Articles | Volume 20, issue 7
Atmos. Chem. Phys., 20, 4255–4273, 2020
https://doi.org/10.5194/acp-20-4255-2020
Atmos. Chem. Phys., 20, 4255–4273, 2020
https://doi.org/10.5194/acp-20-4255-2020

Research article 09 Apr 2020

Research article | 09 Apr 2020

Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?

Isabelle Genot et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Isabelle Genot on behalf of the Authors (21 Feb 2020)  Author's response    Manuscript
ED: Publish as is (04 Mar 2020) by Eliza Harris
Download
Short summary
Given their critical impact on radiative forcing, sulfate aerosols have been extensively studied using their isotope signatures (δ34S, ∆33S, ∆36S, δ18O, and ∆17O). A striking observation is that ∆33S > 0 ‰, implying a missing reservoir in the sulfur cycle. Here, we measured ∆33S < 0 ‰ in black crust sulfates (i.e., formed on carbonate walls) that must therefore result from distinct chemical pathway(s) compared to sulfate aerosols, and they may well represent this complementary reservoir.
Altmetrics
Final-revised paper
Preprint