Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14649-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14649-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hectometric-scale simulations of a Mediterranean heavy-precipitation event during the Hydrological cycle in the Mediterranean Experiment (HyMeX) first Special Observation Period (SOP1)
Olivier Nuissier
CORRESPONDING AUTHOR
CNRM (Météo-France & CNRS), 42 avenue G. Coriolis 31057 Toulouse, CÉDEX, France
Fanny Duffourg
CSG (CNES & Agence spatiale europeenne), SDO/AM/MTO, 97387 Kourou,
CEDEX, Guyane, France
Maxime Martinet
CNRM (Météo-France & CNRS), 42 avenue G. Coriolis 31057 Toulouse, CÉDEX, France
Véronique Ducrocq
CNRM (Météo-France & CNRS), 42 avenue G. Coriolis 31057 Toulouse, CÉDEX, France
Christine Lac
CNRM (Météo-France & CNRS), 42 avenue G. Coriolis 31057 Toulouse, CÉDEX, France
Related authors
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci., 25, 2613–2628, https://doi.org/10.5194/nhess-25-2613-2025, https://doi.org/10.5194/nhess-25-2613-2025, 2025
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By studying how weather scenarios persist over successive forecasts, it appears that conclusions can be drawn about forecasts' reliability.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Christian Keil, Lucie Chabert, Olivier Nuissier, and Laure Raynaud
Atmos. Chem. Phys., 20, 15851–15865, https://doi.org/10.5194/acp-20-15851-2020, https://doi.org/10.5194/acp-20-15851-2020, 2020
Short summary
Short summary
During strong synoptic control, which dominates the weather on 80 % of the days in the 2-month HyMeX-SOP1 period, the domain-integrated precipitation predictability assessed with the normalized ensemble standard deviation is above average, the wet bias is smaller and the forecast quality is generally better. In contrast, the spatial forecast quality of the most intense precipitation in the afternoon, as quantified with its 95th percentile, is superior during weakly forced synoptic regimes.
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci., 25, 2613–2628, https://doi.org/10.5194/nhess-25-2613-2025, https://doi.org/10.5194/nhess-25-2613-2025, 2025
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By studying how weather scenarios persist over successive forecasts, it appears that conclusions can be drawn about forecasts' reliability.
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025, https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Short summary
This study documents vertical profiles of liquid water content (LWC) in fogs from in situ measurements collected during the SOFOG3D field campaign in 2019–2020. The analysis of 140 vertical profiles reveals a reverse trend in LWC, maximum values at ground decreasing with height, during stable conditions in optically thin fogs, evolving towards quasi-adiabatic characteristics when fogs become thick. These results offer new perspectives for better constraining fog numerical simulations.
Adrien Marcel, Sébastien Riette, Didier Ricard, and Christine Lac
EGUsphere, https://doi.org/10.5194/egusphere-2025-2504, https://doi.org/10.5194/egusphere-2025-2504, 2025
Short summary
Short summary
This paper provides substantial consistent updates to the atmospheric boundary layer schemes of the AROME model, yet they can be used for both forecasting and climate modelling. The study employs a single-column model versus large eddy simulations comparison and uses a machine learning tool to calibrate parameterizations. The model's ability to simulate shallow clouds has been enhanced, especially for shallow precipitating cumulus and stratocumulus clouds.
Marie-Adèle Magnaldo, Quentin Libois, Sébastien Riette, and Christine Lac
Geosci. Model Dev., 17, 1091–1109, https://doi.org/10.5194/gmd-17-1091-2024, https://doi.org/10.5194/gmd-17-1091-2024, 2024
Short summary
Short summary
With the worldwide development of the solar energy sector, the need for reliable solar radiation forecasts has significantly increased. However, meteorological models that predict, among others things, solar radiation have errors. Therefore, we wanted to know in which situtaions these errors are most significant. We found that errors mostly occur in cloudy situations, and different errors were highlighted depending on the cloud altitude. Several potential sources of errors were identified.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Christian Keil, Lucie Chabert, Olivier Nuissier, and Laure Raynaud
Atmos. Chem. Phys., 20, 15851–15865, https://doi.org/10.5194/acp-20-15851-2020, https://doi.org/10.5194/acp-20-15851-2020, 2020
Short summary
Short summary
During strong synoptic control, which dominates the weather on 80 % of the days in the 2-month HyMeX-SOP1 period, the domain-integrated precipitation predictability assessed with the normalized ensemble standard deviation is above average, the wet bias is smaller and the forecast quality is generally better. In contrast, the spatial forecast quality of the most intense precipitation in the afternoon, as quantified with its 95th percentile, is superior during weakly forced synoptic regimes.
