Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13443-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13443-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow heterogeneous reactivity of bromide with ozone lost during snow metamorphism
Jacinta Edebeli
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Swiss Federal Institute of Technology, ETH Zürich, Zurich,
Switzerland
Jürg C. Trachsel
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf,
Switzerland
Sven E. Avak
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Markus Ammann
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Martin Schneebeli
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf,
Switzerland
Anja Eichler
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Thorsten Bartels-Rausch
CORRESPONDING AUTHOR
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Related authors
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Rico K. Y. Cheung, and Peter A. Alpert
Atmos. Chem. Phys., 25, 8061–8086, https://doi.org/10.5194/acp-25-8061-2025, https://doi.org/10.5194/acp-25-8061-2025, 2025
Short summary
Short summary
Aerosol particles composed of metal complexes generate radicals as a result of photochemical reactions. The reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account for decreased photochemical activity and use a copper-induced reoxidation reaction.
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Ruiqi Man, Yishu Zhu, Zhijun Wu, Peter Aaron Alpert, Bingbing Wang, Jing Dou, Jie Chen, Yan Zheng, Yanli Ge, Qi Chen, Shiyi Chen, Xiangrui Kong, Markus Ammann, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2301, https://doi.org/10.5194/egusphere-2025-2301, 2025
Short summary
Short summary
The particle chemical morphology is important to atmospheric multiphase and heterogeneous chemistry. This work directly observed the core-shell structure and water uptake behavior of individual submicron aerosol particles at an urban site and elucidated the potential impact on particle reactive uptake and heterogeneous reactions.
Yubing Cheng, Bin Cheng, Roberta Pirazzini, Amy R. Macfarlane, Timo Vihma, Wolfgang Dorn, Ruzica Dadic, Martin Schneebeli, Stefanie Arndt, and Annette Rinke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1164, https://doi.org/10.5194/egusphere-2025-1164, 2025
Short summary
Short summary
We study snow density from the MOSAiC expedition. Several snow density schemes were tested and compared with observation. A thermodynamic ice model was employed to assess the impact of snow density and precipitation on the thermal regime of sea ice. The parameterized mean snow densities are consistent with observations. Increased snow density reduces snow and ice temperatures, promoting ice growth, while increased precipitation leads to warmer snow and ice temperatures and reduced ice thickness.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024, https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft-emitted soot in the upper troposphere will be poor ice-nucleating particles. Measuring the soot particle morphology and modifying their mixing state allow us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023, https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Short summary
Snow acts as an insulating blanket on Arctic sea ice, keeping the underlying ice "warm", relative to the atmosphere. Knowing the snow's thermal conductivity is essential for understanding winter ice growth. During the MOSAiC expedition, we measured the thermal conductivity of snow. We found spatial and vertical variability to overpower any temporal variability or dependency on underlying ice type and the thermal resistance to be directly influenced by snow height.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023, https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Short summary
The grain size of snow determines how light is reflected and other physical properties. The IceCube measures snow grain size at the specific near-infrared wavelength of 1320 nm. In our study, the preparation of snow samples for the IceCube creates a thin layer of small particles. Comparisons of the grain size with computed tomography, particle counting and numerical simulation confirm the aforementioned observation. We conclude that measurements at this wavelength underestimate the grain size.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Daniel A. Knopf and Markus Ammann
Atmos. Chem. Phys., 21, 15725–15753, https://doi.org/10.5194/acp-21-15725-2021, https://doi.org/10.5194/acp-21-15725-2021, 2021
Short summary
Short summary
Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of gas-to-condensed-phase processes that can define the physicochemical evolution of the condensed phase. We apply a thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and surface accommodation depend on the choice of adsorption model and standard states with implications for desorption energy and lifetimes.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021, https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Cited articles
Abbatt, J. P. D., Oldridge, N. W., Symington, A., Chukalovskiy, V.,
McWhinney, R. D., Sjostedt, S. J., and Cox, R. A.: Release of gas-phase
halogens by photolytic generation of OH in frozen halide-nitrate solutions:
An active halogen formation mechanism?, J. Phys. Chem. A., 114, 6527–6533,
https://doi.org/10.1021/jp102072t, 2010.
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.
Artiglia, L., Edebeli, J., Orlando, F., Chen, S., Lee, M.-T., Corral Arroyo,
P., Gilgen, A., Bartels-Rausch, T., Kleibert, A., Vazdar, M., Carignano, M.
A., Francisco, J. S., Shepson, P. B., Gladich, I., and Ammann, M.: A
surface-stabilized ozonide triggers bromide oxidation at the aqueous
solution-vapour interface, Nat. Commun., 8, 700, https://doi.org/10.1038/s41467-017-00823-x,
2017.
