Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13553-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13553-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data
Minkang Du
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
State Observatory for Atmospheric Remote Sensing, Wuhan, China
Kaiming Huang
CORRESPONDING AUTHOR
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
State Observatory for Atmospheric Remote Sensing, Wuhan, China
Shaodong Zhang
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
Chunming Huang
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
State Observatory for Atmospheric Remote Sensing, Wuhan, China
Related authors
No articles found.
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Gang Chen, Yimeng Xu, Guotao Yang, Shaodong Zhang, Zhipeng Ren, Pengfei Hu, Tingting Yu, Fuju Wu, Lifang Du, Haoran Zheng, Xuewu Cheng, Faquan Li, and Min Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1888, https://doi.org/10.5194/egusphere-2025-1888, 2025
Short summary
Short summary
We usually believe that the impact of magnetic storms will not reach the mesosphere. However, in the storm on 4 Nov. 2021, the mesospheric metal layer depletion was recorded by three lidars for different metal components at mid-latitudes. The storm induced oxygen density enhancement is considered to consume more metal atoms in the metal layer. It implies that the effects of storm have reached mesosphere, and the influence of storm on metal layer is achieved through chemical processes.
Zirui Zhang, Kaiming Huang, Fan Yi, Wei Cheng, Fuchao Liu, Jian Zhang, and Yue Jia
Atmos. Chem. Phys., 25, 3347–3361, https://doi.org/10.5194/acp-25-3347-2025, https://doi.org/10.5194/acp-25-3347-2025, 2025
Short summary
Short summary
The height of the convective boundary layer (CBLH) is related to our health due to its crucial role in pollutant dispersion. The variance of vertical velocity from millimeter wave cloud radar (MMCR) can accurately capture the diurnal evolution of the CBLH, due to a small blind range and less impact by the residual layer. The CBLH is affected by radiation, humidity, cloud, and precipitation; thus, the MMCR is suitable for monitoring the CBLH, owing to its observation capability in various weather conditions.
Yu Gou, Jian Zhang, Wuke Wang, Kaiming Huang, and Shaodong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4198, https://doi.org/10.5194/egusphere-2024-4198, 2025
Preprint withdrawn
Short summary
Short summary
The most commonly used tropopause height detection algorithm is based on the World Meteorological Organization (WMO) definition from 1957. However, with the increasing vertical resolution of atmospheric data, this definition has been found to fail in high-resolution radiosonde data. Thus, we propose an improved method to address this issue. This method can effectively bypassing thin inversions while preserving the fine–scale structure of the tropopause.
Dongzhe Jing, Yun He, Zhenping Yin, Kaiming Huang, Fuchao Liu, and Fan Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-56, https://doi.org/10.5194/egusphere-2025-56, 2025
Short summary
Short summary
We present the evolution of tropospheric aerosols over Wuhan, central China, from 2010 to 2024. The analysis highlights the long-term aerosol characteristics and separates natural (dust) and anthropogenic (non-dust) contributions. Emission control policies were highly effective during 2010–2017. However, after 2018, lidar-derived aerosol optical depth (AOD) ceased decreasing and fluctuated, and the decline in PM2.5 concentration also became slower, possibly due to atmospheric chemistry factors.
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
Atmos. Chem. Phys., 24, 11431–11450, https://doi.org/10.5194/acp-24-11431-2024, https://doi.org/10.5194/acp-24-11431-2024, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan, in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017, along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitudes of East Asia.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022, https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Xiansi Huang, Kaiming Huang, Hao Cheng, Shaodong Zhang, Wei Cheng, Chunming Huang, and Yun Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-407, https://doi.org/10.5194/acp-2022-407, 2022
Revised manuscript not accepted
Short summary
Short summary
Using radar observations and reanalysis data for 9 years, we demonstrate clearly for the first time that resonant interactions between tides and annual and semiannual oscillations do occur in the mesosphere and lower thermosphere. The resonant matching conditions of frequency and wavenumber are exactly satisfied for the interacting triad. At some altitudes, the secondary waves are stronger than the tides, thus in tidal studies, the secondary waves may be mistaken for the tides if no carefully.
