

Supplement of

Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the Midwestern United States

Haoran Yu et al.

Correspondence to: Vishal Verma (vverma@illinois.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Section S1. Comparison of five Hi-Vol samplers before and after the sampling campaign

Out of five samplers used in our study, two were old samplers (about 5 years old, used in various sampling campaigns) and three were brand new, which were bought from TISCH Environmental (Cleves, OH, US) a month before the sampling. These new samplers were factory calibrated and installed at three farther sites, i.e. Chicago (CHI), Indianapolis (IND) and St. Louis (STL). The other two old samplers were installed at Champaign (CMP) and Bondville (BON). For the sole purpose of this discussion, we will name them as CHI (N), IND (N), STL (N), CMP (O) and BON (O). Since the new samplers were factory calibrated, we had more confidence in them, therefore, we chose one of those samplers, i.e. CHI (N), as a reference and compared the responses of other two old samplers, i.e. CMP (O) and BON (O), by running them in pairs, i.e. first CHI (N) and CMP (O) pair, followed by CHI (N) and BON (O) pair, at a site in Urbana in April 2018 (due to some practical constraint, we couldn't run all three of them together). We collected 9 sets of 24-hours integrated Hi-Vol PM_{2.5} samples on quartz filters from each pair, and analyzed them for the DTT assay using the same extraction and analysis procedure as used in our current study. The comparison of OPDTT response was conducted by the orthogonal fit regression analysis of OP^{DTT}v of PM_{2.5} samples collected from CHI (N) and old samplers (Figure S1). The correlations between the old samplers and CHI (N) sampler were excellent ($R^2 = 0.92 - 0.94$) with slopes almost equal to 1 (1.02 - 1.03), indicating that the samplers collect identical PM_{2.5}, and had negligible internal difference in sample collection.

Figure S1. Comparison of OP^{DTT} of PM_{2.5} samples collected from CHI (N) sampler with old samplers: (a) CMP (O) sampler; (b) BON (O) sampler.

After the sampling campaign, we again moved the new samplers [i.e. CHI (N), STL (N) and IND (N)] back to CMP site, kept them side-by-side, and collected 9 Hi-Vol samples (24-hours integrated) from each sampler. All these samples were extracted in DI and analyzed for OP^{DTT} in the same manner as used in our current study. The comparison of the reference sampler [i.e. CHI (N)] with other two new samplers was also conducted by orthogonal fit (Figure S2). Excellent correlations ($R^2 = 0.93 - 0.95$) and consistent slopes (1.05 – 1.06, close to 1) both showed a good consistency of three new samplers.

Figure S2. Comparison of OP^{DTT} of PM_{2.5} samples collected from CHI (N) sampler with other new samplers: (a) STL (N) sampler; (b) IND (N) sampler.

Table 51. Dates of samples conection at five sampling si	able S1. Dates of s	amples collection	at five san	apling site
---	---------------------	-------------------	-------------	-------------

Season	Week count	Sampling period	CHI	STL	IND	CMP	BON
	1	2018/5/22 - 2018/5/25	\checkmark	\checkmark	\checkmark	\checkmark	×
	2	2018/5/29 - 2018/6/1	\checkmark	\checkmark	\checkmark	\checkmark	×
	3	2018/6/5-2018/6/8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4	2018/6/12-2018/6/15	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	5	2018/6/19-2018/6/22	\checkmark	\checkmark	\checkmark	\checkmark	×
	6	2018/6/26-2018/6/29	\checkmark	\checkmark	\checkmark	\checkmark	✓
Summer	7	2018/7/3-2018/7/6	~	✓	✓	√	\checkmark
2018	8	2018/7/10-2018/7/13	√	√	✓	√	×
	9	2018/7/17-2018/7/20	\checkmark	√	√	√	×
	10	2018/7/24-2018/7/27	×	~	~	v	√
	11	2018/7/31-2018/8/3	•	√	√	v	√
	12	2018/8/7-2018/8/10	•	~	~	•	v
	13	2018/8/14-2018/8/17	~	~	v	V	√
	14	2018/8/21-2018/8/24	•	v	v	•	√
	15	2018/8/28-2018/8/31	·····	·····	·····	·····	·····
	16	2018/9/4-2018/9/7	•	v	v	~	v
	17	2018/9/11-2018/9/14	~	~	v	V	√
	18	2018/9/18-2018/9/21	~	~	~	•	√
	19	2018/9/25-2018/9/28	×	~	~	•	×
	20	2018/10/2-2018/10/5	×	√	~	•	×
F 11 2010	21	2018/10/9-2018/10/12	~	×	v	~	v
Fall 2018	22	2018/10/16-2018/10/19	•	V	•	v	v
	23	2018/10/23-2018/10/26	•	V	•	V	v
	24	2018/10/30-2018/11/2	•	v	•	×	v
	25	2018/11/6-2018/11/9	•	×	•	V	v
	26	2018/11/13-2018/11/16	•	×	•	v 	v
	27	2018/11/20-2018/11/23	•	•	•	*	v
	20	2018/11/27 - 2018/11/30	·····	······	·····	······	······
	29	2018/12/4 - 2018/12/7	*	• •	v	• •	• √
	30	2018/12/11-2018/12/14	*	·	· ·	• •	• •
	31	2018/12/18-2018/12/21	*	·	· ·	• •	• •
	32	2010/12/25 = 2010/12/28 2019/1/1 = 2019/1/4	*	· ·	· ·	· ·	· √
	34	2019/1/1=2019/1/4	×	· ·	√ √	· •	· √
Winter	35	2019/1/15_ 2019/1/11	×	✓ ✓	✓	· •	×
2018	36	2019/1/22 - 2019/1/25	✓	✓	✓	1	x
	37	2019/1/29-2019/2/1	1	✓	✓	1	√
	38	2019/2/5-2019/2/8	~	\checkmark	\checkmark	✓	✓
	39	2019/2/12 - 2019/2/15	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	40	2019/2/19 - 2019/2/22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	41	2019/2/26-2019/3/1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	42	2019/3/5-2019/3/8	·····√	√	√	······	·····√
	43	2019/3/12-2019/3/15	×	\checkmark	\checkmark	\checkmark	\checkmark
	44	2019/3/19-2019/3/22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	45	2019/3/26-2019/3/29	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	46	2019/4/2-2019/4/5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
a .	47	2019/4/9-2019/4/12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Spring	48	2019/4/16-2019/4/19	\checkmark	\checkmark	\checkmark	×	\checkmark
2019	49	2019/4/23-2019/4/26	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	50	2019/4/30-2019/5/3	\checkmark	×	\checkmark	\checkmark	\checkmark
	51	2019/5/7-2019/5/10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	52	2019/5/14-2019/5/17	\checkmark	×	\checkmark	\checkmark	\checkmark
	53	2019/5/21-2019/5/24	\checkmark	×	\checkmark	\checkmark	\checkmark
	54	2019/5/28-2019/5/31	\checkmark	×	\checkmark	\checkmark	\checkmark

The symbol \checkmark denotes the collection of a sample, and the symbol \times denotes no collection of the sample in that week (due to several reasons such as unfavorable weather conditions, broken sampler, etc.).

