Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12939-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12939-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability
Yaping Shao
Institute for Geophysics and Meteorology, University of Cologne, Cologne
Germany
Key Laboratory of Mechanics on Disaster and Environment in Western
China, Lanzhou University, Lanzhou, China
Masahide Ishizuka
Faculty of Engineering and Design, Kagawa University, Takamatsu, Japan
Masao Mikami
Office of Climate and Environmental Research Promotion, Japan
Meteorological Business Support Center, Tokyo, Japan
John Leys
Department of Planning, Industry and Environment, New South Wales, Lidcombe
Australia
The Fenner School of Environment & Society, The Australian
National University, Canberra, Australia
Ning Huang
CORRESPONDING AUTHOR
Key Laboratory of Mechanics on Disaster and Environment in Western
China, Lanzhou University, Lanzhou, China
Related authors
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-148, https://doi.org/10.5194/egusphere-2023-148, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The scale differences is important for the transfer of knowledge from large eddy simulation (LES) to large-scale model. We propose a new scheme for surface flux calculation applicable to LES models. The scheme first computes fluxes using the eddy viscosity and diffusivity estimated from the closure scheme, then applies a MOST macroscopic constraint such that the fluxes averaged over the LES domain. The new scheme makes the transfer of knowledge from LES to large-scale model plausible.
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022, https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Short summary
Sand and dust emission are usually investigated by wind-tunnel experiments. However, wind-tunnel flows are usually neutrally stratified without large eddies, which typically develop in the convective atmospheric boundary layer. Here we proposed a novel technique by deploying a piece of randomly fluttering cloth in a wind tunnel to generate the large eddies and found them to enhance the entrainment of sand and dust particles, which explains why large eddies are important to aeolian entrainment.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Erik Jan Schaffernicht, Patrick Ludwig, and Yaping Shao
Atmos. Chem. Phys., 20, 4969–4986, https://doi.org/10.5194/acp-20-4969-2020, https://doi.org/10.5194/acp-20-4969-2020, 2020
Short summary
Short summary
This study presents a model-based reconstruction of the mineral dust cycle on the regional scale for Europe during the LGM. It establishes a link between the loess distribution in Europe and the prevailing winds during the LGM. In addition to the cyclonic wind regimes, it is the first to reveal the importance of the northeasters and easterlies for dust emission and transport. It shows that a regional weather research and forecasting model can more realistically simulate the LGM dust cycle.
Dongwei Liu, Masahide Ishizuka, Masao Mikami, and Yaping Shao
Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, https://doi.org/10.5194/acp-18-7595-2018, 2018
Short summary
Short summary
This work is on saltation (sand motion). Most earlier studies considered only the mean features rather than the turbulent characteristics of saltation. Related to this are uncertainties in saltation model parameters. We study these issues using field measurements. We analyse saltation intermittency and spectrum and estimate the probabilistic distribution of model parameters. This work is part of our effort to develop a more general saltation model.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Jie Zhang, Zhenjiao Teng, Ning Huang, Lei Guo, and Yaping Shao
Atmos. Chem. Phys., 16, 15517–15528, https://doi.org/10.5194/acp-16-15517-2016, https://doi.org/10.5194/acp-16-15517-2016, 2016
Short summary
Short summary
In spite of the tremendous efforts, many questions remain unanswered regarding dust emission mechanisms. A series of wind tunnel experiments are carried out on dust emissions from different soil surfaces to better understand relevant mechanisms. Here are some interesting results that demonstrate the importance of surface renewal mechanism, which was normally neglected in previous research and is strongly recommended to be considered in future dust models.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-148, https://doi.org/10.5194/egusphere-2023-148, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The scale differences is important for the transfer of knowledge from large eddy simulation (LES) to large-scale model. We propose a new scheme for surface flux calculation applicable to LES models. The scheme first computes fluxes using the eddy viscosity and diffusivity estimated from the closure scheme, then applies a MOST macroscopic constraint such that the fluxes averaged over the LES domain. The new scheme makes the transfer of knowledge from LES to large-scale model plausible.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Jie Zhang, Guang Li, Li Shi, Ning Huang, and Yaping Shao