Bartels-Rausch, T., Guimbaud, C., Gäggeler, H. W., and Ammann, M.: The
partitioning of acetone to different types of ice and snow between 198 and
223 K, Geophys. Res. Lett., 31, L16110, https://doi.org/10.1029/2004gl020070, 2004.
Bartels-Rausch, T., Huthwelker, T., Gäggeler, H. W., and Ammann, M.:
Atmospheric pressure coated-wall flow-tube study of acetone adsorption on
ice, J. Phys. Chem. A., 109, 4531–4539, https://doi.org/10.1021/jp045187l, 2005.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014.
Bartels-Rausch, T., Orlando, F., Kong, X., Artiglia, L., and Ammann, M.:
Experimental evidence for the formation of solvation shells by soluble
species at a nonuniform air-ice interface, ACS Earth Space Chem., 1,
572–579, https://doi.org/10.1021/acsearthspacechem.7b00077, 2017.
Birkeland, K. W., Johnson, R. F., and Schmidt, S. D.: Near-surface faceted
crystals formed by diurnal recrystallization: A case study of weak layer
formation in the mountain snowpack and its contribution to snow avalanches,
Arct. Alp. Res., 30, 200–204, https://doi.org/10.2307/1552135, 1998.
Blackford, J. R.: Sintering and microstructure of ice: A review, J. Phys. D:
Appl. Phys., 40, R355–R385, https://doi.org/10.1088/0022-3727/40/21/R02, 2007.
Blackford, J. R., Jeffree, C. E., Noake, D. F. J., and Marmo, B. A.:
Microstructural evolution in sintered ice particles containing NaCl observed
by low-temperature scanning electron microscope, Proc. Inst. Mech. Eng, 221,
151–156, https://doi.org/10.1243/14644207JMDA134, 2007.
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012.
Cragin, J. H., Hewitt, A. D., and Colbeck, S. C.: Grain-scale mechanisms
influencing the elution of ions from snow, Atmos. Environ., 30, 119–127,
https://doi.org/10.1016/1352-2310(95)00232-N, 1996.
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010.
Dominé, F. and Rey-Hanot, L.: Adsorption isotherms of acetone on ice
between 193 and 213 K, Geophys. Res. Lett., 29, 1873, https://doi.org/10.1029/2002GL015078,
2002.
Dominé, F. and Shepson, P. B.: Air-snow interactions and atmospheric
chemistry, Science, 297, 1506–1510, https://doi.org/10.1126/science.1074610, 2002.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Domine, F., Barrere, M., Sarrazin, D., Morin, S., and Arnaud, L.: Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra, The Cryosphere, 9, 1265–1276, https://doi.org/10.5194/tc-9-1265-2015, 2015.
Durnford, D. and Dastoor, A.: The behavior of mercury in the cryosphere: A
review of what we know from observations, J. Geophys. Res., 116, D06305,
https://doi.org/10.1029/2010jd014809, 2011.
Ebner, P. P., Steen-Larsen, H. C., Stenni, B., Schneebeli, M., and Steinfeld, A.: Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions, The Cryosphere, 11, 1733–1743, https://doi.org/10.5194/tc-11-1733-2017, 2017.
Edebeli, J. and Bartels-Rausch, T.: Data set on bromide oxidation by ozone in snow during metamorphism from laboratory study, EnviDat, https://doi.org/10.16904/envidat.138, 2020.
Edebeli, J., Ammann, M., and Bartels-Rausch, T.: Microphysics of the aqueous
bulk counters the water activity driven rate acceleration of bromide
oxidation by ozone from 289–245 K, Environ. Sci.-Proc. Imp., 21, 63–73,
https://doi.org/10.1039/c8em00417j, 2019.
Eichler, A., Schwikowski, M., and Gäggeler, H. W.: Meltwater-induced
relocation of chemical species in alpine firn, Tellus B, 53, 192–203,
https://doi.org/10.1034/j.1600-0889.2001.d01-15.x, 2001.
Gao, R. S., Fahey, D. W., Kärcher, B., and Peter, T.: Evidence that
nitric acid increases relative humidity in low-temperature cirrus clouds,
Science, 303, 516–520, https://doi.org/10.1126/science.1091255, 2004.
Grannas, A. M., Bogdal, C., Hageman, K. J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klán, P., Klánová, J., Macdonald, R. W., Meyer, T., and Wania, F.: The role of the global cryosphere in the fate of organic contaminants, Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013, 2013.
