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Abstract. Anthropogenic aerosols are dominant drivers of
historical monsoon rainfall change. However, large uncer-
tainties in the radiative forcing associated with anthropogenic
aerosol emissions, as well as the dynamical response to this
forcing, lead to uncertainty in the simulated monsoon re-
sponse. We use historical simulations from the “SMURPHS”
project, run using HadGEM3-GC3.1, in which the time-
varying aerosol emissions are scaled by factors from 0.2
to 1.5 to explore the monsoon sensitivity to historical aerosol
forcing uncertainty (present-day versus preindustrial aerosol
forcing in the range −0.38 to −1.50 W m−2). The hemi-
spheric asymmetry in emissions generates a strong relation-
ship between scaling factor and both hemispheric temper-
ature contrast and meridional location of tropical rainfall.
Averaged over the period 1950–2014, increasing the scaling
factor from 0.2 to 1.5 reduces the hemispheric temperature
contrast by 0.9 ◦C, reduces the tropical summertime land–
sea temperature contrast by 0.3 ◦C and shifts tropical rainfall
southwards by 0.28◦ of latitude. The result is a reduction in
global monsoon area by 3 % and a reduction in global mon-
soon intensity by 2 %. Despite the complexity of the mon-
soon system, the monsoon properties presented above vary
monotonically and roughly linearly across scalings. A switch
in the dominant influence on the 1950–1980 monsoon rain-
fall trend between greenhouse gases and aerosol is identi-
fied as the scalings increase. Regionally, aerosol scaling has
a pronounced effect on Northern Hemisphere monsoon rain-
fall, with the strongest influence on monsoon area and inten-
sity located in the Asian sector, where local emissions are
greatest.

1 Background

Monsoon systems provide rainfall for billions of people,
many of whom are dependent on the monsoon rains for sur-
vival. It is therefore important to understand the effects of
climate change on the global monsoon, both in the past and
future. Projections show a future increase in global monsoon
area, rainfall amount and rainfall intensity (Hsu et al., 2012,
2013). In contrast, studies have reported a decline in global
monsoon rainfall in the latter half of the 20th century (Hsu et
al., 2011; Wang and Ding, 2006; Zhou et al., 2008), partic-
ularly in Northern Hemisphere (NH) monsoons (Zhou et al.,
2008).

Historical emissions of anthropogenic aerosols (AAs) and
their precursors cause a net negative radiative forcing, global
cooling and suppression of rainfall, hence opposing the im-
pacts of greenhouse gas (GHG) emissions (Wu et al., 2013).
Furthermore, most AA emissions arise in the NH, giving
them a strong control on hemispheric temperature gradients
(e.g. Wilcox et al., 2013), with profound effects on monsoon
circulations (Broccoli et al., 2006; Friedman et al., 2013;
Voigt et al., 2017) and interhemispheric energy and mois-
ture transport (Haywood et al., 2016; Stephens et al., 2016).
Since the middle of the 20th century, large-scale AA-driven
circulation changes have acted to weaken the monsoon and
have dominated over the response to GHGs. Bollasina et
al. (2011), Polson et al. (2014), Salzmann et al. (2014), Song
et al. (2014) and Guo et al. (2015) have all shown that in-
creasing AA emissions played an important part in driv-
ing regional and global monsoon rainfall decrease during
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the mid-20th century. However, in the future, a GHG-driven
thermodynamic response is expected to dominate, driving
increased monsoon rainfall (Li et al., 2015; Wilcox et al.,
2020).

Land–sea contrasts affect temperature gradients and thus
also affect monsoon circulation strength. On regional scales,
AA-induced cooling can oppose GHG-induced warming
effects (Ramanathan et al., 2005; Ramanathan and Feng,
2009), leading to a slackening of temperature contrasts be-
tween land and sea (Lau and Kim, 2017) and an increase
in surface pressure (Song et al., 2014), both of which
weaken the circulation. Remote AA emissions are also im-
portant, acting to change monsoon rainfall through circula-
tion changes, albeit via different mechanisms to local AA
emissions (Cowan and Cai, 2011; Dong et al., 2016; Un-
dorf et al., 2018; Wang et al., 2017; Westervelt et al., 2018).
Within regional monsoon systems, AA emissions can also
change the characteristics and distribution of rainfall, affect-
ing monsoon onset (Lau et al., 2006) and withdrawal (Guo et
al., 2016).