Cited articles
Barthlott, C. and Davolio, S.: Mechanisms initiating heavy precipitation over
Italy during HyMeX Special Observation Period 1: a numerical case study using
two mesoscale models, Q. J. Roy. Meteor. Soc.,
142, 238–258, https://doi.org/10.1002/qj.2630, 2016. a
Barthlott, C., Adler, B., Kalthoff, N., Handwerker, J., Kohler, M., and Wieser,
A.: The role of Corsica in initiating nocturnal offshore convection,
Q. J. Roy. Meteor. Soc., 142, 222–237,
https://doi.org/10.1002/qj.2415, 2016. a
Bougeault, P. and Lacarrère, P.: Parameterization of orography-induced
turbulence in a meso-beta-scale model, Mon. Weather Rev., 123, 1560–1573,
1989. a
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements for
the Simulation of Deep Moist Convection, Mon. Weather Rev., 131,
2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003. a, b
Buzzi, A., Davolio, S., Malguzzi, P., Drofa, O., and Mastrangelo, D.: Heavy rainfall episodes over Liguria in autumn 2011: numerical forecasting experiments, Nat. Hazards Earth Syst. Sci., 14, 1325–1340, https://doi.org/10.5194/nhess-14-1325-2014, 2014. a, b
Caniaux, G., Redelsperger, J.-L., and Lafore, J.-P.: A numerical study of the
stratiform region of a fast-moving squall line. 1. general description and
water and heat budgets., J. Atmos. Sci., 51, 2046–2074, 1994. a
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, Journal of Computational Physics, 54, 174–201,
https://doi.org/10.1016/0021-9991(84)90143-8,
1984. a
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme
allowing for mesoscale and large-eddy simulations., Q. J. Roy. Meteor. Soc., 126, 1–30, 2000. a
Dauhut, T., Chaboureau, J.-P., Escobar, J., and Mascart, P.: Large-eddy
simulations of Hector the convector making the stratosphere wetter,
Atmospheric Science Letters, 16, 135–140, https://doi.org/10.1002/asl2.534, 2015. a
Dauhut, T., Chaboureau, J.-P., Escobar, J., and Mascart, P.: Giga-LES of Hector
the Convector and Its Two Tallest Updrafts up to the Stratosphere, J. Atmos. Sci., 73, 5041–5060, https://doi.org/10.1175/JAS-D-16-0083.1, 2016. a
Davolio, S., Volonté, A., Manzato, A., Pucillo, A., Cicogna, A., and Ferrario,
M. E.: Mechanisms producing different precipitation patterns over
north-eastern Italy: insights from HyMeX-SOP1 and previous events, Q. J. Roy. Meteor. Soc., 142, 188–205,
https://doi.org/10.1002/qj.2731,
2016. a
Deardorff, J. W.: Numerical Investigation of Neutral and Unstable Planetary
Boundary Layers, J. Atmos. Sci., 29, 91–115,
https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2,
1972. a
Ducrocq, V., Nuissier, O., Ricard, D., Lebeaupin, C., and Thouvenin, T.: A
numerical study of three catastrophic precipitatating events over southern
France. II: Mesoscale triggering and stationarity factors, Q. J. Roy.
Meteor. Soc., 134, 131–145, 2008. a
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A.,
Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S.,
Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin,
M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U.,
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P.,
Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J.,
Labatut, L., Lambert, D., Le Coz, J., Marzano, F., Molinié, G., Montani, A.,
Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F.,
Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and
Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation
and Flash Flooding in the Northwestern Mediterranean, B. Am. Meteorol. Soc., 95, 1083–1100, 2014. a
Ducrocq, V., Davolio, S., Ferretti, R., Flamant, C., Santaner, V. H., Kalthoff,
N., Richard, E., and Wernli, H.: Introduction to the HyMeX Special Issue on
‘Advances in understanding and forecasting of heavy precipitation in the
Mediterranean through the HyMeX SOP1 field campaign’, Q. J. Roy. Meteor. Soc., 142, 1–6, https://doi.org/10.1002/qj.2856,
2016. a
Duffourg, F., Nuissier, O., Ducrocq, V., Olivier Bock, O., Chazette, P.,
Delanoë, J., Doerenbecher, A., Flamant, C., Fourrié, N., di Girolamo, P.,
Lac, C., Martinet, M., and Said, F.: Offshore deep convection initiation and
maintenmain during HyMeX IOP 16a heavy precipitation event, Q. J. Roy. Meteorol.
