J.: Source apportionment of in vitro reactive oxygen species bioassay activity from
atmospheric particulate matter, Environ. Sci. Technol., 42, 7502–7509, https://doi.org/10.1021/es800126y, 2008.
Zhou, J., Ito, K., Lall, R., Lippmann, M., and Thurston, G.: Time-series
analysis of mortality effects of fine particulate matter components in
Detroit and Seattle, Environ. Health Persp., 119, 461–466, 2011.
Zuo, L., Otenbaker, N. P., Rose, B. A., and Salisbury, K. S.: Molecular
mechanisms of reactive oxygen species-related pulmonary inflammation and
asthma, Molec. Immunol., 56, 57–63, https://doi.org/10.1016/j.molimm.2013.04.002, 2013.
Short summary
We assessed the oxidative potential (OP) of ambient PM2.5 collected from many sites in the US Midwest through multiple acellular endpoints. Compared to homogeneously distributed PM2.5, OP showed higher spatiotemporal variation. Poor correlations for the regression between mass and OP indicated a limited role of mass in determining the OP. Moreover, weak correlations among different OP endpoints justify the need for using multiple assays to determine oxidative levels of particles.
We assessed the oxidative potential (OP) of ambient PM2.5 collected from many sites in the US...
Altmetrics
Final-revised paper
Preprint