Endpoint	Unit	Average	Standard	CoV (%)	CoV (%) for the water-soluble
			Deviation		PM _{2.5} extract (Yu et al., 2020)
OPAA	nmol/min/m ³	0.132	0.018	13.51	11.87
OPGSH	nmol/min/m ³	0.098	0.010	10.65	7.89
OP ^{OH-SLF}	pmol/min/m ³	0.740	0.011	14.49	10.56
OPDTT	nmol/min/m ³	0.187	0.017	8.89	10.52
OP ^{OH-DTT}	pmol/min/m ³	0.216	0.023	10.88	13.28

Table S2. Precision of SAMERA for methanol-soluble OP measurements compared with watersoluble OP measurements.

Table S3. Results of 1-way ANOVA test for assessing the temporal and spatial variability of PM_{2.5} mass concentrations.

Variability	Sampling Site/Season	F value	Significantly different group(s)
	CHI	1.95	
	STL	1.79	
Temporal	IND	0.33	
-	CMP	3.25*	Fall 2018
	BON	0.82	
	Summer 2018	3.48*	STL
Spatial	Fall 2018	3.13*	CHI, STL, IND, CMP
	Winter 2018	5.01**	CHI
	Spring 2019	3.35*	BON

Asterisks – * and ** indicate significant (P < 0.05) and highly significant (P < 0.01) differences, respectively.

(a) Tempora	al variability		
Sampling Site	Endpoint	F value	Significantly different group(s)
• •	OP ^{AA} m	1.12	
	OP ^{AA} v	0.69	
	OP ^{GSH} m	3.19*	Summer 2018, Fall 2018, Spring 2019, Winter 2018
	OPGSHv	0.78	
Chicago, IL	OP ^{OH-SLF} m	21.84**	Summer 2018, Fall 2018, Spring 2019, Winter 2018
(CHI)	OP ^{OH-SLF} v	17.72**	Summer 2018, Fall 2018, Spring 2019, Winter 2018
	OPDTTm	2.67	Summer 2018, Fall 2018, Spring 2019
	OPDTTV	1.03	
	OP ^{OH-DTT} m	7.26**	Summer 2018, Winter 2018, Fall 2018, Spring 2019
	OP ^{OH-DTT} v	6.68**	Summer 2018, Fall 2018, Spring 2019
	OP ^{AA} m	1.37	
	OP ^{AA} v	1.48	
	OP ^{GSH} m	1.74	Spring 2019, Fall 2018
	OPGSHv	1.40	
St. Louis, MO	OP ^{OH-SLF} m	4.25**	Summer 2018, Winter 2018, Spring 2019
(STL)	OP ^{OH-SLF} v	5.33**	Summer 2018, Fall 2018, Winter 2018, Spring 2019
(~)	OPDTTm	1.83	2 annual 2010, 1 an 2010, 1 mar 2010, 2 pring 2019
	OP ^{DTT} v	0.56	
	OP ^{OH-DTT} m	0.12	
	OP ^{OH-DTT} v	0.12	
	OP ^{AA} m	2.02	Summer 2018 Fall 2018
	OP ^{AA} v	2.02	Summer 2018 Spring 2019 Fall 2018
	OP ^{GSH} m	0.53	Summer 2010, Spring 2019, 1 an 2010
	OP ^{GSH} v	0.55	
Indianapolis	OP ^{OH-SLF} m	3 16*	Summer 2018 Winter 2018 Spring 2019
IN (IND)	OP ^{OH-SLF} v	2 75*	Summer 2018 Winter 2018 Spring 2019
III (III)	OP ^{DTT} m	1 29	Summer 2010, Whiter 2010, Spring 2017
	$OP^{DTT}v$	0.33	
	OP ^{OH-DTT} m	1 28**	Summer 2018 Winter 2018 Fall 2018 Spring 2019
	OP ^{OH-DTT} V	2.57	Summer 2018 Winter 2018 Fall 2018
	OP ^{AA} m	2.57	Summer 2018, Winter 2018
	OP ^{AA} v	2.57	Summer 2018, Winter 2018
	OP ^{GSH} m	2.11*	Summer 2018, Winter 2018 Spring 2010, Summer 2018, Winter 2018
	OP III OPGSH ₁₁	3.44 · 4.02**	Spring 2019, Summer 2018, Winter 2018 Fall 2018
Champaign II	OP ^{OH-SLF} m	4.92** 5 17**	Summer 2018, Fall 2018, Winter 2018
(CMP)	OP ^{OH-SLF}	7 50**	Summer 2018, Spring 2010, Fell 2018, Winter 2018
(CIVII)	OP ^{DTT} m	0.70	Summer 2018, Spring 2019, Pan 2018, Winter 2018
		1.55	
	OPOH-DTTm	8.06**	Summer 2018 Winter 2018 Fall 2018 Spring 2010
	OPOH-DTT _V	6.18**	Summer 2018, Winter 2018, Fran 2018, Spring 2019 Summer 2018, Winter 2018, Spring 2010, Fall 2018
	OP ^{AA} m	5 26**	Summer 2018, Winter 2018, Spring 2019, Fail 2018
	OP ^{AA} u	9.17**	Summer 2018, Spring 2019, Fall 2018, Winter 2018
	OP ^{GSH} m	0.1/** 8 16**	Summer 2018, Spring 2019, Fall 2019, Winter 2018 Summer 2018, Spring 2010, Eall 2019, Winter 2019
	OP III OPGSH.	0.10 ^{***} 12 91**	Summer 2018, Spring 2019, Fall 2018, Winter 2018 Summer 2018, Spring 2010, Eall 2019, Winter 2019
Dondrylla II	OD ^{OH-SLF}	16.01**	Summer 2018, Spring 2019, Fall 2016, Winter 2018
Bondville, IL	OP ^{OH-SLF.}	10.82**	Summer 2018, Spring 2019, Fall 2018, Winter 2018
(DUN)	OP ^{DTT}	11.33**	Summer 2018, Spring 2019, Fail 2018, Winter 2018
	OP ⁻¹ m	3.13* 2.27*	Summer 2018, Spring 2019 Summer 2018, Winter 2018, Spring 2010
	OP V	3.3/* 2.10	Summer 2018, winter 2018, Spring 2019 Winter 2018, Eall 2018
	OP ^{OH-DTT}	2.10	winter 2018, Fall 2018
	OPONIOTIV	1.34	