Haag, W. R. and Hoigne, J.: Ozonation of bromide-containing waters:
Kinetics of formation of hypobromous acid and bromate, Environ. Sci.
Technol., 17, 261–267, https://doi.org/10.1021/es00111a004, 1983.
Hagenmuller, P., Chambon, G., Flin, F., Morin, S., and Naaim, M.: Snow as a
granular material: Assessment of a new grain segmentation algorithm,
Granul. Matter, 16, 421–432, https://doi.org/10.1007/s10035-014-0503-7, 2014.
Hagenmuller, P., Flin, F., Dumont, M., Tuzet, F., Peinke, I., Lapalus, P., Dufour, A., Roulle, J., Pézard, L., Voisin, D., Ando, E., Rolland du Roscoat, S., and Charrier, P.: Motion of dust particles in dry snow under temperature gradient metamorphism, The Cryosphere, 13, 2345–2359, https://doi.org/10.5194/tc-13-2345-2019, 2019.
Heeb, M. B., Criquet, J., Zimmermann-Steffens, S. G., and von Gunten, U.:
Oxidative treatment of bromide-containing waters: Formation of bromine and
its reactions with inorganic and organic compounds – a critical review,
Water Res., 48, 15–42, https://doi.org/10.1016/j.watres.2013.08.030, 2014.
Hewitt, A. D., Cragin, J. H., and Colbeck, S. C.: Does snow have ion
chromatographic properties?, 46th Ann. Eastern Snow Conference, Quebec City,
Quebec, Canada, 8 to 9 June 1989, 19, 165–171, 1989.
Hewitt, A. D., Cragin, J. H., and Colbeck, S. C.: Effects of crystal
metamorphosis on the elution from chemical species from snow, 48th Ann.
Eastern Snow Conference, Guelph, Ontario, Canada, 5 to 7 June 1991, 1, 1–10, 1991.
Hullar, T. and Anastasio, C.: Direct visualization of solute locations in laboratory ice samples, The Cryosphere, 10, 2057–2068, https://doi.org/10.5194/tc-10-2057-2016, 2016.
Huthwelker, T., Ammann, M., and Peter, T.: The uptake of acidic gases on
ice, Chem. Rev., 106, 1375–1444, https://doi.org/10.1021/Cr020506v, 2006.
Jacobi, H.-W., Frey, M. M., Hutterli, M. A., Bales, R. C., Schrems, O.,
Cullen, N. J., Steffen, K., and Koehler, C.: Measurements of hydrogen
peroxide and formaldehyde exchange between the atmosphere and surface snow
at Summit, Greenland, Atmos. Environ., 36, 2619–2628,
https://doi.org/10.1016/S1352-2310(02)00106-1, 2002.
Jacobi, H.-W., Voisin, D., Jaffrezo, J. L., Cozic, J., and Douglas, T. A.:
Chemical composition of the snowpack during the OASIS spring campaign 2009
at Barrow, Alaska, J. Geophys. Res., 117, D00R13, https://doi.org/10.1029/2011JD016654,
2012.
Kämpfer, T. U., Schneebeli, M., and Sokratov, S. A.: A microstructural
approach to model heat transfer in snow, Geophys. Res. Lett., 32, L21503,
https://doi.org/10.1029/2005GL023873, 2005.
Kärcher, B. and Basko, M. M.: Trapping of trace gases in growing ice
crystals, J. Geophys. Res., 109, D22204, https://doi.org/10.1029/2004JD005254, 2004.
Kerbrat, M., Huthwelker, T., Gäggeler, H. W., Ammann, M., and
Schneebeli, M.: Measuring the specific surface area of snow with X-ray
tomography and gas adsorption: Comparison and implications for surface
smoothness, Atmos. Chem. Phys., 8, 1261–1275, https://doi.org/10.5194/acp-8-1261-2008, 2008.
Kippenberger, M., Schuster, G., Lelieveld, J., and Crowley, J. N.: Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds, Atmos. Chem. Phys., 19, 11939–11951, https://doi.org/10.5194/acp-19-11939-2019, 2019.
Kong, X., Waldner, A., Orlando, F., Artiglia, L., Huthwelker, T., Ammann,
M., and Bartels-Rausch, T.: Coexistence of physisorbed and solvated HCl at
warm ice surfaces, J. Phys. Chem. Lett., 8, 4757–4762,
https://doi.org/10.1021/acs.jpclett.7b01573, 2017.