Atmos. Chem. Phys., 22, 9525–9535, https://doi.org/10.5194/acp-22-9525-2022, https://doi.org/10.5194/acp-22-9525-2022, 2022
Short summary
Short summary
Sand and dust emission are usually investigated by wind-tunnel experiments. However, wind-tunnel flows are usually neutrally stratified without large eddies, which typically develop in the convective atmospheric boundary layer. Here we proposed a novel technique by deploying a piece of randomly fluttering cloth in a wind tunnel to generate the large eddies and found them to enhance the entrainment of sand and dust particles, which explains why large eddies are important to aeolian entrainment.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Mizuo Kajino, Akira Watanabe, Masahide Ishizuka, Kazuyuki Kita, Yuji Zaizen, Takeshi Kinase, Rikuya Hirai, Kakeru Konnai, Akane Saya, Kazuki Iwaoka, Yoshitaka Shiroma, Hidenao Hasegawa, Naofumi Akata, Masahiro Hosoda, Shinji Tokonami, and Yasuhito Igarashi
Atmos. Chem. Phys., 22, 783–803, https://doi.org/10.5194/acp-22-783-2022, https://doi.org/10.5194/acp-22-783-2022, 2022
Short summary
Short summary
Using a numerical model and observations of surface concentration and depositions, the current study provides quantitative assessments of resuspension, transport, and deposition of radio-Cs in eastern Japan in 2013, which was once deposited to the ground surface after the Fukushima nuclear accident. The areal mean resuspension rate of radio-Cs from the ground to the air is estimated as 0.96 % per year, which is equivalent to 1–10 % of the decreasing rate of the ambient gamma dose in Fukushima.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Hongchao Dun and Ning Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1021, https://doi.org/10.5194/acp-2020-1021, 2020
Revised manuscript not accepted
Erik Jan Schaffernicht, Patrick Ludwig, and Yaping Shao
Atmos. Chem. Phys., 20, 4969–4986, https://doi.org/10.5194/acp-20-4969-2020, https://doi.org/10.5194/acp-20-4969-2020, 2020
Short summary
Short summary
This study presents a model-based reconstruction of the mineral dust cycle on the regional scale for Europe during the LGM. It establishes a link between the loess distribution in Europe and the prevailing winds during the LGM. In addition to the cyclonic wind regimes, it is the first to reveal the importance of the northeasters and easterlies for dust emission and transport. It shows that a regional weather research and forecasting model can more realistically simulate the LGM dust cycle.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-128, https://doi.org/10.5194/gmd-2018-128, 2018
Revised manuscript not accepted
Dongwei Liu, Masahide Ishizuka, Masao Mikami, and Yaping Shao
Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, https://doi.org/10.5194/acp-18-7595-2018, 2018
Short summary
Short summary
This work is on saltation (sand motion). Most earlier studies considered only the mean features rather than the turbulent characteristics of saltation. Related to this are uncertainties in saltation model parameters. We study these issues using field measurements. We analyse saltation intermittency and spectrum and estimate the probabilistic distribution of model parameters. This work is part of our effort to develop a more general saltation model.
Ning Huang and Guanglei Shi
The Cryosphere, 11, 3011–3021, https://doi.org/10.5194/tc-11-3011-2017, https://doi.org/10.5194/tc-11-3011-2017, 2017
Short summary
Short summary
Snow is an important part of the cryosphere, and blowing snow sublimation is an important method to change the snow distribution. However, in the previous studies blowing snow sublimation near surface was ignored. Herein, we built a blowing snow sublimation model to study the sublimation in near-surface region. The results showed that the mass of snow sublimation near surface accounted for even more than half of the total. Therefore, blowing snow sublimation near surface cannot be neglected.