Yang Yi, Fan Yi, Fuchao Liu, Yunpeng Zhang, Changming Yu, and Yun He
Atmos. Chem. Phys., 21, 17649–17664, https://doi.org/10.5194/acp-21-17649-2021, https://doi.org/10.5194/acp-21-17649-2021, 2021
Short summary
Short summary
Our lidar observations reveal the complete microphysical process of hydrometeors falling from mid-level stratiform clouds. We find that the surface rainfall begins as supercooled mixed-phase hydrometeors fall out of a liquid parent cloud base. We find also that the collision–coalescence growth of precipitating raindrops and subsequent spontaneous breakup always occur around 0.6 km altitude during surface rainfalls. Our findings provide new insights into stratiform precipitation formation.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
Cited articles
AIRS Science Team and Teixeira, J.: AIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS-only) , Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], available at: https://doi.org/10.5067/Aqua/AIRS/DATA321, 2013.
Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally,
A. P., Simmons, A. J., Thépaut, J. N., and Tompkins, A. M.: Analysis and
forecast impact of the main humidity observing systems, Q. J. Roy. Meteor.
Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El
Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007,
https://doi.org/10.1029/2006jc003798, 2007.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E.,
McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D.
H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission:
design, science objectives, data products, and processing systems, IEEE
T. Geosci. Remote, 41, 253–264,
https://doi.org/10.1109/tgrs.2002.808356, 2003.
Avery, M. A., Davis, S. M., Rosenlof, K. H., Ye, H., and Dessler, A. E.:
Large anomalies in lower stratospheric water vapour and ice during the
2015–2016 El Niño, Nat. Geosci., 10, 405–409,
https://doi.org/10.1038/ngeo2961, 2017.
Dai, A. and Wigley, T. M. L.: Global patterns of ENSO-induced precipitation,
Geophys. Res. Lett., 27, 1283–1286, https://doi.org/10.1029/1999gl011140,
2000.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dunkerton, T. J.: The quasi-biennial oscillation of 2015–2016: Hiccup or
death spiral?, Geophys. Res. Lett., 43, 10547–510552,
https://doi.org/10.1002/2016gl070921, 2016.
Fan, F., Dong, X., Fang, X., Xue, F., Zheng, F., and Zhu, J.: Revisiting the
relationship between the South Asian summer monsoon drought and El Niño
warming pattern, Atmos. Sci. Lett., 18, 175–182,
https://doi.org/10.1002/asl.740, 2017.
Feng, J. and Li, J.: Contrasting impacts of two types of ENSO on the boreal
spring Hadley circulation, J. Climate, 26, 4773–4789,
https://doi.org/10.1175/jcli-d-12-00298.1, 2013.
Gasparin, F. and Roemmich, D.: The strong freshwater anomaly during the
onset of the 2015/2016 El Niño, Geophys. Res. Lett., 43, 6452–6460,
https://doi.org/10.1002/2016gl069542, 2016.
Gu, G. and Adler, R. F.: Precipitation, temperature, and moisture transport
variations associated with two distinct ENSO flavors during 1979–2014,
Clim. Dynam., 52, 7249–7265, https://doi.org/10.1007/s00382-016-3462-3,
2016.
Held, I. M. and Soden, B. J.: Water vapor feedback and global warming, Annu.
Rev. Energ. Env., 25, 441–475,
https://doi.org/10.1146/annurev.energy.25.1.441, 2000.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: ERA5 monthly averaged data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form (last access: 6 September 2021), 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hill, K. J., Taschetto, A. S., and England, M. H.: South American rainfall
impacts associated with inter-El Niño variations, Geophys. Res. Lett.,
36, L19702, https://doi.org/10.1029/2009gl040164, 2009.
Huang, B. Y., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G.,
Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.:
Extended reconstructed sea surface temperature, version 5 (ERSSTv5):
Upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/jcli-d-16-0836.1, 2017.
Hólm, E. V.: Revision of the ECMWF humidity analysis: Construction of a
Gaussian control variable, Proc. Workshop on Humidity Analysis, Reading,
United Kingdom, 8–11 July 2002, ECMWF/GEWEX, 1–6, 2003.