There is substantial uncertainty in present-day top-of-
atmosphere aerosol effective radiative forcing. The Fifth As-
sessment Report of the Intergovernmental Panel on Climate
Change (IPCC) reported a 5 %-to-95 % confidence interval
of −1.9 to −0.1 W m−2 (Myhre et al., 2013), while the most
recent estimate spans the range −2.0 to −0.4 W m−2 (Bel-
louin et al., 2020). In future climate projections, in which
AA emissions look likely to decrease while GHG emissions
continue to increase across a range of future climate scenar-
ios (Lund et al., 2019), the ability to capture the balance
between their respective radiative effects is crucial. Future
reductions in AA emissions have the potential to cause in-
creases in global rainfall comparable to those resulting from
moderate GHG increases (Rotstayn et al., 2013), with the
largest increases anticipated over East and South Asia (Levy
et al., 2013; Westervelt et al., 2015). Uncertainty in the mag-
nitude of aerosol forcing, as well as the monsoon response
to it, is compounded in climate projections where potential
aerosol emission pathways are diverse. In the Asian region
in particular, there is great variety in future emission trends
across the shared socio-economic pathways (SSPs) and fu-
ture aerosol forcing is likely to determine the magnitude
of near-future changes in monsoon rainfall (Wilcox et al.,
2020). Of particular importance for the monsoon is the un-
certainty in the sign of the projected emission trends over
China and India depending on the SSP (see Fig. 1b of Sam-
set et al., 2019).

In this study, we quantify the impact of the uncertainty
in present-day aerosol radiative forcing on the global mon-
soon system using a set of historical climate simulations pro-
duced as part of the SMURPHS (“Securing Multidisciplinary
Understanding and Prediction of Hiatus and Surge Events”)
project (Dittus et al., 2020a). The SMURPHS ensemble con-
sists of a set of historical climate simulations with AA emis-
sions scaled by various factors, chosen to span the range of

uncertainty in present-day aerosol effective radiative forc-
ing. This allows us to investigate the sensitivity of historical
changes in the monsoon to the strength of aerosol forcing,
without the complications arising from structural and para-
metric uncertainty found in a multi-model framework. The
range of model biases and aerosol process representations in
a multi-model ensemble, such as the most recent phase of the
Coupled Model Intercomparison Project (CMIP6), preclude
the attribution of differences in the response to differences in
the forcing alone. We introduce the ensemble and experimen-
tal design in more detail in Sect. 2. The effect of the aerosol
scaling in terms of temperature contrasts across hemispheres,
as well as between land and sea, is examined in Sect. 3. Sec-
tion 4 presents the effects of scaling on standard metrics of
the global and regional monsoons. We summarise and con-
clude in Sect. 5.

2 SMURPHS ensemble and aerosol emission data

The SMURPHS dataset consists of historical climate sim-
ulations run over the period 1850–2014 using a fully cou-
pled version of HadGEM3-GC3.1 at resolutions of N96 and
1◦ in the atmosphere and ocean respectively (Kuhlbrodt et
al., 2018; Williams et al., 2018). The model version used
here is a development version towards the UK submission
to CMIP6 (Andrews et al., 2020) and differs only in its treat-
ment of prescribed ozone concentrations (see Supplement in
Dittus et al., 2020a; Hardiman et al., 2019). For the treatment
of anthropogenic aerosol, HadGEM3 uses the GLOMAP
two-moment aerosol scheme that includes representations
of the cloud albedo and cloud lifetime effects (Mulcahy et
al. (2018) and references therein). Mineral dust is simu-
lated interactively using a bin emission scheme (Woodward,
2001). Five ensemble members are run for each of five exper-
iments in which the historical aerosol emissions are scaled
by a constant factor. This factor is applied to emissions of
all species of anthropogenic aerosol and precursors, at all lo-
cations throughout the historical emissions dataset. Biomass
burning emissions are included but not scaled. Five scaling
factors were selected: ×0.2, ×0.4, ×0.7, ×1.0 and ×1.5,
with the ×1.0 scaling corresponding to the standard CMIP6
historical protocol. The scaling factors were chosen to sam-
ple a broad range of the uncertainty in present-day aerosol
radiative forcing according to Myhre et al. (2013) and Bel-
louin et al. (2020) and correspond to forcings of −0.38,
−0.60, −0.93, −1.17 and −1.50 W m−2 respectively. More
detail on the SMURPHS ensemble is presented by Dittus et
al. (2020a).