Table S4. Results of 1-way ANOVA test for assessing the temporal and spatial variability of mass-normalized and volume-normalized OP endpoints for water-soluble $PM_{2.5}$ samples.

<u> </u>	2		
Season	Endpoint	F value	Significantly different group(s)
	OP ^{AA} m	8.60**	CMP, BON, CHI, STL, IND
	OP ^{AA} v	5.28**	CMP, CHI, STL, IND
	OP ^{GSH} m	28.41**	CMP, BON, CHI, STL, IND
	OP ^{GSH} v	9.30**	CMP, BON, CHI, STL, IND
Summer 2019	OP ^{OH-SLF} m	8.60**	CHI, CMP, BON, STL, IND
Summer 2018	OP ^{OH-SLF} v	4.83**	CMP, CHI, STL, IND
	OP ^{DTT} m	6.97**	CMP, STL, IND
	OP ^{DTT} v	2.21	CMP, STL, IND
	OP ^{OH-DTT} m	5.92**	CHI, IND, CMP, BON, STL
	OP ^{OH-DTT} v	4.70**	CHI, STL, IND, CMP, BON
	OP ^{AA} m	12.08**	CMP, CHI, STL, IND, BON
	OP ^{AA} v	3.81**	CMP, STL, IND, BON
	OP ^{GSH} m	27.05**	CMP, CHI, BON, IND, STL
	OP ^{GSH} v	4.07**	CMP, CHI, STL, IND
Fall 2010	OP ^{OH-SLF} m	1.46	CMP, IND
rail 2018	OP ^{OH-SLF} v	0.46	
	OP ^{DTT} m	13.39**	CMP, CHI, BON, STL, IND
	OP ^{DTT} v	0.51	
	OP ^{OH-DTT} m	3.52*	CHI, STL, IND, BON, CMP
	OP ^{OH-DTT} v	4.00**	CHI, STL, IND, BON, CMP
	OP ^{AA} m	2.21	CMP, CHI, STL, IND, BON
	OP ^{AA} v	1.95	CMP, STL, IND, BON
	OP ^{GSH} m	15.75**	CMP, CHI, STL, IND, BON
	OP ^{GSH} v	12.37**	CMP, CHI, STL, IND, BON
Winter 2019	OP ^{OH-SLF} m	2.23	CMP, CHI
winner 2018	OP ^{OH-SLF} v	1.78	STL, BON
	OP ^{DTT} m	4.33**	CMP, STL, IND
	OP ^{DTT} v	3.23*	CHI, STL, IND, BON
	OP ^{OH-DTT} m	2.60*	IND, BON, STL
	OP ^{OH-D} TTv	2.49*	CHI, IND, STL, CMP
	OP ^{AA} m	5.20**	CMP, CHI, STL, IND, BON
	OP ^{AA} v	4.92**	CMP, CHI, STL, IND, BON
	OP ^{GSH} m	14.59**	CMP, CHI, STL, IND, BON
	OP ^{GSH} v	10.74**	CMP, CHI, STL, IND, BON
Spring 2010	OP ^{OH-SLF} m	3.20*	CMP, CHI, STL, IND, BON
Spring 2019	OP ^{OH-SLF} v	3.19*	CMP, CHI, STL, IND, BON
	OP ^{DTT} m	10.78**	CMP, CHI, BON, STL
	OP ^{DTT} v	6.04**	CMP, CHI, STL, IND, BON
	OP ^{OH-DTT} m	2.57*	IND, BON, CMP
	OP ^{OH-DTT} v	1.89	STL, IND, CMP

(b) Spatial variability

Asterisks - * and ** indicate significant (P < 0.05) and highly significant (P < 0.01) differences, respectively.