Erdenebayar Munkhtsetseg, Masato Shinoda, Masahide Ishizuka, Masao Mikami, Reiji Kimura, and George Nikolich
Atmos. Chem. Phys., 17, 11389–11401, https://doi.org/10.5194/acp-17-11389-2017, https://doi.org/10.5194/acp-17-11389-2017, 2017
Short summary
Short summary
Anthropogenic dust emissions induced by livestock trampling were measured using a mini wind tunnel device in Mongolian temperate grassland. A scale factor in dust emissions revealed an enhanced effect of trampling on dust emissions. The enhancement rate in dust emissions was enlarged by increased friction velocity. Our results emphasize that better livestock management is crucial to prevent dust loads by reducing the effect of trampling on dust emissions in dust seasons driven by strong winds.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Jie Zhang, Zhenjiao Teng, Ning Huang, Lei Guo, and Yaping Shao
Atmos. Chem. Phys., 16, 15517–15528, https://doi.org/10.5194/acp-16-15517-2016, https://doi.org/10.5194/acp-16-15517-2016, 2016
Short summary
Short summary
In spite of the tremendous efforts, many questions remain unanswered regarding dust emission mechanisms. A series of wind tunnel experiments are carried out on dust emissions from different soil surfaces to better understand relevant mechanisms. Here are some interesting results that demonstrate the importance of surface renewal mechanism, which was normally neglected in previous research and is strongly recommended to be considered in future dust models.
Mizuo Kajino, Masahide Ishizuka, Yasuhito Igarashi, Kazuyuki Kita, Chisato Yoshikawa, and Masaru Inatsu
Atmos. Chem. Phys., 16, 13149–13172, https://doi.org/10.5194/acp-16-13149-2016, https://doi.org/10.5194/acp-16-13149-2016, 2016
Short summary
Short summary
The current study provides the first quantitative budget analysis of radiocesium re-suspended from ground surface contaminated by the Fukushima nuclear accident. It provides useful information to society since our simulation can be used for the long-term assessment of internal exposure to residents in Japan. It also discussed that the re-suspension from forest ecosystems could be a dominant source of suspended radiocesium in the warm season in Japan.
Ning Huang, Xiaoqing Dai, and Jie Zhang
Atmos. Chem. Phys., 16, 7523–7529, https://doi.org/10.5194/acp-16-7523-2016, https://doi.org/10.5194/acp-16-7523-2016, 2016
Short summary
Short summary
Drifting snow sublimation (DSS) is of glaciological and hydrological importance. This work is related to the simulation of DSS, which is obviously related to the scientific topics, such as multi-field coupling of wind, snow particles, humidity, etc. Previous studies argued that sublimation will soon vanish in saltation layer. This work shows the sublimation rate of saltating snow can be several orders of magnitude greater than that of the suspended snow due to the impact of moisture advection.
J. F. Kok, N. M. Mahowald, G. Fratini, J. A. Gillies, M. Ishizuka, J. F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R. S. Van Pelt, and T. M. Zobeck
Atmos. Chem. Phys., 14, 13023–13041, https://doi.org/10.5194/acp-14-13023-2014, https://doi.org/10.5194/acp-14-13023-2014, 2014
Short summary
Short summary
We developed an improved model for the emission of dust particulates ("aerosols") emitted by wind erosion from the world's deserts. The implementation of our improved dust emission model into a climate model improves its agreement against measurements. We furthermore find that dust emissions are substantially more sensitive to the soil state than most current climate models account for.
J. Zhang and Y. Shao
Atmos. Chem. Phys., 14, 12429–12440, https://doi.org/10.5194/acp-14-12429-2014, https://doi.org/10.5194/acp-14-12429-2014, 2014
J. Zhang, Y. Shao, and N. Huang
Atmos. Chem. Phys., 14, 8869–8882, https://doi.org/10.5194/acp-14-8869-2014, https://doi.org/10.5194/acp-14-8869-2014, 2014
K. Osada, S. Ura, M. Kagawa, M. Mikami, T. Y. Tanaka, S. Matoba, K. Aoki, M. Shinoda, Y. Kurosaki, M. Hayashi, A. Shimizu, and M. Uematsu
Atmos. Chem. Phys., 14, 1107–1121, https://doi.org/10.5194/acp-14-1107-2014, https://doi.org/10.5194/acp-14-1107-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
Model-based insights into aerosol perturbation on pristine continental convective precipitation
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Local and remote climate impacts of future African aerosol emissions
The dependence of aerosols' global and local precipitation impacts on the emitting region
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Aggravated air pollution and health burden due to traffic congestion in urban China
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations
Transported aerosols regulate the pre-monsoon atmosphere over North-East India: a WRF-Chem modelling study
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires
Where does the dust deposited over the Sierra Nevada snow come from?