The SMURPHS simulations use the same aerosol emis-
sion dataset as used in CMIP6 (Hoesly et al., 2018), which
contains emissions from 1750–2014 for sulfur dioxide, black
carbon and organic carbon. As an illustration of the time evo-
lution of historical aerosol emissions, sulfur dioxide emis-
sions from 1900 onwards are shown in Fig. 1. In the early
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Figure 1. Sulfur dioxide emissions used in SMURPHS on (a) global, (b, c) hemispheric and (e–k) regional scales, in Tg yr−1. Organic and
black carbon emissions are scaled in the same way. Monsoon regions referred to in this study are as defined in (d).

20th century, emissions increased gradually but then ramped
up from 1950 to 1980. Since 1980, emission mitigation ef-
forts in North America and Europe have been balanced by
continued increases in Asia, causing global emissions to level
off. The hemispheric asymmetry in AA emissions is clear,
with the NH contributing approximately 90 % of the global
total throughout the 20th century (Fig. 1b and c). Most mon-
soon regions show a gradual increase in emissions in the
20th century, with pronounced increases since 1970 seen in
the Indian and East Asian sectors (Fig. 1g and h). The Hoesly
et al. (2018) emissions dataset is the most up-to-date inven-
tory of historical AA emissions and is therefore considered
the best estimate.

In this study, we use all five members from each of the five
experiments but include years from 1900 onwards to allow
50 years for the model to adjust to the scalings (after Dittus
et al., 2020a). When considering climatological quantities,
we consider the ensemble mean for each experiment to be
the model estimate of the climate system under those scaling
conditions and indicate uncertainty across ensemble mem-

bers in terms of the range across the five members. Where
quantities are averaged over areas, a cosine-based latitude
weighting is applied.

The performance of HadGEM3 at representing monsoon
properties used in this study is evaluated in Fig. 2. The over-
all trends and variability in these properties compare well be-
tween model and observations with the exception of global
temperature since 2000, in which the model produces an ac-
celerated rate of warming, although this is a recognised be-
haviour (Dittus et al., 2020a). The model also responds re-
liably to changing aerosol forcing, demonstrated by the de-
pendence of gradients in global mean temperature and hemi-
spheric temperature contrast (HTC) in the period 1950–1980
to the magnitude of the scaling. The increasing AA emissions
during this period lower global temperature, and the hemi-
spheric asymmetry in emissions reduces the HTC. Stronger
forcing scalings result in steeper declines in both properties
during this period (Fig. 2a and b). Furthermore, there is no
optimal scaling factor that can reliably represent the gradi-
ents in both properties during this period – lower scalings
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Figure 2. Validation time series comparing the model used in the SMURPHS ensembles (HadGEM3) with observation and reanalysis
datasets. For temperature quantities, we use data from 20th Century Reanalysis (20thCRA; Slivinski et al., 2019) and Hadley Centre/Climatic
Research Unit Temperature (HadCRUT4; Morice et al., 2012). For rainfall quantities, we use data from the Global Precipitation Climatology
Project (GPCP; Adler et al., 2003), the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997) and the Tropical Rainfall
Measuring Mission (TRMM; Kummerow et al., 2000). All model ensemble members are shown, with no running means. Temperature
properties span the period 1900 to 2014; rainfall properties span 1950 to 2014. Sections 3 and 4 of the paper contain descriptions of how the
variables are calculated. Anomalies are calculated for each dataset and each experiment, with respect to 1961–1990 (temperature fields) and
1980–2009 (rainfall fields).

result in a more realistic decline of global mean temperature,
while higher scalings (nearer ×1.0) generate a more realistic
decline of HTC. Given the importance of HTC in influenc-
ing monsoon change (e.g. Bollasina et al., 2011), it is likely
that the higher scaling factors will provide the most realistic
representation of the global monsoon.