(a) Tempo			
Sampling Site	Endpoint	F value	Significantly different group(s)
	OP ^{AA} m	1.03	
	OPAAV	0.07	
	OPOSHm	1.41	
	OP ^{GSH} V	0.28	
Chicago, IL	OP ^{OH-SLF} m	1.68	Summer 2018, Spring 2019
(CHI)	OP ^{OH-SLF} v	0.99	
	OP ^{DTT} m	4.27*	Summer 2018, Fall 2018, Winter 2019
	OP ^{DTT} v	1.53	
	OP ^{OH-DTT} m	3.84*	Summer 2018, Fall 2018, Winter 2018, Spring 2019
	OP ^{OH-DTT} v	3.37*	Summer 2018, Fall 2018
	OP ^{AA} m	2.16	Fall 2018, Spring 2019
	OP ^{AA} v	3.41*	Summer 2018, Fall 2018, Spring 2019
	OP ^{GSH} m	3.62*	Fall 2018, Summer 2018, Winter 2018, Spring 2019
	OP ^{GSH} v	1.92	Fall 2018, Spring 2019
St. Louis, MO	OP ^{OH-SLF} m	1.05	
(STL)	OP ^{OH-SLF} v	1.23	
	OPDTTm	1.14	
	OPDTTv	1.87	Summer 2018, Winter 2019
	OP ^{OH-DTT} m	0.50	,
	OP ^{OH-DTT} v	1.11	
	OP ^{AA} m	2.42	Summer 2018, Spring 2019
	OPAAv	1.39	
	OP ^{GSH} m	2.15*	Fall 2018, Spring 2019
	OP ^{GSH} v	0.63	· · · · , ~ F · · · · · · · · · · · · · · · · · ·
Indianapolis.	OP ^{OH-SLF} m	3.49*	Fall 2018, Spring 2019, Winter 2018
IN (IND)	OP ^{OH-SLF} v	2.41	Fall 2018 Winter 2018
I ((I (2))	OP ^{DTT} m	1.42	1 uli 2010, ((like) 2010
	OP ^{DTT} v	0.94	
	OP ^{OH-DTT} m	0.20	
	OP ^{OH-DTT} v	0.67	
	OP ^{AA} m	1 64	Summer 2018 Winter 2018
	OP ^{AA} v	2.95*	Summer 2018 Fall 2018 Winter 2018
	OP ^{GSH} m	1.42	Summer 2010, 1 an 2010, White 2010
	OP ^{GSH} v	0.03	
Champaign II	OP ^{OH-SLF} m	1.00	
(CMP)	OP ^{OH-SLF} _V	1.00	
(CIMI)	OP ^{DTT} m	3 73*	Summer 2018 Winter 2018
	OP^{DTT}	2.03*	Summer 2018 Fall 2018 Winter 2018
	OP ^{OH-DTT} m	0.08	Summer 2018, Pan 2018, White 2018
	OPOH-DTT _V	0.59	
	OP ^{AA} m	<u> </u>	Summer 2018 Fell 2018 Spring 2010 Winter 2018
	OP ^{AA} _V	0.70**	Summer 2018, Fall 2018, Spring 2019, Winter 2018
	OD ^{GSH} m	1.51	Summer 2018, Pan 2018, Spring 2019, White 2018
	$OP^{GSH_{1}}$	1.31	Summer 2018 Winter 2019
Dondwills II	OD ^{OH-SLF}	1.30	Summer 2018, Spring 2010, Winter 2019
BOIIdVIIIe, IL	OP ^{OH-SLF}	4.3U** 4.70**	Summer 2018, Spring 2019, Winter 2018
(BON)	OP ^{DTT} V	4./0**	Summer 2018, Spring 2019, Winter 2018
	OP ^{DTT}	2.95*	Summer 2018, Spring 2019, Winter 2018
	OP ^{OT} V	4.28**	Summer 2018, Fall 2018, Spring 2019, Winter 2018
	OPOIL-DI I m	2.24	
	OP ^{OR-D11} v	1.64	

Table S5. Results of 1-way ANOVA test for assessing the temporal and spatial variability of massnormalized and volume-normalized OP endpoints for methanol-soluble PM_{2.5} samples. (a) Temporal variability

Season	Endpoint	F value	Significantly different group(s)
	OP ^{AA} m	1.17	BON, STL
	OP ^{AA} v	0.13	
	OP ^{GSH} m	2.00	CMP, STL, IND
	OP ^{GSH} v	0.40	
Summer 2019	OP ^{OH-SLF} m	2.80*	CHI, CMP, IND, STL
Summer 2018	OP ^{OH-SLF} v	1.67	CHI, CMP, IND
	OP ^{DTT} m	0.74	
	OPDTTv	0.46	
	OP ^{OH-DTT} m	3.75**	CHI, STL, CMP
	OP ^{OH-DTT} v	3.11*	CHI, IND, STL, CMP
	OP ^{AA} m	0.62	
	OP ^{AA} v	2.40	STL, CMP, BON
	OP ^{GSH} m	2.55*	CMP, STL, BON, IND
	OP ^{GSH} v	1.05	
E-11 2010	OP ^{OH-SLF} m	0.81	
Fall 2018	OP ^{OH-SLF} v	0.97	
	OP ^{DTT} m	0.33	
	OPDTTv	2.50*	STL, CMP, BON
	OP ^{OH-DTT} m	1.99	IND, STL, CMP
	OP ^{OH-DTT} v	2.28	IND, CMP, BON
	OP ^{AA} m	1.06	/
	OP ^{AA} v	3.62**	CHI, STL, IND, BON
	OP ^{GSH} m	6.31**	CMP, CHI, BON, STL, IND
	OP ^{GSH} v	2.86*	CHI, CMP, IND, BON
W. (2010	OP ^{OH-SLF} m	1.79	CHI, BON, STL
Winter 2018	OP ^{OH-SLF} v	3.21*	CHI, IND, CMP, STL, BON
	OP ^{DTT} m	0.86	
	OPDTTv	2.45*	CHI, STL, CMP, BON
	OP ^{OH-DTT} m	2.21	IND, CMP, BON, STL
	OP ^{OH-DTT} v	2.67*	CHI, IND, CMP, BON
	OP ^{AA} m	1.60	
	OP ^{AA} v	2.46*	CHI, CMP, BON
	OP ^{GSH} m	7.44**	CMP, CHI, IND, STL
	OP ^{GSH} v	4.33**	CMP, CHI, BON, IND, STL
g : 2010	OP ^{OH-SLF} m	0.46	
Spring 2019	OP ^{OH-SLF} v	0.60	
	OPDTTm	0.79	
	OPDTTv	1.93	CHI. BON
	OP ^{OH-DTT} m	2.15	BON, IND. CMP
	OP ^{OH-DTT} v	1.63	IND CMP

(b) Spatial variability

Asterisks - * and ** indicate significant (P < 0.05) and highly significant (P < 0.01) differences, respectively.

Table S6. Comparison of ambient $PM_{2.5}$ OP measured in our current study with those reported in the literatures. Asterisk - * indicates that the reported results are methanol-soluble OP, while all the other results (without the asterisk) are water-soluble OP.

