Supplement of

Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability

Yaping Shao et al.

Correspondence to: Jie Zhang (zhang-j@lzu.edu.cn) and Ning Huang (huangn@lzu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
We use a Lagrangian stochastic model for saltation in turbulent flow to examine the intensity of saltation bombardment. The model combines the equation of sand motion with a stochastic equation for fluid velocity fluctuations along the saltation trajectories. Following Thomson (1987, 1990), the turbulent motion of fluid elements can be modelled with

\[dU_i = a_i(U, X, t)dt + b_{ij}(U, X, t)\, d\omega_{ij} \]
\[dX_i = U_i(X, t)dt \]

where \(U \) is fluid element Lagrangian velocity (\(U_i \) its \(i \) component), \(X \) fluid element position, \(a_i \) drift coefficient, \(b_{ij} \) diffusion coefficient and \(d\omega_{ij} \) increment of the Wiener process. Sand particle and fluid element follow different trajectories due to the trajectory-crossing effect (Yudine, 1959; Csanady, 1963).

The model used in this study is two dimensional, with \(x_1 \) aligned in the horizontal mean wind direction and \(x_3 \) in the vertical direction. We denote the sand particle position as \(Y \), its velocity as \(V \), and the fluid element velocity at \(Y \) as \(U^* \).

The sand-particle to fluid-element relative velocity is \(V_R = V - U^* \).

The equation of sand particle motion is written as

\[\frac{dv_i}{dt} = -\frac{V_{Ri}}{\tau_p} - \delta_{i3}g \quad (i = 1, 3) \]

with \(\tau_p \) being the sand particle response time (Morsi and Alexander, 1972). \(V_{Ri} \) is given by \(V_{R1} = V_1 - \bar{U}_1^{*} - u_1^{*} \) and \(V_{R3} = V_3 - u_3^{*} \), where \(\bar{U}_1^{*} \) is the mean wind speed at sand particle location. The influences of turbulence on sand particle motion are embedded in \(u_1^{*} \) and \(u_3^{*} \). These are calculated using a modified Thomson (1987) model. Note that \(U = \bar{U} + u \) and \(u = (u_1, u_3) \). \(\bar{U} \) is assumed to be known, and the fluid element motion fluctuations \((u_1, u_3) \) are calculated by using Equations (a1) and (a2). The diffusion coefficients \(b_{ij} \) are given by

\[b_{ij} = \delta_{ij}\sqrt{C_0\varepsilon} \]

where \(\delta_{ij} \) is Kronecker delta, \(C_0 \) a constant and \(\varepsilon \) the dissipation rate for turbulent kinetic energy. The determination of \(a_i \) uses the well-mixed condition of Thomson (1987), which leads to

\[a_iP = \frac{1}{2} \frac{\partial C_0\varepsilon}{\partial u_i} + \varphi_i \]

and

\[\frac{\partial \varphi_i}{\partial u_i} = -\frac{\partial P}{\partial \bar{U}} - \frac{\partial u_i P}{\partial x_i} \]

with \(P \) being the phase-space probability density function \(P(U, X, t) \). The well-mixed condition requires that \(P \) equals to the probability density function of the Eulerian velocity \(U(x=X, t) \).

The increment \(du_i^* \) is expressed as

\[du_i^* = du_i + \delta u_i \]

where \(du_i \) is the fluid-element velocity increment between \(t \) and \(t+dt \), computed using Equation (s1), and \(\delta u_i \) the spatial velocity increment at \(t+dt \) between the two points separated by \(V_R \, dt \). While the structure function of \(du_i \) satisfies

\[\langle du_i du_i \rangle = C_0\varepsilon dt, \]

that of \(\delta u_i \) satisfies

\[\langle \delta u_i \delta u_i \rangle = C_1\varepsilon^{2/3}V_R^{2/3} dt^{2/3}. \]

Due to its fractional nature, \(\delta u_i \) is difficult to generate stochastically and it is in this study assumed to be
\[\langle \delta u_i \delta u_i \rangle = C_1 \epsilon^{2/3} V_l l^{-1/3} dt \quad (s10) \]

with \(l \) being a fixed scaling length. Following Hanna (1981) and Stull (1988), \(C_0 = 5 \) and \(C_1 = 2 \).

Sand particles are randomly lifted from the surface with velocity \((V_{1o}, V_{3o})\). The PDF of \(V_{1o} \) is assumed to be Gaussian and that of \(V_{3o} \) Weibull (to avoid negative liftoff speed). The sand-particle liftoff angle is confined to 0° and 180° and Gaussian distributed with a mean liftoff angle of 55° and a standard deviation of 5°. The sand particles are allowed to rebound from the surface with the rebounding kinetic energy half the impacting kinetic energy and a mean rebounding angle of 40°. If the kinetic energy of a sand particle becomes lower than a critical value, its motion is stopped.

References:

Thomson, D. J., A Stochastic Model for the Motion of Particle Pairs in Isotropic High-Reynolds-Number Turbulence, and its Application to the Problem of Concentration Variance. J. Fluid Mech., 210(-1), 113-153, [Link](https://doi.org/10.1017/S0022112090001239), 1990.

Yudine, M. I., Physical Considerations on Heavy-Particle Diffusion. Advances in Geophysics, 6, 185-191, [Link](https://doi.org/10.1016/S0065-2687(08)60106-5), 1959.