Krepelova, A., Bartels-Rausch, T., Brown, M. A., Bluhm, H., and Ammann, M.:
Adsorption of acetic acid on ice studied by ambient-pressure XPS and
partial-electron-yield NEXAFS spectroscopy at 230–240 K, J. Phys. Chem. A,
117, 401–409, https://doi.org/10.1021/jp3102332, 2013.
Langenberg, S. and Schurath, U.: Ozone destruction on ice, Geophys. Res.
Lett., 26, 1695–1698, https://doi.org/10.1029/1999gl900325, 1999.
Legagneux, L., Cabanes, A., and Dominé, F.: Measurement of the specific
surface area of 176 snow samples using methane adsorption at 77 K, J.
Geophys. Res., 107, 4335, https://doi.org/10.1029/2001JD001016, 2002.
Löwe, H., Spiegel, J. K., and Schneebeli, M.: Interfacial and structural
relaxations of snow under isothermal conditions, J. Glaciol., 57, 499–510,
https://doi.org/10.3189/002214311796905569, 2011.
McFall, A. S., Edwards, K. C., and Anastasio, C.: Nitrate photochemistry at
the air-ice interface and in other ice reservoirs, Environ. Sci. Technol.,
52, 5710–5717, https://doi.org/10.1021/acs.est.8b00095, 2018.
Meyer, T. and Wania, F.: Organic contaminant amplification during snowmelt,
Water Res., 42, 1847–1865, https://doi.org/10.1016/j.watres.2007.12.016, 2008.
Nagashima, K., Sazaki, G., Hama, T., Murata, K.-i., and Furukawa, Y.: Uptake
mechanism of atmospheric hydrogen chloride gas in ice crystals via
hydrochloric acid droplets, Cryst. Growth Des., 18, 4117–4122,
https://doi.org/10.1021/acs.cgd.8b00531, 2018.
Oldridge, N. W. and Abbatt, J. P. D.: Formation of gas-phase bromine from
interaction of ozone with frozen and liquid NaCl/NaBr solutions:
Quantitative separation of surficial chemistry from bulk-phase reaction, J.
Phys. Chem. A., 115, 2590–2598, https://doi.org/10.1021/jp200074u, 2011.
Peybernes, N., Marchand, C., Le Calve, S., and Mirabel, P.: Adsorption
studies of acetone and 2,3-butanedione on ice surfaces between 193 and 223 K, Phys. Chem. Chem. Phys., 6, 1277–1284, https://doi.org/10.1039/b315064j, 2004.
Pinzer, B. and Schneebeli, M.: Breeding snow: An instrumented sample holder
for simultaneous tomographic and thermal studies, Meas. Sci. Technol., 20, 095705, https://doi.org/10.1088/0957-0233/20/9/095705, 2009.
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography, The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012.
Pratt, K. A., Custard, K. D., Shepson, P. B., Douglas, T. A., Pöhler,
D., General, S., Zielcke, J., Simpson, W. R., Platt, U., Tanner, D. J.,
Gregory Huey, L., Carlsen, M., and Stirm, B. H.: Photochemical production of
molecular bromine in arctic surface snowpacks, Nat. Geosi., 6, 351–356,
https://doi.org/10.1038/ngeo1779, 2013.
Riche, F., Bartels-Rausch, T., Schreiber, S., Ammann, M., and Schneebeli,
M.: Temporal evolution of surface and grain boundary area in artificial ice
beads and implications for snow chemistry, J. Glaciol., 58, 815–817,
https://doi.org/10.3189/2012JoG12J058, 2012.
Rumble, J. (Ed.): CRC handbook of chemistry and physics, 100th edition, in: CRC Press/Taylor & Francis, Boca Raton, FL, ISBN 978-1-1383-6729-6, 2019.
Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in the
troposphere, Chem. Soc. Rev., 41, 6448–6472, https://doi.org/10.1039/C2CS35208G, 2012.
Schmidt, J. A., Jacob, D., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M.
J., Liang, Q., Suleiman, R. M., Oram, D. E., Le Breton, M., Percival, C. J.,
Wang, S., Dix, B., and Volkamer, R.: Modeling the observed tropospheric BrO
background: Importance of multiphase chemistry and implications for ozone,
OH, and mercury, J. Geophys. Res., 121, 11819–11835, https://doi.org/10.1002/2015JD024229,
2016.
Schweizer, J.: Snow and avalanche research: A journey across scales, Cold
Reg. Sci. Technol., 108, 69–71, https://doi.org/10.1016/j.coldregions.2014.09.011, 2014.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von
Glasow, R.: Tropospheric halogen chemistry: Sources, cycling, and impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013.
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, 2014.
Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys., 8, 1445–1482, https://doi.org/10.5194/acp-8-1445-2008, 2008.
Stephen, H. and Stephen, T.: Solubility of various compounds in water, in:
Binary systems, edited by: Stephen, H. and Stephen, T., Pergamon, 1, 5–960, Elsevier, 978-0-0800-9923-1, https://doi.org/10.1016/B978-0-08-009923-1.50006-9, 1963.
Thibert, E. and Dominé, F.: Thermodynamics and kinetics of the solid
solution of HCl in ice, J. Phys. Chem. B., 101, 3554–3565, https://doi.org/10.1021/jp962115o, 1997.
Thibert, E. and Dominé, F.: Thermodynamics and kinetics of the solid
solution of HNO3 in ice, J. Phys. Chem. B, 102, 4432–4439,
https://doi.org/10.1021/jp980569a, 1998.
Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J. E., and von Glasow, R.: Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results, Atmos. Chem. Phys., 11, 4899–4914, https://doi.org/10.5194/acp-11-4899-2011, 2011.
Toom-Sauntry, D. and Barrie, L. A.: Chemical composition of snowfall in the
high arctic: 1990–1994, Atmos. Environ., 36, 2683–2693,
https://doi.org/10.1016/S1352-2310(02)00115-2, 2002.
Trachsel, J. C., Avak, S. E., Edebeli, J., Schneebeli, M., Bartels-Rausch,
T., Bruetsch, S., and Eichler, A.: Microscale rearrangement of ammonium
induced by snow metamorphism, Front. Earth Sci., 7, 194,
https://doi.org/10.3389/feart.2019.00194, 2019.
Ullerstam, M. and Abbatt, J. P. D.: Burial of gas-phase HNO3 by growing ice surfaces under tropospheric conditions, Phys. Chem. Chem. Phys., 7, 3596–3600, https://doi.org/10.1039/b507797d, 2005.
Waldner, A., Artiglia, L., Kong, X., Orlando, F., Huthwelker, T., Ammann,
M., and Bartels-Rausch, T.: Pre-melting and the adsorption of formic acid at
the air-ice interface at 253 K as seen by NEXAFS and XPS, Phys. Chem. Chem.
Phys., 20, 24408–24417, https://doi.org/10.1039/C8CP03621G, 2018.
Wania, F., Hoff, J. T., Jia, C. Q., and Mackay, D.: The effects of snow and
ice on the environmental behaviour of hydrophobic organic chemicals,
Environ. Pollut., 102, 25–41, https://doi.org/10.1016/S0269-7491(98)00073-6, 1998.
Winkler, A. K., Holmes, N. S., and Crowley, J. N.: Interaction of methanol,
acetone and formaldehyde with ice surfaces between 198 and 223 K, Phys.
Chem. Chem. Phys., 4, 5270–5275, https://doi.org/10.1039/b206258e, 2002.
Wren, S. N. and Donaldson, D. J.: Exclusion of nitrate to the air-ice
interface during freezing, J. Phys. Chem. Lett., 2, 1967–1971,
https://doi.org/10.1021/Jz2007484, 2011.
Wren, S. N., Kahan, T. F., Jumaa, K. B., and Donaldson, D. J.: Spectroscopic
studies of the heterogeneous reaction between O3 (g) and halides at the surface of frozen salt solutions, J. Geophys. Res., 115, 660,
https://doi.org/10.1029/2010JD013929, 2010.
Wren, S. N., Donaldson, D. J., and Abbatt, J. P. D.: Photochemical chlorine
and bromine activation from artificial saline snow, Atmos. Chem. Phys., 13,
9789–9800, https://doi.org/10.5194/acp-13-9789-2013, 2013.
Wu, S., Zhu, C., He, Z., Xue, H., Fan, Q., Song, Y., Francisco, J. S., Zeng,
X. C., and Wang, J.: Ion-specific ice recrystallization provides a facile
approach for the fabrication of porous materials, Nat. Commun., 8, 1–8,
https://doi.org/10.1038/ncomms15154, 2017.
Zermatten, E., Haussener, S., Schneebeli, M., and Steinfeld, A.:
Tomography-based determination of permeability and dupit-forchheimer
coefficient of characteristic snow samples, J. Glaciol., 57, 811–816, 2011.
Zimmermann, S., Kippenberger, M., Schuster, G., and Crowley, J. N.:
Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190
and 220 K, Phys. Chem. Chem. Phys., 18, 13799–13810, https://doi.org/10.1039/C6CP01962E,
2016.
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is...
Altmetrics
Final-revised paper
Preprint