(a) OP^{AA}

Reference	PM size	Levels	Location	Location	Sample	Methodology
	(µm)			type	size	
Fang et al. (2016)	≤2.5	0.2 - 5.2 nmol·min ⁻¹ ·m ⁻³	Southeast US	Urban and rural	483	Ambient $PM_{2.5}$ samples were collected using a Hi-Vol sampler on quartz filters, extracted in DI and filtered through a syringe filter. OP^{AA} of filtered extracts was assessed with an AA-only assay (no other antioxidants involved; concentration of AA was 200 μ M) with an automated system. AA was measured based on a photometric method (at 265 nm).
Mudway et al. (2005)	≤2.5	$0.012 \pm 0.0001 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	Eksaal, India	Biomass burning	3	Biomass burning samples were collected from dung- cake combustion, and extracted in Chelex-treated DI with 5% methanol. OP^{AA} of filtered extracts was assessed in a respiratory tract lining fluid (RTLF; composition was 200 μ M AA, 200 μ M GSH and 200 μ M UA). AA was measured based on a photometric method (at 265 nm).
Künzli et al. (2006)	≤ 2.5	$0.0096 \pm 0.0025 \ nmol \cdot min^{-1} \cdot \mu g^{-1}$	19 European cities	Urban	716	Ambient $PM_{2.5}$ samples were collected using a Basel- Sampler, and extracted in metal-free DI. OP^{AA} was assessed in the same manner as Mudway et al. (2005).
Szigeti et al. (2016)	≤2.5	0.0017 – 0.04 nmol·min ⁻¹ ·µg ⁻¹	8 European cities	Urban	22	Ambient and indoor $PM_{2.5}$ samples were collected using a Low-Vol sampler, and directly incubated in RTLF having same composition as in Mudway et al. (2005). AA was measured based on a photometric method (at 265 nm).
Godri et al. (2011)	1.0 - 1.9	$0.0058 \pm 0.0025 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	London, United Kingdom	Urban	14	Ambient size-segregated samples were collected using a MOUDI sampler, and extracted in Chelex-treated DI with 5% methanol. OP ^{AA} was assessed in the same manner as Mudway et al. (2005).

Perrone et al. (2019)	≤ 2.5	$\begin{array}{l} 0.006 \pm 0.001 \ nmol \cdot min^{\text{-1}} \cdot \mu g^{\text{-1}} \\ 0.136 \pm 0.020 \ nmol \cdot min^{\text{-1}} \cdot m^{\text{-3}} \end{array}$	Lecce, Italy	Urban	39
Gao et al. (2020a)	≤2.5	$0.023 - 0.126 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Atlanta, GA	Urban	349
Yang et al. (2014)	≤2.5	$0.8 - 35.0 \text{ nmol} \cdot \text{s}^{-1} \cdot \text{m}^{-3}$	Rotterdam and Amsterdam, Netherland	Urban	10
Yu et al. (2020)	≤ 2.5	$0.004 - 0.077 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.012 nmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ 0.044 - 0.745 nmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.160 nmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	54
Yang et al. (2014)*	≤ 2.5	$2.2 - 43.5 \text{ nmol} \cdot \text{s}^{-1} \cdot \text{m}^{-3}$	Rotterdam and Amsterdam, Netherland	Urban	20
This study	≤2.5	$\begin{array}{l} 0.002-0.077\ nmol\cdot min^{-1}\cdot \mu g^{-1}\\ median:\ 0.007\ nmol\cdot min^{-1}\cdot \mu g^{-1}\\ 0.012-0.908\ nmol\cdot min^{-1}\cdot m^{-3}\\ median:\ 0.078\ nmol\cdot min^{-1}\cdot m^{-3} \end{array}$	Midwest US (5 sites)	Urban (4), rural (1)	241
This study*		$\begin{array}{l} 0.004-0.029\ nmol \cdot min^{-1} \cdot \mu g^{-1} \\ median:\ 0.012\ nmol \cdot min^{-1} \cdot \mu g^{-1} \\ 0.030-0.311\ nmol \cdot min^{-1} \cdot m^{-3} \\ median:\ 0.134\ nmol \cdot min^{-1} \cdot m^{-3} \end{array}$	Midwest US (5 sites)	Urban (4), rural (1)	241

Ambient $PM_{2.5}$ samples were collected using a low volume HYDRA-FAI dual sampler, and extracted in DI. OP^{AA} of filtered extracts was assessed with an AA-only assay similar as in Fang et al. (2016).

Ambient $PM_{2.5}$ samples were collected using a Hi-Vol sampler on quartz filters, extracted in DI and filtered through a syringe filter. OP^{AA} was assessed in the same manner as Mudway et al. (2005).

Ambient $PM_{2.5}$ samples were collected using a Harvard Impactor and extracted in ultrapure water. OP^{AA} of filtered extracts was assessed AA-only assay similar as in Fang et al. (2016).

 $PM_{2.5}$ sampling, preparation and OP^{AA} measurement were conducted in the same manner as the current study.

Ambient $PM_{2.5}$ samples were collected using a Harvard Impactor and extracted in methanol. Filtered methanol extracts were evaporated using an evaporator set, and reconstituted with DI. OP^{AA} of water-reconstituted methanol extracts was assessed AA-only assay similar as in Fang et al. (2016). See section 2 (experimental methods).

Asterisk - * indicates that the reported results are methanol-soluble OP^{AA}.

(b) OP^{GSH}

Reference	PM size	Levels	Location	Location	Sample	Methodology
	(µm)			type	size	
Mudway et al. (2005)	\leq 2.5	$0.0083 \pm 0.0002 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu g^{-1}$	Eksaal, India	Biomass	3	OP ^{GSH} of filtered extracts was measured in RTLF. GSH
				burning		was measured with a glutathione disulfide (GSSG)-
						reductase-5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB)
						recycling assay, based on a photometric method (at 405 nm).
Künzli et al. (2006)	≤2.5	$0.0041 \pm 0.0017 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	19 European	Urban	716	OP ^{GSH} was assessed in the same manner as Mudway et
· · · · ·			cities			al. (2005).
Szigeti et al. (2016)	\leq 2.5	$0 - 0.0275 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	8 European cities	Urban	22	Punches of filter samples were directly incubated in
						RTLF, and measured for OP ^{GSH} in the same manner
						with Mudway et al. (2005).
Godri et al. (2011)	1.0 – 1.9	$0.0042 \pm 0.0033 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	London, United	Urban	14	OP ^{GSH} was assessed in the same manner as Mudway et
			Kingdom			al. (2005).
Gao et al. (2020a)	≤ 2.5	$0.025 - 0.067 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Atlanta, GA	Urban	349	OP ^{OSH} was assessed in the same manner as Mudway et
X (1 (2020)	< 0.5			TT 1	5 4	al. (2005).
Yu et al. (2020)	≤ 2.5	$0.001 - 0.040 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	Midwest US (5	Urban	54	$PM_{2.5}$ sampling, preparation and OP^{con} measurement
		median: $0.010 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu g^{-1}$	sites)	(4), rural		were conducted in the same manner as the current
		$0.008 - 0.463 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$		(1)		study.
		median: $0.100 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-5}$				
This study	≤ 2.5	$0.002 - 0.035 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$	Midwest US (5	Urban	241	See section 2 (experimental methods).
		median: 0.007 nmol·min ⁻¹ ·µg ⁻¹	sites)	(4), rural		
		$0.013 - 0.419 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$		(1)		
		median: 0.074 nmol·min ⁻¹ ·m ⁻³				

