Articles | Volume 15, issue 20
Atmos. Chem. Phys., 15, 11667–11682, 2015
Atmos. Chem. Phys., 15, 11667–11682, 2015

Research article 21 Oct 2015

Research article | 21 Oct 2015

PM2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies

T. Fang1, H. Guo1, V. Verma1,a, R. E. Peltier2, and R. J. Weber1 T. Fang et al.
  • 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
  • 2School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
  • anow at: Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA

Abstract. Water-soluble redox-active metals are potentially toxic due to its ability to catalytically generate reactive oxygen species (ROS) in vivo, leading to oxidative stress. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), we developed a method to quantify water-soluble elements, including redox-active metals, from a large number of filter samples (N = 530) in support of the center's health studies. PM2.5 samples were collected during 2012–2013 at various sites (three urban, two rural, a near-road site, and a road-side site) in the southeastern United States, using high-volume samplers. Water-soluble elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Sr, Ba, and Pb) were determined by extracting filters in deionized water and re-aerosolized for analyses by X-ray fluorescence (XRF) using an online aerosol element analyzer (Xact, Cooper Environmental). Concentrations ranged from detection limits (nominally 0.1 to 30 ng m−3) to 1.2 μg m−3, with S as the most abundant element, followed by Ca, K, Fe, Cu, Zn, and Ba. Positive matrix factorization (PMF) identified four factors that were associated with specific sources based on relative loadings of various tracers. These include brake/tire wear (with tracers Ba and Cu), biomass burning (K), secondary formation (S, Se, and WSOC), and mineral dust (Ca). Of the four potentially toxic and relatively abundant metals (redox-active Cu, Mn, Fe, and redox-inactive Zn), 51 % of Cu, 32 % of Fe, 17 % of Mn, and 45 % of Zn were associated with the brake/tire factor. Mn was mostly associated with the mineral dust factor (45 %). Zn was found in a mixture of factors, with 26 % associated with mineral dust, 14 % biomass burning, and 13 % secondary formation. Roughly 50 % of Fe and 40 % of Cu were apportioned to the secondary formation factor, likely through increases in the soluble fraction of these elements by sulfur-driven aerosol water and acidity. Linkages between sulfate and water-soluble Fe and Cu may account for some of the past observed associations between sulfate/sulfur oxide and health outcomes. For Cu, Mn, Fe, and Zn, only Fe was correlated with PM2.5 mass (r = 0.73–0.80). Overall, mobile source emissions generated through mechanical processes (re-entrained road dust, tire and break wear) and processing by secondary sulfate were major contributors to water-soluble metals known to be capable of generating ROS.

Short summary
This work presented a new method of quantifying water-soluble elements in PM2.5 aqueous extracts (N~500) with an X-ray fluorescence analyzer. The results indicate that water-soluble elements had marked spatial and temporal patterns. Four sources were resolved: brake/tire wear, biomass burning, secondary formation, and mineral dust. The findings have informed studies on aerosol oxidative potential and provided insights into the health effects of water-soluble metals, especially Cu, Fe, Mn and Zn.
Final-revised paper