Ishida, A., Kashino, Y., Hosoda, S., and Ando, K.: North-south asymmetry of
warm water volume transport related with El Niño variability, Geophys.
Res. Lett., 35, L18612, https://doi.org/10.1029/2008gl034858, 2008.
Jiang, J., Zhou, T., and Zhang, W.: Evaluation of satellite and reanalysis
precipitable water vapor data sets against radiosonde observations in
Central Asia, Earth Space Sci., 6, 1129–1148,
https://doi.org/10.1029/2019ea000654, 2019.
Kanamitsu, M. and Krishnamurti, T. N.: Northern summer tropical circulations
during drought and normal rainfall months, Mon. Weather Rev., 106, 331–347,
https://doi.org/10.1175/1520-0493(1978)106<0331:Nstcdd>2.0.Co;2, 1978.
Krishnamurti, T. N.: Tropical east-west circulations during the northern
summer, J. Atmos. Sci., 28, 1342–1347,
https://doi.org/10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2, 1971.
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two types of El Niño events: cold
tongue El Niño and warm pool El Niño, J. Climate, 22, 1499–1515,
https://doi.org/10.1175/2008JCLI2624.1, 2009.
Kumar, A., Kumar, S., Pratap, V., and Singh, A. K.: Performance of water
vapour retrieval from MODIS and ECMWF and their validation with ground based
GPS measurements over Varanasi, J. Earth Syst. Sci., 130, 41,
https://doi.org/10.1007/s12040-020-01529-3, 2021.
Kramer, H. J.: Observation of the earth and its environment: Survey of
missions and sensors, Springer Science & Business Media, p. 737, ISBN 978-3-540-42388-1, 2002.
Lanzante, J. R.: Resistant, robust and non-parametric techniques for the
analysis of climate data: Theory and examples, including applications to
historical radiosonde station data, Int. J. Climatol., 16, 1197–1226,
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L, 1996.
Lee, S.-K., Mapes, B. E., Wang, C., Enfield, D. B., and Weaver, S. J.:
Springtime ENSO phase evolution and its relation to rainfall in the
continental U.S, Geophys. Res. Lett., 41, 1673–1680,
https://doi.org/10.1002/2013gl059137, 2014.
Lee, T. and McPhaden, M. J.: Increasing intensity of El Niño in the
central-equatorial Pacific, Geophys. Res. Lett., 37, L14603,
https://doi.org/10.1029/2010GL044007, 2010.
Lees, E., Bousquet, O., Roy, D., and de Bellevue, J. L.: Analysis of diurnal
to seasonal variability of Integrated Water Vapour in the South Indian Ocean
basin using ground-based GNSS and fifth-generation ECMWF reanalysis (ERA5)
data, Q. J. Roy. Meteor. Soc., 147, 229–248,
https://doi.org/10.1002/qj.3915, 2020.
L'Heureux, M. L., Takahashi, K., Watkins, A. B., Barnston, A. G., Becker, E.
J., Di Liberto, T. E., Gamble, F., Gottschalck, J., Halpert, M. S., Huang,
B., Mosquera-Vásquez, K., and Wittenberg, A. T.: Observing and
predicting the 2015/16 El Niño, B. Am. Meteorol. Soc., 98, 1363–1382,
https://doi.org/10.1175/bams-d-16-0009.1, 2017.
Li, Z., Li, Y., Bonsal, B., Manson, A. H., and Scaff, L.: Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies, Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, 2018.
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated)
outgoing longwave radiation dataset, B. Am. Meteorol. Soc., 77,
1275–1277, 1996.
López-Parages, J. and Rodríguez-Fonseca, B.: Multidecadal
modulation of El Niño influence on the Euro-Mediterranean rainfall,
Geophys. Res. Lett., 39, L02704,
https://doi.org/10.1029/2011GL050049, 2012.
Ma, J. and Xie, S.-P.: Regional patterns of sea surface temperature change:
A source of uncertainty in future projections of precipitation and
atmospheric circulation, J. Climate, 26, 2482–2501,
https://doi.org/10.1175/jcli-d-12-00283.1, 2013.