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Dust pollution in China affected by different spatial and temporal types of El Niño
A new process-based and scale-respecting desert dust emission scheme for global climate models – Part I: description and evaluation against inverse modeling emissions
An improved representation of aerosol mixing state for air quality–weather interactions
Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing
Size-resolved dust direct radiative effect efficiency derived from satellite observations
Modeling coarse and giant desert dust particles
Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model
Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018
Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China
Mapping the dependence of black carbon radiative forcing on emission region and season
Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Toward targeted observations of the meteorological initial state for improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region
Below-cloud scavenging of aerosol by rain: a review of numerical modelling approaches and sensitivity simulations with mineral dust in the Met Office's Unified Model
Predicting gridded winter PM2.5 concentration in the east of China
Satellite-based evaluation of AeroCom model bias in biomass burning regions
Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
What controls the historical timeseries of shortwave fluxes in the North Atlantic?
Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic
Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023, https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
Short summary
Relatively clean background aerosol over the Tibetan Plateau makes the study of aerosol–cloud–precipitation interactions distinctive. A convection on 24 July 2014 in Naqu was selected using the Weather Research Forecasting (WRF) model, including the Thompson aerosol-aware microphysical scheme. Our study uses a compromise approach to the limited observations. We show that the transformation of cloud water to graupel and the development of convective clouds are favored in a polluted situation.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023, https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Short summary
Human-induced aerosol pollution has major impacts on both local and global precipitation. This study demonstrates using a global climate model that both the strength and localization of aerosols' precipitation impacts are highly dependent on which region the aerosols are emitted from. The findings highlight that the geographic distribution of human-induced aerosol emissions must be accounted for when quantifying their influence on global precipitation.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Neeldip Barman and Sharad Gokhale
EGUsphere, https://doi.org/10.5194/egusphere-2023-88, https://doi.org/10.5194/egusphere-2023-88, 2023
Short summary
Short summary
The study shows that during the pre-monsoon season transported aerosols, especially from Indo-Gangetic Plains (IGP) has a greater impact w.r.t air pollution, radiative forcing and rainfall over North-East (NE) India than emissions from within NE India itself. Hence, controlling emissions in the IGP will be significantly more fruitful in reducing pollution as well as climatic impacts over this region.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2022-1449, https://doi.org/10.5194/egusphere-2022-1449, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, that accounts for long-range interactions. The model is verified against atomistic simulations of typical acid-base clusters participating in atmospheric new particle formation. Results show that accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such forces in atmospheric new particle formation modelling.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez Garcia-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-719, https://doi.org/10.5194/acp-2022-719, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Chenguang Tian, Xu Yue, Jun Zhu, Hong Liao, Yang Yang, Yadong Lei, Xinyi Zhou, Hao Zhou, Yimian Ma, and Yang Cao
Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, https://doi.org/10.5194/acp-22-12353-2022, 2022
Short summary
Short summary
We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. In atmosphere-only simulations, we find global fire aerosols cause surface cooling and rainfall inhibition over many land regions. These fast atmospheric perturbations further lead to a reduction in regional leaf area index and lightning activities. By considering the feedback of fire aerosols on humidity, lightning, and leaf area index, we predict a slight reduction in fire emissions.
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022, https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Short summary
Multiple linear regression (MLR) analyses often interpret the correlation coefficient (r2) as the contribution of an independent variable to the dependent variable. Since a good correlation does not imply a causal relationship, we propose that r2 should be interpreted as the maximum possible contribution. Moreover, MLR results are sensitive to the length of time analyzed; long-term analysis gives a more accurate assessment because of its additional constraints.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022, https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Short summary
Meteorological discontinuities in the vertical direction define the lowest atmosphere as the boundary layer, while in the horizontal direction it identifies the contrast zone as the internal boundary. Both of them determine the polluted air mass dimension over the North China Plain. This study reveals the boundary layer structures under three categories of internal boundaries, modified by thermal, dynamical, and blending effects. It provides a new insight to understand regional pollution.
