Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-13997-2021
https://doi.org/10.5194/acp-21-13997-2021
Research article
 | 
21 Sep 2021
Research article |  | 21 Sep 2021

Supersaturation, buoyancy, and deep convection dynamics

Wojciech W. Grabowski and Hugh Morrison

Related authors

Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023,https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model
Istvan Geresdi, Lulin Xue, Sisi Chen, Youssef Wehbe, Roelof Bruintjes, Jared A. Lee, Roy M. Rasmussen, Wojciech W. Grabowski, Noemi Sarkadi, and Sarah A. Tessendorf
Atmos. Chem. Phys., 21, 16143–16159, https://doi.org/10.5194/acp-21-16143-2021,https://doi.org/10.5194/acp-21-16143-2021, 2021
Short summary
Cloud droplet diffusional growth in homogeneous isotropic turbulence: bin microphysics versus Lagrangian super-droplet simulations
Wojciech W. Grabowski and Lois Thomas
Atmos. Chem. Phys., 21, 4059–4077, https://doi.org/10.5194/acp-21-4059-2021,https://doi.org/10.5194/acp-21-4059-2021, 2021
Short summary
Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model
Lois Thomas, Wojciech W. Grabowski, and Bipin Kumar
Atmos. Chem. Phys., 20, 9087–9100, https://doi.org/10.5194/acp-20-9087-2020,https://doi.org/10.5194/acp-20-9087-2020, 2020
Short summary
Separating physical impacts from natural variability using piggybacking technique
Wojciech W. Grabowski
Adv. Geosci., 49, 105–111, https://doi.org/10.5194/adgeo-49-105-2019,https://doi.org/10.5194/adgeo-49-105-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024,https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024,https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024,https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024,https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary

Cited articles

Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. 
Betts, A. K.: Non-precipitating cumulus convection and its parameterization, Q. J. Roy. Meteor. Soc., 99, 178–196, 1973. 
Böing, S. J., H. J. J. Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.: Influence of the subcloud layer on the development of a deep convective ensemble, J. Atmos. Sci., 69, 2682–2698, https://doi.org/10.1175/JAS-D-11-0317.1, 2012. 
Clark, T. L.: Numerical simulations with a three dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations, J. Atmos. Sci., 36, 2191–2215, 1979. 
Cotton, W. R. and Walko, R.: Examination of aerosol-induced convective invigoration using idealized simulations, J. Atmos. Sci., 78, 287–298, 2021. 
Download
Short summary
The paper provides a discussion of key elements of moist convective dynamics: cloud buoyancy, latent heating, precipitation, and entrainment. The motivation comes from recent discussions concerning differences in convective dynamics in polluted and pristine environments.
Altmetrics
Final-revised paper
Preprint