Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12939-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12939-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability
Yaping Shao
Institute for Geophysics and Meteorology, University of Cologne, Cologne
Germany
Key Laboratory of Mechanics on Disaster and Environment in Western
China, Lanzhou University, Lanzhou, China
Masahide Ishizuka
Faculty of Engineering and Design, Kagawa University, Takamatsu, Japan
Masao Mikami
Office of Climate and Environmental Research Promotion, Japan
Meteorological Business Support Center, Tokyo, Japan
John Leys
Department of Planning, Industry and Environment, New South Wales, Lidcombe
Australia
The Fenner School of Environment & Society, The Australian
National University, Canberra, Australia
Ning Huang
CORRESPONDING AUTHOR
Key Laboratory of Mechanics on Disaster and Environment in Western
China, Lanzhou University, Lanzhou, China
Related authors
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022, https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Short summary
Sand and dust emission are usually investigated by wind-tunnel experiments. However, wind-tunnel flows are usually neutrally stratified without large eddies, which typically develop in the convective atmospheric boundary layer. Here we proposed a novel technique by deploying a piece of randomly fluttering cloth in a wind tunnel to generate the large eddies and found them to enhance the entrainment of sand and dust particles, which explains why large eddies are important to aeolian entrainment.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Ning Huang, Jiacheng Bao, Hongxiang Yu, and Guang Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3218, https://doi.org/10.5194/egusphere-2024-3218, 2024
Short summary
Short summary
Particle fragmentation makes snowflakes spherical during wind-drifting snow. However, no drifting snow model has presented this process so far. We established a drifting snow model considering particle fragmentation and investigated the effects of snow particle fragmentation on drifting and blowing snow. Our results show that fragmentation intensifies the sublimation of blowing snow and changes the airborne particle size distribution, which should not be ignored in current blowing snow models.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022, https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Short summary
Sand and dust emission are usually investigated by wind-tunnel experiments. However, wind-tunnel flows are usually neutrally stratified without large eddies, which typically develop in the convective atmospheric boundary layer. Here we proposed a novel technique by deploying a piece of randomly fluttering cloth in a wind tunnel to generate the large eddies and found them to enhance the entrainment of sand and dust particles, which explains why large eddies are important to aeolian entrainment.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Mizuo Kajino, Akira Watanabe, Masahide Ishizuka, Kazuyuki Kita, Yuji Zaizen, Takeshi Kinase, Rikuya Hirai, Kakeru Konnai, Akane Saya, Kazuki Iwaoka, Yoshitaka Shiroma, Hidenao Hasegawa, Naofumi Akata, Masahiro Hosoda, Shinji Tokonami, and Yasuhito Igarashi
Atmos. Chem. Phys., 22, 783–803, https://doi.org/10.5194/acp-22-783-2022, https://doi.org/10.5194/acp-22-783-2022, 2022
Short summary
Short summary
Using a numerical model and observations of surface concentration and depositions, the current study provides quantitative assessments of resuspension, transport, and deposition of radio-Cs in eastern Japan in 2013, which was once deposited to the ground surface after the Fukushima nuclear accident. The areal mean resuspension rate of radio-Cs from the ground to the air is estimated as 0.96 % per year, which is equivalent to 1–10 % of the decreasing rate of the ambient gamma dose in Fukushima.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Hongchao Dun and Ning Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1021, https://doi.org/10.5194/acp-2020-1021, 2020
Revised manuscript not accepted
Cited articles
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S.,
Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Alfaro, S. C., Gaudichet, A., Gomes, L., and Maille, M.: Modeling the size
distribution of a soil aerosol produced by sandblasting. J. Geophys.
Res.-Atmos., 102, 11239–11249, https://doi.org/10.1029/97JD00403, 1997.
Astrom, J. A.: Statistical models of brittle fragmentation. Adv. Phys., 55,
247–278, https://doi.org/10.1080 /00018730600731907, 2006.
Businger, J. A., Wyngaard, J. C., Izumi, J., and Bradley, E. F.: Flux-Profile
Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28,
181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971.
Csanady, G. T.: Turbulent Diffusion of Heavy
Particles in the Atmosphere, J. Atmos. Sci., 20, 201–208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963.
Dupont, S., Scaling of dust flux with friction velocity: time resolution
effects, J. Geophys. Res.-Atmos., 125, e2019JD031192,
https://doi.org/10.1029/2019JD031192, 2020.
Durána, O., Andreotti, B., and Claudin, P.: Numerical simulation of
turbulent sediment transport, from bed load to saltation, Physics of
Fluids, 24, 709–737, https://doi.org/10.1063/1.4757662, 2012.
Gillette, D. A., Blifford, I. H., and Fenster, C. R.: Measurements of aerosol
size distributions and vertical fluxes of aerosols on land subject to wind
erosion. J. Appl. Meteor., 11, 977–987,
https://doi.org/10.1175/1520-0450(1972)011<0977:MOASDA>2.0.CO;2, 1972.