Lichao Yang, Wansuo Duan, Zifa Wang, and Wenyi Yang
Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022, https://doi.org/10.5194/acp-22-11429-2022, 2022
Short summary
Short summary
The initial meteorological state has a great impact on PM2.5 forecasts. Assimilating additional observations is an effective way to improve the accuracy of the initial meteorological state. Here we used an advanced optimization approach to identify where we should preferentially place the meteorological observations associated with PM2.5 forecasts in the Beijing–Tianjin–Hebei region of China. We provide evidence that the target observation strategy is effective for improving PM2.5 forecasts.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022, https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Short summary
The PM2.5 concentration has been greatly reduced in recent years in China and has entered a crucial stage that required fine seasonal prediction. However, there is still no study aimed at predicting gridded PM2.5 concentration. A model for seasonal prediction of gridded winter PM2.5 concentration in the east of China was developed by analyzing the contributions of emissions and climate variability, which could provide scientific support for air pollution control at the regional and city levels.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Daniel Peter Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-583, https://doi.org/10.5194/acp-2022-583, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We determine what causes long-term trends in shortwave radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute mainly to changes in clouds caused by greenhouse gas-induced warming.
Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, and Lucia Deaconu
Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, https://doi.org/10.5194/acp-22-10789-2022, 2022
Short summary
Short summary
Extensive stratocumulus clouds over the south-eastern Atlantic (SEA) can lead to a cooling effect on the climate. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). Here, we investigated the source attribution of CCN in the SEA as well as the cloud responses. Our results show that aerosol nucleation contributes most to CCN in the marine boundary layer. In terms of emissions, anthropogenic sources contribute most to the CCN and cloud droplets.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Cited articles
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S.,
Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Alfaro, S. C., Gaudichet, A., Gomes, L., and Maille, M.: Modeling the size
distribution of a soil aerosol produced by sandblasting. J. Geophys.
Res.-Atmos., 102, 11239–11249, https://doi.org/10.1029/97JD00403, 1997.
Astrom, J. A.: Statistical models of brittle fragmentation. Adv. Phys., 55,
247–278, https://doi.org/10.1080 /00018730600731907, 2006.
Businger, J. A., Wyngaard, J. C., Izumi, J., and Bradley, E. F.: Flux-Profile
Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28,
181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971.
Csanady, G. T.: Turbulent Diffusion of Heavy
Particles in the Atmosphere, J. Atmos. Sci., 20, 201–208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963.
Dupont, S., Scaling of dust flux with friction velocity: time resolution
effects, J. Geophys. Res.-Atmos., 125, e2019JD031192,
https://doi.org/10.1029/2019JD031192, 2020.
Durána, O., Andreotti, B., and Claudin, P.: Numerical simulation of
turbulent sediment transport, from bed load to saltation, Physics of
Fluids, 24, 709–737, https://doi.org/10.1063/1.4757662, 2012.
Gillette, D. A., Blifford, I. H., and Fenster, C. R.: Measurements of aerosol
size distributions and vertical fluxes of aerosols on land subject to wind
erosion. J. Appl. Meteor., 11, 977–987,
https://doi.org/10.1175/1520-0450(1972)011<0977:MOASDA>2.0.CO;2, 1972.
Gillette, D. A., Blifford, I. H., and Fryrear, D. W.: Influence of wind
velocity on size distributions of aerosols generated by wind erosion of
soils. J. Geophys. Res., 79, 4068–4075,
https://doi.org/10.1029/JC079i027p04068, 1974.
Gillette, D. A.: Production of dust that may be carried great distances,
Geol. Soc. Am., 186, 11–26, https://doi.org/10.1130/SPE186-p11, 1981.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: model description and preliminary tests over multiple CORDEX
domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Ishizuka, M.,
Mikami, M., Leys, J. F., Yamada, Y., Heidenreich, S., Shao, Y., and McTainsh,
G. H.: Effects of soil moisture and dried raindroplet crust on saltation and
dust emission. J. Geophys. Res.-Atmos., 113, D24212, https://doi.org/10.1029/2008JD009955, 2008.
Ishizuka, M., Mikami, M., Leys, J., Yamada, Y., Heidenreich, S., Shao, Y.,
and McTainsh, G. H.: Effects of soil moisture and dried raindroplet crust on
saltation and dust emission, J. Geophys. Res.-Atmos., 113, D24212,
https://doi.org/10.1029/2008JD009955, 2008.
Ishizuka, M., Mikami, M., Leys, J. F., Shao, Y., Yamada, Y., and Heidenreich,
S.: Power law relation between size-resolved vertical dust flux and friction
velocity measured in a fallow wheat field, Aeolian Res., 12, 87–99,
https://doi.org/10.1016/j.aeolia.2013.11.002, 2014.