Madenach, N., Carbajal Henken, C., Preusker, R., Sourdeval, O., and Fischer, J.: Analysis and quantification of ENSO-linked changes in the tropical Atlantic cloud vertical distribution using 14 years of MODIS observations, Atmos. Chem. Phys., 19, 13535–13546, https://doi.org/10.5194/acp-19-13535-2019, 2019.
Mapes, B., Chandra, A. S., Kuang, Z., and Zuidema, P.: Importance profiles
for water vapor, Surv. Geophys., 38, 1355–1369,
https://doi.org/10.1007/s10712-017-9427-1, 2017.
Mariotti, A.: How ENSO impacts precipitation in southwest central Asia,
Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007gl030078, 2007.
Massie, S., Lowe, P., Tie, X., Hervig, M., Thomas, G., and Russell, J.:
Effect of the 1997 El Niño on the distribution of upper tropospheric
cirrus, J. Geophys. Res.-Atmos., 105, 22725–22741,
https://doi.org/10.1029/2000jd900322, 2000.
Murray, F. W.: On the computation of saturation vapor pressure, J. Appl,
Meteorol., 6, 203–204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2, 1967.
NASA: CALIPSO Lidar Level 3 Cloud Occurrence Data, Standard V1-00, Langley Research Center Atmospheric Science Data Center [data set], available at: https://search.earthdata.nasa.gov/search/granules?p=C1575511329-LARC_ASDC&pg[0][v]=f&tl=1630929576.307!3!! (last access: 6 September 2021), 2018.
Newell, R. E., Zhu, Y., Browell, E. V., Read, W. G., and Waters, J. W.:
Walker circulation and tropical upper tropospheric water vapor, J. Geophys.
Res.-Atmos., 101, 1961–1974, https://doi.org/10.1029/95jd02275, 1996.
Newman, P. A., Coy, L., Pawson, S., and Lait, L. R.: The anomalous change in
the QBO in 2015-2016, Geophys. Res. Lett., 43, 8791–8797,
https://doi.org/10.1002/2016gl070373, 2016.
NOAA: Interpolated Outgoing Longwave Radiation (OLR), Physical Sciences Laboratory [data set], available at: https://downloads.psl.noaa.gov/Datasets/interp_OLR/ (last access: 6 September 2021), 2003.
NOAA: The Integrated Global Radiosonde Archive (IGRA), National Climatic Data Center [data set], available at: https://www.ncei.noaa.gov/pub/data/igra/derived/ (last access: 6 September 2021), 2004.
NOAA: Climate Prediction Center (CPC) Oceanic Nino Index, Climate Prediction Center [data set], available at: https://catalog.data.gov/dataset/climate-prediction-center-cpcoceanic-nino-index (last access: 6 September 2021), 2021.
Okazaki, A., Satoh, Y., Tremoy, G., Vimeux, F., Scheepmaker, R., and Yoshimura, K.: Interannual variability of isotopic composition in water vapor over western Africa and its relationship to ENSO, Atmos. Chem. Phys., 15, 3193–3204, https://doi.org/10.5194/acp-15-3193-2015, 2015.
Oort, A. H. and Yienger, J. J.: Observed interannual variability in the
Hadley circulation and its connection to ENSO, J. Climate, 9, 2751–2767,
https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2, 1996.
Paek, H., Yu, J.-Y., and Qian, C.: Why were the 2015/2016 and 1997/1998
extreme El Niños different?, Geophys. Res. Lett., 44, 1848–1856,
https://doi.org/10.1002/2016gl071515, 2017.
Palmeiro, F. M., Iza, M., Barriopedro, D., Calvo, N., and
García-Herrera, R.: The complex behavior of El Niño winter
2015–2016, Geophys. Res. Lett., 44, 2902–2910,
https://doi.org/10.1002/2017gl072920, 2017.
Park, S.-C. and Sohn, B.-J.: Recent trend of Hadley and Walker circulation
shown in water vapor transport potential, in: 20th Conference on climate
variability and change, General climate studies: poster session, New York,
United States, 21 January 2008, P2.18, 2008.