Gillette, D. A., Blifford, I. H., and Fryrear, D. W.: Influence of wind
velocity on size distributions of aerosols generated by wind erosion of
soils. J. Geophys. Res., 79, 4068–4075,
https://doi.org/10.1029/JC079i027p04068, 1974.
Gillette, D. A.: Production of dust that may be carried great distances,
Geol. Soc. Am., 186, 11–26, https://doi.org/10.1130/SPE186-p11, 1981.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: model description and preliminary tests over multiple CORDEX
domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Ishizuka, M.,
Mikami, M., Leys, J. F., Yamada, Y., Heidenreich, S., Shao, Y., and McTainsh,
G. H.: Effects of soil moisture and dried raindroplet crust on saltation and
dust emission. J. Geophys. Res.-Atmos., 113, D24212, https://doi.org/10.1029/2008JD009955, 2008.
Ishizuka, M., Mikami, M., Leys, J., Yamada, Y., Heidenreich, S., Shao, Y.,
and McTainsh, G. H.: Effects of soil moisture and dried raindroplet crust on
saltation and dust emission, J. Geophys. Res.-Atmos., 113, D24212,
https://doi.org/10.1029/2008JD009955, 2008.
Ishizuka, M., Mikami, M., Leys, J. F., Shao, Y., Yamada, Y., and Heidenreich,
S.: Power law relation between size-resolved vertical dust flux and friction
velocity measured in a fallow wheat field, Aeolian Res., 12, 87–99,
https://doi.org/10.1016/j.aeolia.2013.11.002, 2014.
Kaimal, J. C. and Finnigan J. J.: Atmospheric Boundary Layer Flows: Their
Structure and Measurements, Bound.-Lay. Meteorol., 72, 213–214,
https://doi.org/10.1007/BF00712396, 1995.
Khalfallah, B., Bouet, C., Labiadh, M., Alfaro, S., Bergametti, G.,
Marticorena, B., Lafon, S., Chevaillier, S., Féron, A., Hease, P.,
Henry-des-Tureaux, T., Sekrafi, S., Zapf, P., and Rajot, J. L.: Influence of
atmospheric stability on the size-distribution of the vertical dust flux
measured in eroding conditions over a flat bare sandy field, J. Geophys.
Res.-Atmos., 125, e2019JD031185, https://doi.org/10.1029/2019JD031185, 2020.
Klose, M. and Shao, Y.: Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmos. Chem. Phys., 12, 7309–7320, https://doi.org/10.5194/acp-12-7309-2012, 2012.
Klose, M., Shao, Y., Li, X., Zhang, H., Ishizuka, M., Mikami, M., and Leys,
J. F.: Further development of a parameterization for convective turbulent
dust emission and evaluation based on field observations, J. Geophys.
Res.-Atmos., 119, 10441–10457, https://doi.org/10.1002/2014JD021688, 2014.
Kok, J. F.: Does the size distribution of mineral dust aerosols depend on the wind speed at emission?, Atmos. Chem. Phys., 11, 10149–10156, https://doi.org/10.5194/acp-11-10149-2011, 2011a.
Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the global dust
cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011b.
Kok, J. F., Parteli, E. J., Michaels, T. I., and Karam, D. B.: The physics of
wind-blown sand and dust, Reports on Progress, Physics Physical
Society, 75, 106901, https://doi.org/10.1088/0034-4885/75/10/106901,
2012.
Laurent, B., Marticorena, B., Bergametti, G., and Mei, F.: Modeling mineral dust
emissions from Chinese and Mongolian deserts, Glob. Planet Change, 52, 121–141, https://doi.org/10.1016/j.gloplacha.2006.02.012, 2006.
Li, G., Zhang, J., Herrmann, H. J., Shao, Y., and Huang, N.: Study of
aerodynamic grain entrainment in aeolian transport. Geophys. Res. Lett., 47,
e2019GL086574, https://doi.org/10.1029/2019GL086574, 2020.
Liu, D., Ishizuka, M., Mikami, M., and Shao, Y.: Turbulent characteristics of saltation and uncertainty of saltation model parameters, Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, 2018. .
Lu, H. and Shao, Y.: A new model for dust emission by saltation bombardment.
J. Geophys. Res.-Atmos., 104, 16827–16842,
https://doi.org/10.1029/1999JD900169, 1999.
Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N'Doume, C., and
Legrand, M.: Modeling the atmospheric dust cycle: 2. Simulation of Saharan
dust sources, J. Geophys. Res., 102, 4387–4404,
https://doi.org/10.1029/96JD02964,1997.
Martin, R. L. and Kok, J. F.: Wind-invariant saltation heights imply linear
scaling of aeolian saltation flux with shear stress, Sci. Adv., 3, e1602569, https://doi.org/10.1126/sciadv.1602569, 2017.
Mikami, M., Yamada, Y., Ishizuka, M., Ishimaru, T., Gao, W., and Zeng, F.:
Measurement of saltation process over gobi and sand dunes in the Taklimakan
desert, China, with newly developed sand particle counter, J. Geophys.