(c) OP^{OH-SLF}

Reference	PM size	Levels	Location	Location	Sample	Methodology
	(µm)			type	size	
Vidrio et al. (2009)	≤2.5	$0.253 \pm 0.135 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu g^{-1}$	Davis, CA	Urban	~90	Ambient $PM_{2.5}$ samples were collected using IMPROVE Version II samplers on Teflo filters, directly incubated in SLF (composition was 114 mM NaCl, 10 mM sodium benzoate, 10 mM total phosphate to buffer the solution at pH 7.4, 200 μ M AA and 300 μ M CA) with desferoxamine (DSF) for 24 hours, and measured for ·OH generation. ·OH was captured by sodium benzoate and measured based on a photometric method (at 256 nm) using a high- performance liquid chromatography (HPLC).
Ma et al. (2015)	≤2.5	$0.092 \pm 0.019 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu g^{-1}$	Guangzhou, China	Urban	72	Ambient $PM_{2.5}$ samples were collected using a Low- Vol sampler on Teflon filters. OP^{OH-SLF} was measured in the same manner as in Vidrio et al. (2009).
Yu et al. (2020)	≤2.5	$0.085 - 0.967 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.307 pmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1} $0.857 - 7.884 \text{ pmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 3.559 pmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}	Midwest US (5 sites)	Urban (4), rural (1)	54	$PM_{2.5}$ sampling, preparation and OP^{OH-SLF} measurement were conducted in the same manner as the current study.
This study	≤2.5	$0.040 - 1.217 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.142 pmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ 0.269 - 12.13 pmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 1.449 pmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	241	See section 2 (experimental methods).

(d) OP^{DTT}

Reference	PM size	Levels	Location	Location	Sample	Methodology
	(µm)			type	size	
Fang et al. (2015)	≤2.5	$\begin{array}{l} 0.010-0.097\ nmol\cdot min^{-1}\cdot \mu g^{-1} \\ median:\ 0.024-0.041\ nmol\cdot min^{-1}\cdot \mu g^{-1} \\ 0.05-0.81\ nmol\cdot min^{-1}\cdot m^{-3} \\ median:\ 0.23\ -\ 0.31\ nmol\cdot min^{-1}\cdot m^{-3} \end{array}$	Southeast US	Urban and rural	503	Ambient $PM_{2.5}$ samples were collected using a Hi- Vol sampler on quartz filters, extracted in DI and filtered through a syringe filter. Filtered extracts were then incubated in a mixture of 100 µM DTT and 0.5 mM potassium phosphate buffer (K-PB; pH = 7.4). DTT was captured by DTNB and measured based on a photometric method (at 412 nm) using an automated system
Xiong et al. (2017)	≤2.5	$0.1 - 0.18 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Urbana, IL	Urban	10	Ambient $PM_{2.5}$ samples were collected with Hi-Vol sampler on quartz filters, extracted in Milli-Q water, and filtered through a syringe filter. OP^{DTT} were assessed in the same manner with Fang et al. (2015).
Cho et al. (2005)	≤2.5	$0.013 - 0.047 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.029 nmol · min^{-1} \cdot \mu \text{g}^{-1}	Los Angeles basin, CA	Urban	11	Ambient size-segregated samples were collected using a VACES in conjunction with a BioSampler. Collected suspensions were then incubated in a mixture of 100 μ M DTT and 0.5 mM potassium phosphate buffer (K-PB; pH = 7.4). DTT was captured by DTNB and measured based on a photometric method (at 412 nm) at designated time points within 90 min.
Charrier and Anastasio (2012)	≤2.5	0.02 – 0.061 nmol·min ⁻¹ ·µg ⁻¹ median: 0.029 nmol·min ⁻¹ ·µg ⁻¹	San Joaquin, CA	Urban, rural	6	Ambient PM _{2.5} samples were collected on Teflon filters, but the filter extraction method was not reported. DTT assay was conducted by incubating the aqueous sample extracts in 100 μ M DTT. DTT was captured by DTNB and measured based on a photometric method (at 412 nm) at four time points within 16 min.
Gao et al. (2017)	≤2.5	$0.09 - 0.30 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.19 nmol · min^{-1} · m^{-3}	Atlanta, GA (2 sites)	Urban	66	PM _{2.5} sampling, preparation and OP ^{DTT} measurement were conducted in the same manner as

						Fang et al. (2015).
Gao et al. (2020a) and Gao et al. (2020b)	≤2.5	$\begin{array}{l} 0.005-0.070\ nmol\cdot min^{-1}\cdot \mu g^{-1}\\ average:\ 0.024\ nmol\cdot min^{-1}\cdot \mu g^{-1}\\ 0.05-0.48\ nmol\cdot min^{-1}\cdot m^{-3}\\ average:\ 0.22\ nmol\cdot min^{-1}\cdot m^{-3} \end{array}$	Atlanta, GA	Urban	349	$PM_{2.5}$ sampling, preparation and OP^{DTT} measurement were conducted in the same manner as Fang et al. (2015).
Hu et al. (2008)	0.25 – 2.5	$0.014 - 0.024 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.019 nmol · min^{-1} · μg^{-1} $0.10 - 0.16 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.14 nmol · min^{-1} · m^{-3}	Los Angeles harbor, CA	Urban	6	Ambient size-segregated samples were collected with Sioutas samplers on Zefluor and Quartz filters, and extracted in Milli-Q water. DTT assay was conducted by incubating the PM suspensions in 100 μ M DTT at pH = 7.4 adjusted by K-PB. DTT was captured by DTNB and measured based on a photometric method (at 412 nm) at designated time points within 30 min.
Cesari et al. (2019)	≤2.5	$\begin{array}{l} 0.012 \pm 0.008 \; nmol \cdot min^{-1} \cdot \mu g^{-1} \\ 0.19 \pm 0.10 \; nmol \cdot min^{-1} \cdot m^{-3} \end{array}$	Sarno, Italy	Urban	~50	Ambient $PM_{2.5}$ samples were collected using a Low- Vol sequential sampler on quartz filters, extracted in DI and filtered through a syringe filter. DTT assay was conducted by incubating the extracts in DTT (concentration not reported) at pH = 7.4 adjusted by K-PB. DTT was captured by DTNB and measured based on a photometric method (at 412 nm) at designated time points (details not reported).
Paraskevopoulou et al. (2019)	≤2.5	$\begin{array}{l} 0.028 \pm 0.014 \ nmol \cdot min^{-1} \cdot \mu g^{-1} \\ 0.33 \pm 0.20 \ nmol \cdot min^{-1} \cdot m^{-3} \end{array}$	Athens, Greece	Urban	361	Ambient $PM_{2.5}$ samples were collected using a Dichotomous Partisol sampler on quartz filters, extracted in DI and filtered through a syringe filter. OP^{DTT} was assessed in the same manner as Fang et al. (2015).
Perrone et al. (2019)	≤2.5	$\begin{array}{l} 0.010 \pm 0.001 \ nmol \cdot min^{\text{-1}} \cdot \mu g^{\text{-1}} \\ 0.228 \pm 0.024 \ nmol \cdot min^{\text{-1}} \cdot m^{\text{-3}} \end{array}$	Lecce, Italy	Urban	39	Ambient $PM_{2.5}$ samples were collected using a low volume HYDRA-FAI dual sampler, and extracted in DI. DTT assay was conducted by incubating the aqueous sample extracts in 100 μ M DTT. DTT was captured by DTNB and measured based on a photometric method (at 412 nm) at five time points within 40 min.