Kaimal, J. C. and Finnigan J. J.: Atmospheric Boundary Layer Flows: Their
Structure and Measurements, Bound.-Lay. Meteorol., 72, 213–214,
https://doi.org/10.1007/BF00712396, 1995.
Khalfallah, B., Bouet, C., Labiadh, M., Alfaro, S., Bergametti, G.,
Marticorena, B., Lafon, S., Chevaillier, S., Féron, A., Hease, P.,
Henry-des-Tureaux, T., Sekrafi, S., Zapf, P., and Rajot, J. L.: Influence of
atmospheric stability on the size-distribution of the vertical dust flux
measured in eroding conditions over a flat bare sandy field, J. Geophys.
Res.-Atmos., 125, e2019JD031185, https://doi.org/10.1029/2019JD031185, 2020.
Klose, M. and Shao, Y.: Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmos. Chem. Phys., 12, 7309–7320, https://doi.org/10.5194/acp-12-7309-2012, 2012.
Klose, M., Shao, Y., Li, X., Zhang, H., Ishizuka, M., Mikami, M., and Leys,
J. F.: Further development of a parameterization for convective turbulent
dust emission and evaluation based on field observations, J. Geophys.
Res.-Atmos., 119, 10441–10457, https://doi.org/10.1002/2014JD021688, 2014.
Kok, J. F.: Does the size distribution of mineral dust aerosols depend on the wind speed at emission?, Atmos. Chem. Phys., 11, 10149–10156, https://doi.org/10.5194/acp-11-10149-2011, 2011a.
Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the global dust
cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011b.
Kok, J. F., Parteli, E. J., Michaels, T. I., and Karam, D. B.: The physics of
wind-blown sand and dust, Reports on Progress, Physics Physical
Society, 75, 106901, https://doi.org/10.1088/0034-4885/75/10/106901,
2012.
Laurent, B., Marticorena, B., Bergametti, G., and Mei, F.: Modeling mineral dust
emissions from Chinese and Mongolian deserts, Glob. Planet Change, 52, 121–141, https://doi.org/10.1016/j.gloplacha.2006.02.012, 2006.
Li, G., Zhang, J., Herrmann, H. J., Shao, Y., and Huang, N.: Study of
aerodynamic grain entrainment in aeolian transport. Geophys. Res. Lett., 47,
e2019GL086574, https://doi.org/10.1029/2019GL086574, 2020.
Liu, D., Ishizuka, M., Mikami, M., and Shao, Y.: Turbulent characteristics of saltation and uncertainty of saltation model parameters, Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, 2018. .
Lu, H. and Shao, Y.: A new model for dust emission by saltation bombardment.
J. Geophys. Res.-Atmos., 104, 16827–16842,
https://doi.org/10.1029/1999JD900169, 1999.
Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N'Doume, C., and
Legrand, M.: Modeling the atmospheric dust cycle: 2. Simulation of Saharan
dust sources, J. Geophys. Res., 102, 4387–4404,
https://doi.org/10.1029/96JD02964,1997.
Martin, R. L. and Kok, J. F.: Wind-invariant saltation heights imply linear
scaling of aeolian saltation flux with shear stress, Sci. Adv., 3, e1602569, https://doi.org/10.1126/sciadv.1602569, 2017.
Mikami, M., Yamada, Y., Ishizuka, M., Ishimaru, T., Gao, W., and Zeng, F.:
Measurement of saltation process over gobi and sand dunes in the Taklimakan
desert, China, with newly developed sand particle counter, J. Geophys.
Res.-Atmos., 110, D18S02, https://doi.org/10.1029/2004JD004688, 2005.
Owen, R. P.: Saltation of uniform grains in air, J. Fluid. Mech., 20,
225–242, https://doi.org/10.1017/S0022112064001173, 1964.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Raupach, M. R.: Drag and drag partition on rough surfaces, Bound.-Lay. Meteorol., 60, 375–395, https://doi.org/10.1007/BF00155203, 1992.
Reid, J.
S., Reid, E. A., Walker, A., Piketh, S., Cliff, S., Al Mandoos, A., Tsay,
S.-C., and Eck, T. F.: Dynamics of southwest Asian dust particle size
characteristics with implications for global dust research, J. Geophys.