Res.-Atmos., 110, D18S02, https://doi.org/10.1029/2004JD004688, 2005.
Owen, R. P.: Saltation of uniform grains in air, J. Fluid. Mech., 20,
225–242, https://doi.org/10.1017/S0022112064001173, 1964.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Raupach, M. R.: Drag and drag partition on rough surfaces, Bound.-Lay. Meteorol., 60, 375–395, https://doi.org/10.1007/BF00155203, 1992.
Reid, J.
S., Reid, E. A., Walker, A., Piketh, S., Cliff, S., Al Mandoos, A., Tsay,
S.-C., and Eck, T. F.: Dynamics of southwest Asian dust particle size
characteristics with implications for global dust research, J. Geophys.
Res.-Atmos., 113, D14212, https://doi.org/10.1029/2007JD009752, 2008.
Rosenberg, P. D., Parker, D. J., Ryder, C. L., Marsham, J. H.,
Garcia-Carreras, L., Dorsey, J. R., Briiks, I. M., Dean A. R., Crosier, J.,
McQuaid, J. B., and Washington, R.: Quantifying particle size and turbulent
scale dependence of dust flux in the Sahara using aircraft measurements, J.
Geophys. Res.-Atmos., 119, 7577–7598, https://doi.org/10.1002/2013JD021255,
2014.
Shao, Y.: A model for mineral dust emission. J. Geophys. Res.-Atmos., 106,
20239–20254, https://doi.org/10.1029/ 2001JD900171, 2001.
Shao, Y.: Simplification of a dust emission scheme and comparison with data,
J. Geophys. Res., 109, https://doi.org/10.1029/2003JD004372, 2004.
Shao, Y.: Physics and Modelling of Wind Erosion, Springer, Chapter 6 and Chapter 8, https://doi.org/10.1007/978-1-4020-8895-7, 2008.
Shao, Y., Ishizuka, M., Mikami, M., and Leys, J. F.: Parameterization of
size-resolved dust emission and validation with measurements, J. Geophys.
Res.-Atmos., 116, D08203, https://doi.org/10.1029/2010JD014527, 2011.
Shao, Y. and Mikami, M.: Heterogeneous Saltation: Theory, Observation and
Comparison, Bound.-Lay. Meteorol., 115, 359–379,
https://doi.org/10.1007/s10546-004-7089-2, 2005.
Shao, Y., Raupach, M. R., and Findlater, P. A.: Effect of saltation
bombardment on the entrainment of dust by wind, J. Geophys. Res.-Atmos., 98,
12719–12726, https://doi.org/10.1029/93JD00396, 1993.
Sow, M., Alfaro, S. C., Rajot, J. L., and Marticorena, B.: Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment, Atmos. Chem. Phys., 9, 3881–3891, https://doi.org/10.5194/acp-9-3881-2009, 2009.
Sterk, G., Jacobs, A. F. G., and van Boxel, J. H.: The effect of turbulent flow
structures on saltation sand transport in the atmospheric boundary layer,
Earth Surf. Proc. Land., 23, 877–887,
https://doi.org/10.1002/(SICI)1096-9837(199810)23:10<877::AID-ESP905>3.0.CO;2-, 1998.
Stout, J. E. and Zobeck, T. M.: Intermittent saltation. Sedimentology, 44,
959–970, https://doi.org/10.1046/j.1365-3091.1997.d01-55.x, 1997.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Boston, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Ungar, J. E. and Haff, P. K.: Steady state saltation in air, Sedimentology,
34, 289–299, https://doi.org/10.1111/j.1365-3091.1987.tb00778.x, 1987.
Walklate, P. J.: A random-walk model for dispersion of heavy particles in
turbulent air flow, Bound.-Lay. Meteorol., 39, 175–190,
https://doi.org/10.1007/BF00121873, 1987.
Wang, L. and Stock, D. E.: Dispersion of Heavy Particles by Turbulent
Motion, J. Atmos. Sci., 50,
1897–1913, https://doi.org/10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2, 1993.
Webb, N. P., Chappell, A., LeGrand, S. L., Ziegler, N. P., and Edwards, B. L.: A
note on the use of drag partition in aeolian transport models, Aeolian
Res., 42, https://doi.org/10.1016/j.aeolia.2019.100560, 2019.
Yahaya, S., Frangi, J. P., and Richard, D. C.: Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain), Ann. Geophys., 21, 2119–2131, https://doi.org/10.5194/angeo-21-2119-2003, 2003.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition
(DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108,
4416, https://doi.org/10.1029/2002JD002775, 2003.
Short summary
It has been recognized in earlier research that particle size distribution of dust at emission (dust PSD) is dependent on friction velocity. This recognition has been challenged in some recent papers. Based on the analysis of experimental data, we confirm that dust PSD is dependent on friction velocity and atmospheric boundary-layer stability. By theoretical and numerical analysis, we reveal the reasons for this dependency.
It has been recognized in earlier research that particle size distribution of dust at emission...
Altmetrics
Final-revised paper
Preprint