Yang et al. (2014)	≤2.5	$0.4 - 7.2 \text{ nmol} \cdot \text{s}^{-1} \cdot \text{m}^{-3}$	Rotterdam and Amsterdam, Netherland	Urban	10	Ambient $PM_{2.5}$ samples were collected using a Harvard Impactor and extracted in ultrapure water. OP^{DTT} of water-soluble extracts was assessed in the same manner as Hu et al. (2008)		
Yu et al. (2020)	≤ 2.5	$0.004 - 0.193 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.014 nmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ $0.041 - 1.282 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.146 nmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	54	$PM_{2.5}$ sampling, preparation and OP^{DTT} measurement were conducted in the same manner as the current study.		
Verma et al. (2012)*	≤ 2.5	$0.020 - 0.054 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.034 nmol · min^{-1} \cdot \mu \text{g}^{-1}	Atlanta, GA	Urban	8	Ambient PM _{2.5} samples were collected using a Hi Vol sampler on quartz filters, extracted in both methanol and water, and filtered through a syring filter. Methanol extracts were evaporated to nearly dryness using a rotary evaporator and reconstituted to 15 mL with 0.1 M K-PB (pH = 7.4). Reconstituted methanol extracts were incubated in 100 μ M DT' and 0.5 M K-PB (pH = 7.4). DTT was captured by DTNB and measured based on a photometric metho		
Gao et al. (2017)*	≤ 2.5	0.14 – 0.47 nmol·min ⁻¹ ·m ⁻³ median: 0.30 nmol·min ⁻¹ ·m ⁻³	Atlanta, GA (2 sites)	Urban	66	Method 1: Ambient $PM_{2.5}$ samples were extracted in a stepwise manner with DI and methanol. Both extracts were filtered through a syringe filter. Methanol extracts were evaporated to ~200 µL using high-purity nitrogen and reconstituted with DI. Total OP was calculated by adding the OP of both extracts. Method 2: Samples were extracted in methanol. Punches were removed after sonication. The remaining suspensions were analyzed for OP^{DTT} without being filtered through a syringe filter. Method 3: Samples were sonicated in K-PB (pH = 7.4). The mixture was analyzed for OP^{DTT} without removing inside punches or being filtered through a syringe filter.		

iltered through a syringe filter. pples were sonicated in K-PB (pH = are was analyzed for OPDTT without e punches or being filtered through a measurement was conducted in the same OP

Gao et al. (2020b)*	≤2.5	$0.012 - 0.116 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ average: 0.027 nmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ $0.13 - 0.58 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ average: 0.28 nmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Atlanta, GA	Urban	349
Yang et al. (2014)*	≤2.5	0.5 – 5.2 nmol·min ⁻¹ ·m ⁻³	Rotterdam and Amsterdam, Netherland	Urban	20
This study	≤2.5	$0.004 - 0.032 \text{ nmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.014 nmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ $0.029 - 0.561 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.150 nmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	241
This study*	≤2.5	$\begin{array}{l} 0.004-0.042 \ nmol \cdot min^{-1} \cdot \mu g^{-1} \\ median: \ 0.021 \ nmol \cdot min^{-1} \cdot \mu g^{-1} \\ 0.031-0.639 \ nmol \cdot min^{-1} \cdot m^{-3} \\ median: \ 0.234 \ nmol \cdot min^{-1} \cdot m^{-3} \end{array}$	Midwest US (5 sites)	Urban (4), rural (1)	241

manner as Fang et al. (2015) using a modified automated system for analyzing suspensions with insoluble fractions.

 $PM_{2.5}$ sampling, preparation and OP^{DTT} measurement were conducted in the same manner as Gao et al. (2017) (Method 3).

Ambient $PM_{2.5}$ samples were collected using a Harvard Impactor and extracted in methanol. Filtered methanol extracts were evaporated using an evaporator set, and reconstituted with DI. OP^{DTT} of water-reconstituted methanol-soluble extracts was assessed in the same manner as Hu et al. (2008). See section 2 (experimental methods).

Asterisk - * indicates that the reported results are methanol-soluble OPDTT.

(e) OP^{OH-DTT}

Reference	PM size	Levels	Location	Location	Sample size	Methodology
	(µm)			type		
Xiong et al. (2017)	≤2.5	0.2 – 0.6 pmol·min ⁻¹ ·m ⁻³	Urbana, IL	Urban	10	PM _{2.5} extracts were incubated in 100 μ M DTT and K-PB (pH = 7.4) with 50 mM TPT. \cdot OH was captured by TPT and measured based on a fluorometric method (excitation/emission wavelength of 310/425 nm) at six time points within 120 min.
Yu et al. (2018)	≤2.5	$0.2 - 1.1 \text{ pmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Urbana, IL	Urban	10	$PM_{2.5}$ sampling, preparation and OP^{OH-DTT} measurement were conducted in the same manner as Xiong et al. (2017).
Yu et al. (2020)	≤2.5	$0.034 - 0.357 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.082 pmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ $0.360 - 4.152 \text{ pmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 1.054 pmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	54	PM _{2.5} sampling, preparation and OP ^{OH-DTT} measurement was conducted in the same manner as the current study.
This study	≤ 2.5	$0.004 - 0.357 \text{ pmol} \cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ median: 0.065 pmol $\cdot \text{min}^{-1} \cdot \mu \text{g}^{-1}$ $0.022 - 3.565 \text{ pmol} \cdot \text{min}^{-1} \cdot \text{m}^{-3}$ median: 0.722 pmol $\cdot \text{min}^{-1} \cdot \text{m}^{-3}$	Midwest US (5 sites)	Urban (4), rural (1)	241	See section 2 (experimental methods).

