Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8659-2020
https://doi.org/10.5194/acp-20-8659-2020
Research article
 | 
22 Jul 2020
Research article |  | 22 Jul 2020

Aerosol radiative effects and feedbacks on boundary layer meteorology and PM2.5 chemical components during winter haze events over the Beijing-Tianjin-Hebei region

Jiawei Li, Zhiwei Han, Yunfei Wu, Zhe Xiong, Xiangao Xia, Jie Li, Lin Liang, and Renjian Zhang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Zhiwei Han on behalf of the Authors (19 May 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (07 Jun 2020) by Jianzhong Ma
ED: Publish subject to minor revisions (review by editor) (21 Jun 2020) by Jianzhong Ma
AR by Zhiwei Han on behalf of the Authors (22 Jun 2020)  Author's response   Manuscript 
ED: Publish as is (25 Jun 2020) by Jianzhong Ma
AR by Zhiwei Han on behalf of the Authors (27 Jun 2020)  Manuscript 
Download
Short summary
Aerosol–radiation–climate interaction is one of the least understood mechanisms in air pollution and climate change. A coupled chemistry–climate model is developed to explore the mechanisms of haze evolution and aerosol radiative feedback in north China. The feedback exerts a significant impact on haze evolution. The contributions of physical and chemical processes to the feedback-induced aerosol changes are elucidated and quantified, providing new insights into the feedback mechanism.
Altmetrics
Final-revised paper
Preprint