Soc., 142, 259–274, https://doi.org/10.1002/qj.2725, 2016. a, b, c, d, e, f, g, h, i, j, k
Duffourg, F., Lee, K.-O., Ducrocq, V., Flamant, C., Chazette, P., and
Di Girolamo, P.: Role of moisture patterns in the backbuilding formation of
HyMeX IOP13 heavy precipitation systems, Q. J. Roy. Meteor. Soc., 144, 291–303, https://doi.org/10.1002/qj.3201, 2018. a, b
Fourrié, N., Bresson, É., Nuret, M., Jany, C., Brousseau, P., Doerenbecher, A., Kreitz, M., Nuissier, O., Sevault, E., Bénichou, H., Amodei, M., and Pouponneau, F.: AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods, Geosci. Model Dev., 8, 1919–1941, https://doi.org/10.5194/gmd-8-1919-2015, 2015. a
Fourrié, N., Nuret, M., Brousseau, P., Caumont, O., Doerenbecher, A., Wattrelot, E., Moll, P., Bénichou, H., Puech, D., Bock, O., Bosser, P., Chazette, P., Flamant, C., Di Girolamo, P., Richard, E., and Saïd, F.: The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX), Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, 2019. a
Gal-Chen, T. and Somerville, R. C. J.: On the use of a coordinate
transformation for the solution of the Navier-Stokes equations, J. Comput.
Phys., 17, 209–228, https://doi.org/10.1016/0021-9991(75)90037-6, 1975. a
Glenn, I. B. and Krueger, S. K.: Downdrafts in the near cloud environment of
deep convective updrafts, Journal of Advances in Modeling Earth Systems, 6,
1–8, https://doi.org/10.1002/2013MS000261, 2014. a
Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean,
H. W., Halliwell, C., and Clark, P. A.: Mixing-length controls on
high-resolution simulations of convective storms, Q. J. Roy. Meteor. Soc., 141, 272–284,
https://doi.org/10.1002/qj.2356,
2015. a, b
Heath, N. K., Fuelberg, H. E., Tanelli, S., Turk, F. J., Lawson, R. P., Woods,
S., and Freeman, S.: WRF nested large-eddy simulations of deep convection
during SEAC4RS, J. Geophys. Res.-Atmos., 122,
3953–3974, https://doi.org/10.1002/2016JD025465, 2017. a
Heus, T., J. Pols, C. F., J. Jonker, H. J., A. Van den Akker, H. E., and
H. Lenschow, D.: Observational validation of the compensating mass flux
through the shell around cumulus clouds, Q. J. Roy. Meteor. Soc., 135, 101–112, https://doi.org/10.1002/qj.358, 2009. a
Honnert, R., Masson, V., and Couvreux, F.: A Diagnostic for Evaluating the
Representation of Turbulence in Atmospheric Models at the Kilometric Scale,
J. Atmos. Sci., 68, 3112–3131,
https://doi.org/10.1175/JAS-D-11-061.1, 2011. a
Jansa, A., Genoves, A., Angeles Picornell, M., Campins, J., Riosalido, R., and
Carretero, O.: Western Mediterranean cyclones and heavy rain. Part 2:
Statistical approach, Meteorol. Appl., 8, 43–56, 2001. a
Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A., and
Randall, D. A.: Large-Eddy Simulation of Maritime Deep Tropical Convection,
J. Adv. Model. Earth Sy., 1, 15,
https://doi.org/10.3894/JAMES.2009.1.15, 2009. a
Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018. a
Lunet, T., Lac, C., Auguste, F., Visentin, F., Masson, V., and Escobar, J.:
Combination of WENO and Explicit Runge–Kutta Methods for Wind Transport in
the Meso-NH Model, Mon. Weather Rev., 145, 3817–3838,
https://doi.org/10.1175/MWR-D-16-0343.1, 2017. a
Machado, L. A. T. and Chaboureau, J.-P.: Effect of Turbulence Parameterization
on Assessment of Cloud Organization, Mon. Weather Rev., 143, 3246–3262, 2015. a
Martinet, M., Nuissier, O., Duffourg, F., Ducrocq, V., and Ricard, D.:
Fine-scale numerical analysis of the sensitivity of the HyMeX IOP16a heavy
precipitating event to the turbulent mixing-length parametrization, Q. J. Roy. Meteor. Soc., 143, 3122–3135,
https://doi.org/10.1002/qj.3167, 2017. a, b, c, d, e, f, g, h, i, j
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Mlawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative
transfer for inhomogeneous atmospheres: RRTM, A validated correlated-k model
for the longwave, J. Geophys. Res., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997. a
Nuissier, O.: Time-lapse video of the Intense Observation Period (IOP) 16a case
study, SEDOO OMP, HyMeX database, https://doi.org/10.6096/mistrals-hymex.1540, 2019. a, b, c
Nuissier, O., Ducrocq, V., Ricard, D., Lebeaupin, C., and Anquetin, S.: A
numerical study of three catastrophic precipitating events over southern
France. I: Numerical framework and synoptic ingredients, Q. J. Roy.