3 Temperatures and contrasts

The effect on global mean temperature of scaling the
AA emissions is clear (Fig. 3a). Higher aerosol scalings lead
to cooler global temperatures, and by the 1970–2014 period
there is little overlap in global temperature between scalings.
We also see evidence of the control by AA emissions on the
magnitude of the mid-20th-century hiatus (the period 1950–

1980), in agreement with the findings of Wilcox et al. (2013)
and Jones et al. (2013). The higher scalings lead to a stronger
hiatus, with a global cooling of almost 0.5 ◦C between 1950
and 1970 in the ×1.5 experiment. The lower scalings lead
to a much weaker hiatus. In the ×0.2 experiment, there is
only a brief departure from the positive temperature trend
around 1960 and a hiatus is barely discernible. These results
echo those of Dittus et al. (2020a).

The hemispheric asymmetry of AA emissions leads to a
much greater degree of cooling in the NH, so the strength of
the forcing has a control on the hemispheric temperature con-
trast (HTC), defined as NH minus SH (Chang et al., 2011;
Wilcox et al., 2013). Lower scalings reduce the degree of
NH cooling and therefore result in a greater HTC, remain-
ing at about 1 ◦C from 1930 to 1990 (Fig. 3b). This reflects
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Figure 3. Time series of various atmospheric properties from the SMURPHS simulations: (a) global mean surface air temperature, expressed
as an anomaly with respect to the mean value across the five members of the ×1.0 experiment in the period 1900–1929; (b) hemispheric
temperature contrast (NH minus SH); (c) tropical land–sea temperature contrast, calculated in the summer months (November–March in SH,
May–September in NH) for latitudes within 30◦ S and 30◦ N only; (d) global mean ITCZ location, calculated following Adam et al. (2016;
see text for a description of the method). All values are ensemble means; vertical error bars indicate the range across the five ensemble
members.

the tendency of the NH to be, on average, warmer than the
Southern Hemisphere (SH; for example, Kang et al., 2015).
Under the highest scaling (×1.5), however, the HTC reduces
by over 0.5 ◦C from 1940 to 1970, reversing in sign during
the 1970s and 1980s.

This shift in HTC is reflected in the location of the in-
tertropical convergence zone (ITCZ; Fig. 3d). ITCZ loca-
tion is determined as the latitude of the zonal mean rainfall
centroid within the latitude band 20◦ N to 20◦ S, following
the “centroid” method of Adam et al. (2016; “ϕcent” in their
Eq. 1). Lower scalings, associated with a warmer NH and
stronger HTC, lead to an ITCZ location that is further north,
consistent with Hwang et al. (2013), Allen et al. (2015) and
Chung and Soden (2017). The model places its ITCZ on the
Equator, in contrast to the calculation of Adam et al. (2016)
using observational data, which places the ITCZ north of the
Equator. This is likely due to the tendency of the model to
place its ITCZ rainfall too far south (Williams et al., 2018).
Repeating the ITCZ location calculation using the method of
Shonk et al. (2018) applied to zonal mean rainfall data shows
a similar result.

Monsoon strength is also influenced by changes in the
land–sea temperature contrast (LSTC), both on regional (Lau

and Kim, 2017) and global (Fasullo, 2012) scales. While
weaker than the effect on HTC, there is a degree of control
of the aerosol scaling on the LSTC, albeit with a larger over-
lap between ensemble members (Fig. 3c). Higher scalings
result in cooler land surfaces with respect to the surround-
ing oceans; hence the LSTC is reduced, and the monsoon is
weakened.

The control of the aerosol forcing on the properties pre-
sented in this section is demonstrated quantitatively in the top
section of Table 1 in terms of means over the 1950–2014 pe-
riod, when most changes in anthropogenic aerosol have oc-
curred. All properties vary monotonically and roughly lin-
early across the range of scalings used in SMURPHS, with
higher scalings resulting in a cooler global temperature, a
weaker HTC, an ITCZ situated further south, and a weaker
LSTC. The impact of the uncertainty in present-day forcing
on these properties is presented in the rightmost column of
Table 1 as the differences between the lowest and highest
scalings (×1.5 minus×0.2). Changing the forcing from low-
est to highest value lowers global temperature by nearly 1 ◦C
and reduces the HTC from 1.19 to 0.27 ◦C. The zonal-mean
ITCZ location shifts southwards by 0.28◦ of latitude, and the
LSTC reduces by just over 30 %, from 0.98 to 0.68 ◦C.
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Table 1. Mean monsoon-related properties, as defined in Sects. 3 and 4, averaged over the period 1950–2014 (during which global aerosol
emissions increased), and all five ensemble members. The difference column is the change from ×0.2 (lowest scaling) to ×1.5 (highest
scaling), expressed as a percentage where indicated.

