Articles | Volume 20, issue 21
Atmos. Chem. Phys., 20, 12939–12953, 2020
https://doi.org/10.5194/acp-20-12939-2020
Atmos. Chem. Phys., 20, 12939–12953, 2020
https://doi.org/10.5194/acp-20-12939-2020

Research article 05 Nov 2020

Research article | 05 Nov 2020

Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability

Yaping Shao et al.

Related authors

Linkage between dust cycle and loess of the Last Glacial Maximum in Europe
Erik Jan Schaffernicht, Patrick Ludwig, and Yaping Shao
Atmos. Chem. Phys., 20, 4969–4986, https://doi.org/10.5194/acp-20-4969-2020,https://doi.org/10.5194/acp-20-4969-2020, 2020
Short summary
Turbulent characteristics of saltation and uncertainty of saltation model parameters
Dongwei Liu, Masahide Ishizuka, Masao Mikami, and Yaping Shao
Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018,https://doi.org/10.5194/acp-18-7595-2018, 2018
Short summary
Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017,https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Surface renewal as a significant mechanism for dust emission
Jie Zhang, Zhenjiao Teng, Ning Huang, Lei Guo, and Yaping Shao
Atmos. Chem. Phys., 16, 15517–15528, https://doi.org/10.5194/acp-16-15517-2016,https://doi.org/10.5194/acp-16-15517-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Effect of volcanic emissions on clouds during the 2008 and 2018 Kilauea degassing events
Katherine H. Breen, Donifan Barahona, Tianle Yuan, Huisheng Bian, and Scott C. James
Atmos. Chem. Phys., 21, 7749–7771, https://doi.org/10.5194/acp-21-7749-2021,https://doi.org/10.5194/acp-21-7749-2021, 2021
Short summary
Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE
Sanhita Ghosh, Shubha Verma, Jayanarayanan Kuttippurath, and Laurent Menut
Atmos. Chem. Phys., 21, 7671–7694, https://doi.org/10.5194/acp-21-7671-2021,https://doi.org/10.5194/acp-21-7671-2021, 2021
Short summary
Future changes in Beijing haze events under different anthropogenic aerosol emission scenarios
Lixia Zhang, Laura J. Wilcox, Nick J. Dunstone, David J. Paynter, Shuai Hu, Massimo Bollasina, Donghuan Li, Jonathan K. P. Shonk, and Liwei Zou
Atmos. Chem. Phys., 21, 7499–7514, https://doi.org/10.5194/acp-21-7499-2021,https://doi.org/10.5194/acp-21-7499-2021, 2021
Short summary
Present-day radiative effect from radiation-absorbing aerosols in snow
Paolo Tuccella, Giovanni Pitari, Valentina Colaiuda, Edoardo Raparelli, and Gabriele Curci
Atmos. Chem. Phys., 21, 6875–6893, https://doi.org/10.5194/acp-21-6875-2021,https://doi.org/10.5194/acp-21-6875-2021, 2021
Short summary
Seasonal variation in atmospheric pollutants transport in central Chile: dynamics and consequences
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021,https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary

Cited articles

Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014. 
Alfaro, S. C., Gaudichet, A., Gomes, L., and Maille, M.: Modeling the size distribution of a soil aerosol produced by sandblasting. J. Geophys. Res.-Atmos., 102, 11239–11249, https://doi.org/10.1029/97JD00403, 1997. 
Astrom, J. A.: Statistical models of brittle fragmentation. Adv. Phys., 55, 247–278, https://doi.org/10.1080 /00018730600731907, 2006. 
Businger, J. A., Wyngaard, J. C., Izumi, J., and Bradley, E. F.: Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971. 
Csanady, G. T.: Turbulent Diffusion of Heavy Particles in the Atmosphere, J. Atmos. Sci., 20, 201–208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963. 
Download
Short summary
It has been recognized in earlier research that particle size distribution of dust at emission (dust PSD) is dependent on friction velocity. This recognition has been challenged in some recent papers. Based on the analysis of experimental data, we confirm that dust PSD is dependent on friction velocity and atmospheric boundary-layer stability. By theoretical and numerical analysis, we reveal the reasons for this dependency.
Altmetrics
Final-revised paper
Preprint