Meteor. Soc., 134, 111–130, 2008. a
Pergaud, J., Masson, V., and Malardel, S.: A parameterization of dry thermals
and shallow cumuli for mesoscale numerical weather prediction., Bound.-Layer
Meteor., 132, 83–106, 2009. a
Petch, J. C.: Sensitivity studies of developing convection in a cloud-resolving
model, Q. J. Roy. Meteor. Soc., 132, 345–358,
https://doi.org/10.1256/qj.05.71, 2006. a
Pinty, J.-P. and Jabouille, P.: A mixed-phase cloud parameterization for use in
mesoscale non-hydrostatic model: simulations of a squall line and of
orographic precipitations, in: Proc. Conf. of Cloud Physics, Everett, WA,
USA, 17–21 August 1998, 217–220, 1998. a
Rainaud, R., Brossier, C. L., Ducrocq, V., and Giordani, H.: High-resolution
air–sea coupling impact on two heavy precipitation events in the Western
Mediterranean, Q. J. Roy. Meteor. Soc., 143,
2448–2462, https://doi.org/10.1002/qj.3098, 2017. a
Scheffknecht, P., Richard, E., and Lambert, D.: A highly localized
high-precipitation event over Corsica, Q. J. Roy. Meteor. Soc., 142, 206–221, https://doi.org/10.1002/qj.2795, 2016. a, b
Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, Journal of Computational Physics,
77, 439–471, https://doi.org/10.1016/0021-9991(88)90177-5,
1988. a
Stein, J., Richard, E., Lafore, J.-P., Pinty, J.-P., Asencio, N., and Cosma,
S.: High-resolution non-hydrostatic simulations of flash-flood episodes with
grid-nesting and ice phase, Meteor. Atmos. Phys., 72, 203–221, 2000. a
Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E.,
Lean, H. W., Nicol, J. C., and Plant, R. S.: The DYMECS Project: A
Statistical Approach for the Evaluation of Convective Storms in
High-Resolution NWP Models, B. Am. Meteorol. Soc., 96,
939–951, 2015. a
Strauss, C., Ricard, D., Lac, C., and Verrelle, A.: Evaluation of turbulence
parametrizations in convective clouds and their environment based on a
large-eddy simulation, Q. J. Roy. Meteor. Soc.,
145, 3195–3217, https://doi.org/10.1002/qj.3614, 2019. a
Talbot, C., Bou-Zeid, E., and Smith, J.: Nested Mesoscale Large-Eddy
Simulations with WRF: Performance in Real Test Cases, Journal of
Hydrometeorology, 13, 1421–1441, https://doi.org/10.1175/JHM-D-11-048.1, 2012. a
Thévenot, O., Bouin, M.-N., Ducrocq, V., Lebeaupin Brossier, C., Nuissier, O.,
Pianezze, J., and Duffourg, F.: Influence of the sea state on Mediterranean
heavy precipitation: a case-study from HyMeX SOP1, Q. J. Roy. Meteor. Soc., 142, 377–389, https://doi.org/10.1002/qj.2660, 2016. a
Verrelle, A., Ricard, D., and Lac, C.: Sensitivity of high‐resolution
idealized simulations of thunderstorms to horizontal resolution and
turbulence parametrization, Q. J. Roy. Meteor. Soc., 141, 433–448, https://doi.org/10.1002/qj.2363, 2015. a, b
Verrelle, A., Ricard, D., and Lac, C.: Evaluation and Improvement of Turbulence
Parameterization inside Deep Convective Clouds at Kilometer-Scale Resolution,
Mon. Weather Rev., 145, 3947–3967, https://doi.org/10.1175/MWR-D-16-0404.1,
2017.
a, b, c
Wyngaard, J. C.: Toward Numerical Modeling in the “Terra Incognita”,
J. Atmos. Sci., 61, 1816–1826,
https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral
Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the
non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
This present article demonstrates how numerical simulations with very high horizontal resolution (150 m) can contribute to better understanding the key physical processes (turbulence and microphysics) that lead to Mediterranean heavy precipitation.
This present article demonstrates how numerical simulations with very high horizontal resolution...
Altmetrics
Final-revised paper
Preprint