×0.2 ×0.4 ×0.7 ×1.0 ×1.5 Difference

Global mean temperature anomaly [◦C] 0.98 0.79 0.52 0.30 0.02 −0.95
Hemispheric temperature contrast [◦C] 1.19 1.03 0.78 0.57 0.27 −0.91
ITCZ location (latitude) [◦] 0.09 0.03 −0.06 −0.10 −0.19 −0.28
Tropical land–sea contrast [◦C] 0.98 0.92 0.83 0.77 0.68 −0.30

GMA [Mm2
] 126.8 126.0 125.0 124.3 122.8 −2.99 %

HMA (NH) [Mm2
] 66.8 66.0 65.5 64.9 63.9 −4.25 %

HMA (SH) [Mm2
] 60.0 59.9 59.5 59.5 59.0 −1.60 %

GMI [mm d−1
] 7.76 7.74 7.69 7.66 7.61 −1.93 %

HMI (NH) [mm d−1
] 7.68 7.65 7.57 7.54 7.48 −2.58 %

HMI (SH) [mm d−1
] 7.86 7.84 7.82 7.78 7.76 −1.30 %

4 Monsoon area and rainfall

We evaluate the effects of aerosol scaling on the monsoon
via global monsoon area (GMA) and global monsoon in-
tensity (GMI). These properties are defined following Liu et
al. (2009), Hsu et al. (2011) and others: a grid box is within
the GMA if the difference in summer and winter rainfall
(May to September and November to March, depending on
hemisphere) is greater than 2 mm d−1, and more than 55 %
of the rain falls in the summer months. The total GMA is
calculated as the sum of the area of all grid boxes within
the GMA region. GMI is then calculated as the total rainfall
within the GMA, divided by the area of the GMA. We also
define hemispheric (HMA and HMI) and regional (RMA and
RMI) equivalents – these are the GMA and GMI calculated
separately for each hemisphere or each monsoon region as
defined in Fig. 1d. Note that, by these definitions, monsoon
regions span both land and sea. There is debate about whether
monsoon indices should be defined solely over land, although
here we preserve the full land-plus-sea definition of Liu et
al. (2009).

Both GMA and GMI show a dependence on AA forc-
ing (Fig. 4a and b), with a higher scaling leading to a re-
duction of both intensity and area. This is consistent with
the effects of the scaling on global temperature, HTC and
LSTC, which are also reduced at higher scalings. This depen-
dence is clearest in GMI from 1950–1980: during this period,
higher scalings produce a greater weakening of the GMI than
lower scalings. This suggests a switch between GHGs and
AAs dominating the influence on the monsoon from 1950–
1980 across the range of uncertainty in aerosol forcing. The
dependence is also clear in GMA, although the timing, du-
ration and strength of the GMA reduction after 1950 vary
across scalings. This is most likely associated with natural
variability across the five ensemble members.

Despite this variability, the effect of the scalings on GMA
and GMI when averaged over 1950–2014 is also monotonic

and roughly linear with scaling factor across the experiments
(Table 1). The effect of the uncertainty in aerosol radiative
forcing on GMA and GMI is a reduction of 2.99 % and
1.93 % respectively, when increasing the scaling across its
range. For context, Hsu et al. (2013) found that 1 ◦C of warm-
ing in CMIP5 models resulted in multi-model mean increases
of 1.9 % and 1.3 % in GMA and GMI (see their Fig. 5).
The sensitivities identified here are higher (about 3.1 % and
2.0 % ◦C−1), although they lie well within the range of sen-
sitivities presented by Hsu et al. (2013).

The effects of aerosol scaling on both GMA and GMI are
dominated by the NH response, with a weak dependence on
the scaling found in the SH (Fig. 4c–f). The effect of uncer-
tainty in aerosol radiative forcing has substantial effects on
the rainfall in the regional monsoons (Fig. 5), with the great-
est rainfall changes in the NH monsoons. The North Ameri-
can and North African monsoon experience a marked reduc-
tion, while the decrease in the Asian monsoon is even greater
(consistent with the much larger aerosol emissions originat-
ing there; see Fig. 1g and h). The effect of the scaling on the
SH monsoons, in contrast, is much more variable, reflect-
ing the much smaller local aerosol forcing. The effect of the
aerosol forcing uncertainty on HMA and HMI from 1950 on-
wards in the NH is more than twice that in the SH (Table 1).