Res.-Atmos., 113, D14212, https://doi.org/10.1029/2007JD009752, 2008.
Rosenberg, P. D., Parker, D. J., Ryder, C. L., Marsham, J. H.,
Garcia-Carreras, L., Dorsey, J. R., Briiks, I. M., Dean A. R., Crosier, J.,
McQuaid, J. B., and Washington, R.: Quantifying particle size and turbulent
scale dependence of dust flux in the Sahara using aircraft measurements, J.
Geophys. Res.-Atmos., 119, 7577–7598, https://doi.org/10.1002/2013JD021255,
2014.
Shao, Y.: A model for mineral dust emission. J. Geophys. Res.-Atmos., 106,
20239–20254, https://doi.org/10.1029/ 2001JD900171, 2001.
Shao, Y.: Simplification of a dust emission scheme and comparison with data,
J. Geophys. Res., 109, https://doi.org/10.1029/2003JD004372, 2004.
Shao, Y.: Physics and Modelling of Wind Erosion, Springer, Chapter 6 and Chapter 8, https://doi.org/10.1007/978-1-4020-8895-7, 2008.
Shao, Y., Ishizuka, M., Mikami, M., and Leys, J. F.: Parameterization of
size-resolved dust emission and validation with measurements, J. Geophys.
Res.-Atmos., 116, D08203, https://doi.org/10.1029/2010JD014527, 2011.
Shao, Y. and Mikami, M.: Heterogeneous Saltation: Theory, Observation and
Comparison, Bound.-Lay. Meteorol., 115, 359–379,
https://doi.org/10.1007/s10546-004-7089-2, 2005.
Shao, Y., Raupach, M. R., and Findlater, P. A.: Effect of saltation
bombardment on the entrainment of dust by wind, J. Geophys. Res.-Atmos., 98,
12719–12726, https://doi.org/10.1029/93JD00396, 1993.
Sow, M., Alfaro, S. C., Rajot, J. L., and Marticorena, B.: Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment, Atmos. Chem. Phys., 9, 3881–3891, https://doi.org/10.5194/acp-9-3881-2009, 2009.
Sterk, G., Jacobs, A. F. G., and van Boxel, J. H.: The effect of turbulent flow
structures on saltation sand transport in the atmospheric boundary layer,
Earth Surf. Proc. Land., 23, 877–887,
https://doi.org/10.1002/(SICI)1096-9837(199810)23:10<877::AID-ESP905>3.0.CO;2-, 1998.
Stout, J. E. and Zobeck, T. M.: Intermittent saltation. Sedimentology, 44,
959–970, https://doi.org/10.1046/j.1365-3091.1997.d01-55.x, 1997.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Boston, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Ungar, J. E. and Haff, P. K.: Steady state saltation in air, Sedimentology,
34, 289–299, https://doi.org/10.1111/j.1365-3091.1987.tb00778.x, 1987.
Walklate, P. J.: A random-walk model for dispersion of heavy particles in
turbulent air flow, Bound.-Lay. Meteorol., 39, 175–190,
https://doi.org/10.1007/BF00121873, 1987.
Wang, L. and Stock, D. E.: Dispersion of Heavy Particles by Turbulent
Motion, J. Atmos. Sci., 50,
1897–1913, https://doi.org/10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2, 1993.
Webb, N. P., Chappell, A., LeGrand, S. L., Ziegler, N. P., and Edwards, B. L.: A
note on the use of drag partition in aeolian transport models, Aeolian
Res., 42, https://doi.org/10.1016/j.aeolia.2019.100560, 2019.
Yahaya, S., Frangi, J. P., and Richard, D. C.: Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain), Ann. Geophys., 21, 2119–2131, https://doi.org/10.5194/angeo-21-2119-2003, 2003.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition
(DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108,
4416, https://doi.org/10.1029/2002JD002775, 2003.
Short summary
It has been recognized in earlier research that particle size distribution of dust at emission (dust PSD) is dependent on friction velocity. This recognition has been challenged in some recent papers. Based on the analysis of experimental data, we confirm that dust PSD is dependent on friction velocity and atmospheric boundary-layer stability. By theoretical and numerical analysis, we reveal the reasons for this dependency.
It has been recognized in earlier research that particle size distribution of dust at emission...
Altmetrics
Final-revised paper
Preprint