Permana, D. S., Thompson, L. G., and Setyadi, G.: Tropical West Pacific
moisture dynamics and climate controls on rainfall isotopic ratios in
southern Papua, Indonesia, J. Geophys. Res.-Atmos., 121, 2222–2245,
https://doi.org/10.1002/2015jd023893, 2016.
Quartly, G. D., Srokosz, M. A., and Guymer, T. H.: Changes in oceanic
precipitation during the 1997–98 El Niño, Geophys. Res. Lett., 27,
2293–2296, https://doi.org/10.1029/1999gl011311, 2000.
Sandeep, S. and Ajayamohan, R. S.: Modulation of winter precipitation
dynamics over the Arabian Gulf by ENSO, J. Geophys. Res.-Atmos., 123,
198–210, https://doi.org/10.1002/2017jd027263, 2018.
Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and
Shields, C. A.: Quantifying climate feedbacks using radiative kernels, J.
Climate, 21, 3504–3520, https://doi.org/10.1175/2007jcli2110.1, 2008.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang,
Z., Illingworth, A. J., O'connor, E. J., Rossow, W. B., Durden, S. L.,
Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C. A.: The
CloudSat Mission and the A-Train, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Stevens, B., Brogniez, H., Kiemle, C., Lacour, J.-L., Crevoisier, C., and
Kiliani, J.: Structure and dynamical influence of water vapor in the lower
tropical troposphere, Surv. Geophys., 38, 1371–1397,
https://doi.org/10.1007/s10712-017-9420-8, 2017.
Su, H. and Jiang, J. H.: Tropical clouds and circulation changes during the
2006/07 and 2009/10 El Niños, J. Climate, 26, 399–413,
https://doi.org/10.1175/JCLI-D-12-00152.1, 2013.
Sun, M., Cess, R. D., and Doelling, D. R.: Interpretation of cloud structure
anomalies over the tropical Pacific during the 1997/98 El Niño, J.
Geophys. Res.-Atmos., 117, D16114, https://doi.org/10.1029/2011JD015861, 2012.
Susskind, J., Blaisdell, J. M., and Iredell, L.: Improved methodology for
surface and atmospheric soundings, error estimates, and quality control
procedures: the atmospheric infrared sounder science team version-6
retrieval algorithm, J. Appl. Remote Sens., 8, 084994,
https://doi.org/10.1117/1.Jrs.8.084994, 2014.
Ssenyunzi, R. C., Oruru, B., D'ujanga, F. M., Realini, E., Barindelli, S.,
Tagliaferro, G., von Engeln, A., and van de Giesen, N.: Performance of ERA5
data in retrieving precipitable water vapour over East African tropical
region, Adv. Space Res., 65, 1877–1893,
https://doi.org/10.1016/j.asr.2020.02.003, 2020.
Takahashi, H., Su, H., Jiang, J. H., Luo, Z. J., Xie, S.-P., and Hafner, J.:
Tropical water vapor variations during the 2006-2007 and 2009–2010 El
Niños: Satellite observation and GFDL AM2.1 simulation, J. Geophys.
Res.-Atmos., 118, 8910–8920, https://doi.org/10.1002/jgrd.50684, 2013.
Takemoto, M. and Tanaka, H. L.: Intensities of Hadley, Walker, and monsoon
circulations compared in the upper and lower troposphere, J. Korean Meteor.
Soc., 43, 239–251, 2007.
Tanaka, H. L., Ishizaki, N., and Kitoh, A.: Trend and interannual
variability of Walker, monsoon and Hadley circulations defined by velocity
potential in the upper troposphere, Tellus A, 56, 250–269,
https://doi.org/10.1111/j.1600-0870.2004.00049.x, 2004.
Tanaka, H. L., Ishizaki, N., and Nohara, D.: Intercomparison of the
intensities and trends of Hadley, Walker and monsoon circulations in the
global warming projections, SOLA, 1, 77–80,
https://doi.org/10.2151/sola.2005-021, 2005.
