Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14903–14915, 2020
https://doi.org/10.5194/acp-20-14903-2020

Special issue: The Aerosol Chemistry Model Intercomparison Project...

Atmos. Chem. Phys., 20, 14903–14915, 2020
https://doi.org/10.5194/acp-20-14903-2020

Research article 03 Dec 2020

Research article | 03 Dec 2020

Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century

Jonathan K. P. Shonk et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jon Shonk on behalf of the Authors (19 Oct 2020)  Author's response    Manuscript
ED: Publish as is (23 Oct 2020) by Hailong Wang
Download
Short summary
We use a set of model simulations of the 20th century to demonstrate that the uncertainty in the cooling effect of man-made aerosol emissions has a wide range of impacts on global monsoons. For the weakest cooling, the impact of aerosol is overpowered by greenhouse gas (GHG) warming and monsoon rainfall increases in the late 20th century. For the strongest cooling, aerosol impact dominates over GHG warming, leading to reduced monsoon rainfall, particularly from 1950 to 1980.
Altmetrics
Final-revised paper
Preprint