	CHI	STL	IND	CMP	BON
Summer 2018	2.1	2.6	2.0	1.1	2.0
Fall 2018	3.5	4.9	5.5	2.7	4.6
Winter 2018	9.4	2.9	3.3	3.2	3.9
Spring 2019	3.2	2.7	7.2	4.1	3.9

Table S7. Seasonal median of the ratio of methanol-soluble OPv to water-soluble OPv (M/W^{OP}) for OP^{OH-SLF}v at five sampling sites.

References

Cesari, D., Merico, E., Grasso, F. M., Decesari, S., Belosi, F., Manarini, F., De Nuntiis, P., Rinaldi, M., Volpi, F., and Gambaro, A.: Source apportionment of PM2. 5 and of its oxidative potential in an industrial suburban site in South Italy, *Atmosphere*, 10, 758, 2019.

Charrier, J., and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, *Atmospheric Chemistry and Physics*, 12, 11317-11350, 10.5194/acp-12-9321-2012, 2012.

Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh, M., Eiguren-Fernandez, A., and Froines, J. R.: Redox activity of airborne particulate matter at different sites in the Los Angeles Basin, *Environmental Research*, 99, 40-47, 10.1016/j.envres.2005.01.003, 2005.

Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), *Atmospheric Measurement Techniques*, 8, 471-482, 10.5194/amt-8-471-2015, 2015.

Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., and Tolbert, P. E.: Oxidative potential of ambient water-soluble PM_{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays, *Atmospheric Chemistry and Physics*, 16, 3865-3879, 10.5194/acp-16-3865-2016, 2016.

Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, *Atmospheric Measurement Techniques*, 10, 2821, 2017.

Gao, D., Godri Pollitt, K. J., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization and comparison of PM 2.5 oxidative potential assessed by two acellular assays, *Atmospheric Chemistry and Physics*, 20, 5197-5210, 2020a.

Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization of water-insoluble oxidative potential of PM_{2.5} using the dithiothreitol assay, *Atmospheric Environment*, 224, 117327, https://doi.org/10.1016/j.atmosenv.2020.117327, 2020b.

Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I. S., and Kelly, F. J.: Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London, *PloS One*, 6, e21961, 10.1371/journal.pone.0021961, 2011.

Hu, S., Polidori, A., Arhami, M., Shafer, M., Schauer, J., Cho, A., and Sioutas, C.: Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor, *Atmospheric Chemistry and Physics*, 8, 6439-6451, 10.5194/acp-8-6439-2008, 2008.

Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook, S., Burney, P., Forsberg, B., Gauderman, J. W., and Hazenkamp, M. E.: Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM_{2.5} collected at 20 European sites, *Environmental Health Perspectives*, 114, 684-690, 10.1289/ehp.8584, 2006.

Ma, S., Ren, K., Liu, X., Chen, L., Li, M., Li, X., Yang, J., Huang, B., Zheng, M., and Xu, Z.: Production of hydroxyl radicals from Fe-containing fine particles in Guangzhou, China, *Atmospheric Environment*, 123, 72-78, 10.1016/j.atmosenv.2015.10.057, 2015.

Mudway, I. S., Duggan, S. T., Venkataraman, C., Habib, G., Kelly, F. J., and Grigg, J.: Combustion of dried animal dung as biofuel results in the generation of highly redox active fine particulates, *Particle and Fibre Toxicology*, 2, 6, 10.1186/1743-8977-2-6, 2005.

Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M., Liakakou, E., Gerasopoulos, E., Weber, R., Nenes, A., and Mihalopoulos, N.: Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment, *Atmospheric Environment*, 206, 183-196, 2019.

Perrone, M. R., Bertoli, I., Romano, S., Russo, M., Rispoli, G., and Pietrogrande, M. C.: PM2. 5 and PM10 oxidative potential at a Central Mediterranean Site: Contrasts between dithiothreitol-and ascorbic acid-measured values in relation with particle size and chemical composition, *Atmospheric Environment*, 210, 143-155, 2019.

Szigeti, T., Dunster, C., Cattaneo, A., Cavallo, D., Spinazzè, A., Saraga, D. E., Sakellaris, I. A., de Kluizenaar, Y., Cornelissen, E. J., and Hänninen, O.: Oxidative potential and chemical composition of PM_{2.5} in office buildings across Europe–The OFFICAIR study, *Environment International*, 92, 324-333, 10.1016/j.envint.2016.04.015, 2016.

Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W., and Weber, R. J.: Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols, *Environmental Science & Technology*, 46, 11384-11392, 10.1021/es302484r, 2012.

Vidrio, E., Phuah, C. H., Dillner, A. M., and Anastasio, C.: Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution, *Environmental Science & Technology*, 43, 922-927, 10.1021/es801653u, 2009.

Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking the dithiothreitol-based particulate matter oxidative potential: measuring dithiothreitol consumption versus reactive oxygen species generation, *Environmental Science & Technology*, 51, 6507-6514, 10.1021/acs.est.7b01272, 2017.

Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B., Kuhlbusch, T. A., Cassee, F. R., and Janssen, N. A.: Measurement of the oxidative potential of $PM_{2.5}$ and its constituents: The effect of extraction solvent and filter type, *Atmospheric Environment*, 83, 35-42, 10.1016/j.atmosenv.2013.10.049, 2014.

Yu, H., Puthussery, J. V., and Verma, V.: A semi-automated multi-endpoint reactive oxygen species activity analyzer (SAMERA) for measuring the oxidative potential of ambient PM_{2.5} aqueous extracts, *Aerosol Science and Technology*, 54, 304-320, 2020.