Viswanadham, Y.: The relationship between total precipitable water and
surface dew point, J. Appl. Meteorol. Clim., 20, 3–8,
https://doi.org/10.1175/1520-0450(1981)020<0003:TRBTPW>2.0.CO;2, 1981.
Wang, C.: Atmospheric circulation cells associated with the El Niño
Southern Oscillation, J. Climate, 15, 399-419,
https://doi.org/10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2, 2002.
Wang, J., Zeng, N., Wang, M., Jiang, F., Chen, J., Friedlingstein, P., Jain, A. K., Jiang, Z., Ju, W., Lienert, S., Nabel, J., Sitch, S., Viovy, N., Wang, H., and Wiltshire, A. J.: Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños, Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, 2018.
Wang, S., Xu, T., Nie, W., Jiang, C., Yang, Y., Fang, Z., Li, M., and Zhang,
Z.: Evaluation of precipitable water vapor from five reanalysis products
with ground-based GNSS observations, Remote Sens., 12, 1817,
https://doi.org/10.3390/rs12111817, 2020.
Wang, X., Jiang, X., Yang, S., and Li, Y.: Different impacts of the two
types of El Niño on Asian summer monsoon onset, Environ. Res. Lett., 8, 044053,
https://doi.org/10.1088/1748-9326/8/4/044053, 2013.
Weng, H., Behera, S. K., and Yamagata, T.: Anomalous winter climate
conditions in the Pacific rim during recent El Niño Modoki and El
Niño events, Clim. Dynam., 32, 663–674,
https://doi.org/10.1007/s00382-008-0394-6, 2008.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance
assessment of CALIOP, Geophys. Res. Lett., 34, L19803,
https://doi.org/10.1029/2007gl030135, 2007.
Xu, K., Tam, C.-Y., Zhu, C., Liu, B., and Wang, W.: CMIP5 projections of two
types of El Niño and their related tropical precipitation in the
twenty-First century, J. Climate, 30, 849–864,
https://doi.org/10.1175/jcli-d-16-0413.1, 2017.
Yan, X., Konopka, P., Ploeger, F., Tao, M., Müller, R., Santee, M. L., Bian, J., and Riese, M.: El Niño Southern Oscillation influence on the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, 2018.
Ye, H., Fetzer, E. J., Bromwich, D. H., Fishbein, E. F., Olsen, E. T.,
Granger, S. L., Lee, S.-Y., Chen, L., and Lambrigtsen, B. H.: Atmospheric
total precipitable water from AIRS and ECMWF during Antarctic summer,
Geophys. Res. Lett., 34, L19701, https://doi.org/10.1029/2006gl028547, 2007.
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., and Jin,
F.-F.: El Nino in a changing climate, Nature, 461, 511–514,
https://doi.org/10.1038/nature08316, 2009.
Yeh, S.-W., Kug, J.-S., and An, S.-I.: Recent progress on two types of El
Niño: Observations, dynamics, and future changes, Asia-Pac. J. Atmos.
Sci., 50, 69–81, https://doi.org/10.1007/s13143-014-0028-3, 2014.
Yu, J.-Y. and Kao, H.-Y.: Contrasting eastern-Pacific and central-Pacific
types of ENSO, J. Climate, 22, 615–632,
https://doi.org/10.1175/2008jcli2309.1, 2009.
Zhao, P., Yang, S., and Yu, R.: Long-term changes in rainfall over eastern
China and large-scale atmospheric circulation associated with recent global
warming, J. Climate, 23, 1544–1562, https://doi.org/10.1175/2009jcli2660.1,
2010.
Short summary
El Niño has an important influence on climate systems. There are obviously negative water vapor anomalies from radiosonde observations in the tropical western Pacific during El Niño. The tropical Hadley, Walker, and monsoon circulation variations are revealed to play different roles in the observed water vapor anomaly in different types of El Niños. The Walker (monsoon) circulation anomaly made a major contribution in the 2015/16 (2009/10) strong eastern Pacific (central Pacific) El Niño event.
El Niño has an important influence on climate systems. There are obviously negative water vapor...
Altmetrics
Final-revised paper
Preprint