The sensitivity of different monsoon areas to the scaling
is quantified in Figs. 6 and 7. For both RMA and RMI, the
greatest sensitivity to aerosol scaling lies in the East Asian
and Indian sectors. Sensitivity of RMI in other regions is
generally lower, while sensitivity of RMA is much smaller
in all other regions except the South African sector, although
this spans much of the southern Indian Ocean (Fig. 1d) and
is likely influenced by changing circulations and rainfall as-
sociated with the Indian monsoon during winter (Fig. 5). Ta-
ble 2 quantifies the differing relative contributions of changes
in RMI and RMA to the overall monsoon rainfall changes
across the monsoon regions. The impact of the uncertainty in
scaling on the Indian and East Asian regions is a reduction
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Figure 4. Time series of (a) global monsoon area (GMA) and (b) global monsoon intensity (GMI) for each experiment. (c–f) show the
hemispheric equivalents (HMA and HMI) for NH and SH. The ensemble mean is shown, with an 11-year running mean applied. The vertical
error bars indicate the range across the five members. GMA is in square megametres, where 1 Mm2

= 1× 106 km2.

Figure 5. The difference in monsoon rainfall (in mm d−1) across the range of the scaling factors (×1.5 minus ×0.2). The summer months
are shown in each hemisphere (June–August in the NH, December–February in the SH); the thick black line marks the Equator. Averaged
over the period 1950–2014 and across all ensemble members. The green dotted line indicates the mean GMA in the ×1.0 experiment. Spots
indicate regions where the rainfall difference is insignificant with respect to variability across years and members.
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Figure 6. Time series of the regional monsoon area (RMA), following the style of Fig. 4. Here, the RMA is defined as the global monsoon
area (GMA) that falls over land points within each monsoon region. Regions are as defined in Fig. 1d.

Figure 7. As Fig. 6, but for regional monsoon intensity (RMI), defined as the total rainfall within the RMA divided by the area of the RMA.

(∼ 4 %) in both RMA and RMI. In the American and North
African regions, the change is dominated by the reduction in
RMI; in the South African region, it is dominated by a reduc-
tion in RMA. In the Australian region, the RMI reduces but
the RMA increases.

The increased sensitivity in the Asian region is consistent
with studies that have shown these monsoons to be sensitive
to both local and remote aerosols (Dong et al., 2016; Un-
dorf et al., 2018). Here, large-scale monsoon changes associ-
ated with changes to the circulation are further enhanced by
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Table 2. Values of regional monsoon area (RMA) and regional monsoon intensity (RMI), averaged over the years 1950–2014 and all five
ensemble members. The difference column is the change from ×0.2 (lowest scaling) to ×1.5 (highest scaling), expressed as a percentage.

