



## Supplement of

## Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability

Yaping Shao et al.

Correspondence to: Jie Zhang (zhang-j@lzu.edu.cn) and Ning Huang (huangn@lzu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

We use a Lagrangian stochastic model for saltation in turbulent flow to examine the intensity of saltation bombardment.
 The model combines the equation of sand motion with a stochastic equation for fluid velocity fluctuations along the saltation trajectories. Following Thomson (1987, 1990), the turbulent motion of fluid elements can be modelled with

 $dU_i = a_i(U, X, t)dt + b_{ii}(U, X, t)d\omega_{ii}$ (s1)

4 5

$$dX_i = U_i(X, t)dt \tag{s2}$$

6 where *U* is fluid element Lagrangian velocity ( $U_i$  its *i* component), *X* fluid element position,  $a_i$  drift coefficient,  $b_{ij}$ 7 diffusion coefficient and  $d\omega_{ij}$  increment of the Wiener process. Sand particle and fluid element follow different 8 trajectories due to the trajectory-crossing effect (Yudine, 1959; Csanady, 1963).

9 The model used in this study is two dimensional, with  $x_1$  aligned in the horizontal mean wind direction and  $x_3$  in the 10 vertical direction. We denote the sand particle position as *Y*, its velocity as *V*, and the fluid element velocity at *Y* as  $U^*$ . 11 The sand-particle to fluid-element relative velocity is  $V_R = V - U^*$ .

12 The equation of sand particle motion is written as

$$\frac{dV_i}{dt} = -\frac{V_{Ri}}{\tau_p} - \delta_{i3}g \qquad (i = 1, 3)$$
(s3)

15 with  $\tau_p$  being the sand particle response time (Morsi and Alexander, 1972).  $V_{Ri}$  is given by  $V_{R1} = V_1 - \overline{U_1^*} - u_1^*$  and 16  $V_{R3} = V_3 - u_3^*$ , where  $\overline{U_1^*}$  is the mean wind speed at sand particle location. The influences of turbulence on sand particle 17 motion are embedded in  $u_1^*$  and  $u_3^*$ . These are calculated using a modified Thomson (1987) model. Note that  $U = \overline{U} + u$ 18 and  $u = (u_1, u_3)$ .  $\overline{U}$  is assumed to beknown, and the fluid element motion fluctuations  $(u_1, u_3)$  are calculated by using 19 Equations (a1) and (a2). The diffusion coefficients  $b_{ij}$  are given by

 $b_{ii} = \delta_{ii} \sqrt{C_0 \varepsilon} \tag{s4}$ 

21 where  $\delta_{ij}$  is Kronecker delta,  $C_0$  a constant and  $\varepsilon$  the dissipation rate for turbulent kinetic energy. The determination of  $a_i$ 22 uses the well-mixed condition of Thomson (1987), which leads to

- 23  $a_i P = \frac{1_i}{2} \frac{\partial C_0 \varepsilon P}{\partial U_i} + \varphi_i$  (s5)
- 24 and

25

29

32

$$\frac{\partial \varphi_i}{\partial U_i} = -\frac{\partial P}{\partial t} - \frac{\partial U_i P}{\partial X_i} \tag{s6}$$

with *P* being the phase-space probability density function P(U, X, t). The well-mixed condition requires that *P* equals to the probability density function of the Eulerian velocity U(x=X, t).

28 The increment  $du_i^*$  is expressed as

 $du_i^* = du_i + \delta u_i \tag{s7}$ 

(s9)

- 30 where  $du_i$  is the fluid-element velocity increment between *t* and *t*+*dt*, computed using Equation (s1), and  $\delta u_i$  the spatial 31 velocity increment at *t*+*dt* between the two points separated by  $V_R dt$ . While the structure function of  $du_i$  satisfies
  - $\langle du_i du_i \rangle = C_0 \varepsilon dt, \tag{88}$

33 that of  $\delta u_i$  satisfies

- 34
  - 35 Due to its fractional nature,  $\delta u_i$  is difficult to generate stochastically and it is in this study assumed to be

 $\langle \delta u_i \delta u_i \rangle = C_1 \varepsilon^{2/3} V_R^{2/3} dt^{2/3}.$ 

- 36  $\langle \delta u_i \delta u_i \rangle = C_1 \varepsilon^{2/3} V_R l^{-1/3} dt$  (s10) 37 with *l* being a fixed scaling length. Following Hanna (1981) and Stull (1988),  $C_0 = 5$  and  $C_1 = 2$ . 38 Sand particles are randomly lifted from the surface with velocity ( $V_{Io}$ ,  $V_{3o}$ ). The PDF of  $V_{Io}$  is assumed to be Gaussian
- 39 and that of  $V_{3o}$  Weibull (to avoid negative liftoff speed). The sand-particle liftoff angle is confined to  $0^{\circ}$  and  $180^{\circ}$  and
- 40 Gaussian distributed with a mean lift off angle of  $55^{\circ}$  and a standard deviation of  $5^{\circ}$ . The sand particles are allowed to
- 41 rebound from the surface with the rebounding kinetic energy half the impacting kinetic energy and a mean rebounding
- 42 angle of  $40^{\circ}$ . If the kinetic energy of a sand particle becomes lower than a critical value, its motion is stopped.

## 43

## 44 **References:**

- 45 Csanady, G. T., Turbulent Diffusion of Heavy Particles in the Atmosphere. J. Atmospheric Sci., 20(3), 201-208,
- 46 https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963.
- 47 Hanna, S. R., Lagrangian and Eulerian Time-Scale Relations in the Daytime Boundary Layer. J. Appl.Meteorol.,
- 48 20(3), 242-249, https://doi.org/10.1175/1520-0450(1981)020<0242:LAETSR>2.0.CO;2, 1981.
- 49 Morsi, S. A. and Alexander, A. J., An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid.
- 50 Mech., 55, 193-208, https://doi.org/10.1017/S0022112072001806, 1972.
- 51 Stull, R. B., An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Boston,
- 52 http://dx.doi.org/10.1007/978-94-009-3027-8, 1988.
- Thomson, D. J., Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid
   Mech., 180(4), 529-556, https://doi.org/10.1017/S0022112087001940, 1987.
- 55 Thomson, D. J., A Stochastic Model for the Motion of Particle Pairs in Isotropic High-Reynolds-Number Turbulence,
- and its Application to the Problem of Concentration Variance. J. Fluid Mech., 210(-1), 113-153,
- 57 https://doi.org/10.1017/S0022112090001239, 1990.
- 58 Yudine, M. I., Physical Considerations on Heavy-Particle Diffusion. Advances in Geophysics, 6, 185-191,
- 59 https://doi.org/10.1016/S0065-2687(08)60106-5, 1959.

60