×0.2 ×0.4 ×0.7 ×1.0 ×1.5 Difference

RMA (North American) [Mm2
] 4.14 4.13 4.10 4.08 4.08 −1.78 %

RMA (South American) [Mm2
] 9.58 9.53 9.52 9.46 9.40 −1.82 %

RMA (North African) [Mm2
] 5.73 5.73 5.73 5.70 5.66 −1.13 %

RMA (South African) [Mm2
] 7.80 7.70 7.65 7.57 7.46 −4.16 %

RMA (Indian) [Mm2
] 4.51 4.52 4.49 4.42 4.34 −3.59 %

RMA (East Asian) [Mm2
] 2.52 2.48 2.48 2.46 2.40 −4.69 %

RMA (Australian) [Mm2
] 4.04 4.03 4.03 4.05 4.10 +1.48 %

RMI (North American) [mm d−1
] 7.87 7.81 7.82 7.74 7.63 −3.06 %

RMI (South American) [mm d−1
] 9.19 9.14 9.08 8.98 8.98 −2.26 %

RMI (North African) [mm d−1
] 5.12 5.09 5.05 5.01 4.94 −3.46 %

RMI (South African) [mm d−1
] 6.11 6.11 6.10 6.09 6.06 −0.83 %

RMI (Indian) [mm d−1
] 9.06 9.00 8.80 8.81 8.70 −4.00 %

RMI (East Asian) [mm d−1
] 7.53 7.49 7.37 7.25 7.23 −4.03 %

RMI (Australian) [mm d−1
] 6.33 6.29 6.29 6.21 6.16 −2.75 %

higher local emissions – a mechanism that is less prevalent
in other monsoon regions where the aerosol burden is lower.
Kitoh et al. (2013) and Lee and Wang (2014) have both ex-
amined the sensitivity of monsoon area over the Asian mon-
soons to changes in global temperature in CMIP5. Kitoh et
al. (2013) report that the intensity of the monsoon changes to
a similar extent across all monsoons, although large changes
in monsoon area only occur over the Asian region and the
southern Indian Ocean, which echoes our results.

While this study is the first time this particular single-
model approach to understanding the effects of aerosol un-
certainty on the climate system has been used, we recognise
that the single-model nature of the approach could be a lim-
iting factor. We have demonstrated that HadGEM3 performs
well at representing the monsoon, and Wilcox et al. (2020)
have shown that HadGEM3 is one of the better models in
CMIP6 at representing the rainfall and wind patterns of the
Asian summer monsoon. But the question may be raised as
to whether the results presented here would be applicable to
other models – for example, would other model responses
behave monotonically and roughly linearly with the scaling
factor? To attend to these questions, we recognise the poten-
tial value of a multi-model SMURPHS-style ensemble and
hence encourage modelling centres to perform similar exper-
iments to those documented by Dittus et al. (2020a).

5 Summary and conclusions

The observed reduction in global monsoon area and inten-
sity since 1950 has been widely attributed to a rapid increase
in emissions of anthropogenic aerosols and their precursors.
The cooling associated with these emissions is concentrated
in the Northern Hemisphere and opposes the warming effect

of greenhouse gases and reduces the temperature contrast be-
tween hemispheres and between land and sea. This has been
shown to weaken the monsoon circulations, resulting in a re-
duction of monsoon rainfall. Understanding the interplay be-
tween aerosol forcing and monsoon properties in past simu-
lations is important in order to constrain future monsoon pro-
jections, where anthropogenic aerosol reductions are likely to
strengthen the monsoon, in addition to the strengthening an-
ticipated in response to further increases in greenhouse gases.

We explored the sensitivity of the global monsoon to un-
certainty in historical aerosol radiative forcing using an en-
semble of simulations in which anthropogenic aerosol and
precursor emissions from 1850–2014 are scaled by five fac-
tors ranging from ×0.2 to ×1.5 (corresponding to a present-
day aerosol effective radiative forcing range of −0.38 to
−1.50 W m−2 and representing a large fraction of the un-
certainty in present-day aerosol radiative forcing). Increas-
ing the scaling factor from low to high results in a cooling
of global temperature, a reduction of both hemispheric tem-
perature contrast and tropical land–sea contrast, and reduc-
tions in both the global monsoon area and intensity. Across
the scalings, these properties all changed monotonically and
roughly linearly. When averaged over the period 1950–2014,
increasing the scaling factor from ×0.2 to ×1.5 results in a
0.95 ◦C cooling of global temperature, a 75 % reduction in
hemispheric temperature contrast, a 30 % reduction in land–
sea temperature contrast, and a southward shift of the ITCZ
by 0.28◦ of latitude. The global monsoon area is reduced by
3 %, and the intensity of the rainfall within this region is re-
duced by 2 %. Regionally, much of the reduction in monsoon
area and intensity arises in the Northern Hemisphere mon-
soons, particularly the Asian sector, where emission changes
are greatest. Here, increasing the scaling factor from ×0.2
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to ×1.5 results in reductions of monsoon area and intensity
by 3.5 %–5 %.

Long-term monsoon variability since 1950 has very differ-
ent characteristics across the scaling factors. In the ×1.5 ex-
periment, an overall negative trend in monsoon rainfall in-
tensity is found, dominated by strong aerosol forcing; in the
×0.2 experiment, greenhouse gases are able to dominate and
monsoon intensity increases. Reducing uncertainty in the ra-
diative forcing associated with anthropogenic aerosol would
provide more reliable estimates of the future evolution of
global and regional monsoons as anthropogenic aerosol and
precursor emissions decline.

Data availability. The SMURPHS data used in this
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